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Abstract—Patterns are key to decrypting messages.
Language is composed of repeat groupings of symbols
encoded in words and the syntax of a language. Patterns
bleed through encryption since all encryption algorithms
can be replaced by a substitution (S) cipher. This makes
it possible to analyze the patterns in cipher text using the
collisions in the cipher text message. Each language has
its own unique lexicon and rules, making it possible to
identify both the original plain text language and the size
of the block used for encryption. The ability to identify this
data supports both Kerckhoffs’ and Shannon’s assumption
that the attacker knows all of the important data about
the encryption algorithm, minus the secret key. In practice,
this means that an attacker can quickly focus on the data
needed to prosecute an attack on an encrypted message
just by analyzing collisions in the message. This paper
demonstrates that such an approach is feasible and lays
the foundation to explore how to derive the information
needed to attack encrypted messages using data derived
from the collisions in the cipher text.
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I. INTRODUCTION

Cryptographic attacks are a key method in ex-
tending the listening (sniffing) [1] techniques and
recovering usable data for attacking a target. Many
algorithms for breaking ciphers have been explored
since electronic ciphers were deployed for civilian
use and in military theaters of operation. Com-
mercial entities have also employed encryption to
protect their designs and operations. Protection of
electronic information has taken on increased im-
portance in the last twenty years as malicious actors
have monetized attacks on companies and tried to
impose their agendas on society and the economic

infrastructure. This paper introduces the practice of
using collisions to evaluate messages, discovers the
original language of a cipher text message, focuses
on the possible block size used to encrypt the
message, and demonstrates the relative security of
the encryption employed for the message.

The remainder of the paper is broken into sev-
eral sections. Section II holds essential background
information for understanding the approach to the
problem. Section III addresses the base of Kerck-
hoff’s and Shannon’s assumption of a priori knowl-
edge of the encryption algorithm used to obscure
a message. In Section IV, the collision attack is
described. The mathematics of the collision attack
are presented in Section V, with the analysis of the
technique given in Section VI. The final section,
Section VII, presents conclusions and possible fu-
ture work in the field.

II. BACKGROUND

A. Collisions
The basis of the work undertaken relies on the

concept of data collision. A “collision” is defined
as two instances of information that are identical
but occur at different points in the transmission or
information stream. For any two symbols (sx located
at positions i and j where i ̸= j

si = sj (1)

Collisions can also be viewed as a repetition of
the same value, symbol, or information. In this
study, collisions are a key metric that indicates
the redundancy of symbols in a language and are
related to the probability mass function (pmf) of
the alphabet for the language.
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B. Random Number Generators
Randomness is key to the practice of encryption.

Secrecy is assured by selecting and applying random
keys to encrypt a message. Random numbers are
numbers in a set comprised of all numbers in a
range from a low to a high number, either as dis-
crete numbers or a continuous range, depending on
the random number generator selected for use [2].
A random number function with some probability
mass function has the property that if the random
function is run sequentially over time for any two
locations i and j in the sequence, the outcome
of the function will have the same probability of
producing the same output as shown in the pmf for
the function. That is ∀i, j in s:

pr(xi = xj) = pr(x) (2)

For a pmf that is uniform

pr(xi = x) =
1

|s|
(3)

Functions having this property are known as “true”
random numbers (TRNGs). Functions that exhibit
TRNG properties include white noise [3], pink noise
[4], fair dice, cosmic particles hitting a particular
area, and roulette wheels. Unfortunately, random-
ness cannot be calculated using a digital computer
[5].

Computers can be used to create streams of
numbers that can “appear” to be random for rel-
atively long runs, known as pseudorandom number
generators (PRNGs). These sequences repeat in a
period (λ). If λ is almost as large as the size of
numbers represented by the bits in the PRNG, ie.
λ ≈ 2|b|, then the period is said to be “maximal.”
During this period, each number in the sequence is
unique, This is because the PRNG is a function such
that

rt+1 = f(rt) (4)

Thus, the period repeats when ri = rj , j = i + λ,
and the numbers between ri and rj are unique.
The use of the PRNG by independent applications
does require synchronization of the PRNGs between
those applications. Since the PRNG sequence is
deterministic, all that is required is to select a
number in the sequence, known as the “seed,” and
sharing that number with all legitimate users. There

are many types of PRNGs, though high quality
PRNGs are always being sought for use. Character-
izing RNGs can be accomplished using the Birthday
Paradox.

C. Birthday Paradox

The Birthday Paradox [6] is the name given to
the mathematics that describes why collisions take
place more often than would otherwise be expected.
Arising from the problem of predicting how many
people in a group have the same month and day of
birth, the problem is one of statistics. The statement
of the problem says if there are n people in a room,
find the probability that at least two people share
the same birthday. Only n = 23 people are required
to have a 50% chance of at least two people with
matching birthdays. This is because the number of
matches (m) that can produce a matching birthday
is given by

m =
n−1∑
i=1

i =
n(n− 1)

2
(5)

For k possible outcomes and n in the group, the
proportion of birthdays without repetition is

Vnr =
k!

(k − n)!
(6)

With repetition
Vt = kn (7)

and the probability of matching birthdays is

P (B) = 1− P (A) = 1− Vnr

Vt

(8)

This same problem describes random collision prob-
lems, but there is one limitation: each outcome must
be equally likely.

D. Shannon Theory

The Birthday Paradox addresses randomness,
which directly impacts the predictability of observed
data, or applications of entropy. Key measures in
Shannon theory are entropy, which is a measure
of randomness, known as the “surprise” in newly
observed data, given by [7]

H(x) = −
n∑

i=1

pr(xi)lg
(
pr(xi)

)
(9)



where pr(xi) is the probability of the symbol xi

appearing next in the information stream.
From entropy, the tendency of symbols in a

language to be repeated (known as “redundancy”)
can be calculated. Redundancy is defined as [7]

Rlambda = 1− H(xi)

Hmax(xi)
(10)

From the patterns associated with redundancy and
the accumulation of information from a stream of
data and information, it is possible to calculate
the “unicity distance” (n) of a message. Unicity
distance is the number of characters needed to
unambiguously eliminate incorrect (spurious) keys
in an encryption. Unicity distance is given by [7]

n =
log|K|

Rλlog|A|
(11)

where |K| is the size of the keyspace for the
cipher and |A| is the size of the alphabet for the
encrypted message. Shannon Theory is contained
in Information Theory.

E. Information Theory

Information Theory (IT) is the study of the
quantification, methods of storing, and means of
communicating information [8]. This area of math-
ematics was pioneered by Claude Shannon in the
1940’s and 1950’s as he applied different statistical
techniques to the information content of both data
communications and encryption (data obscuring).
A major result of the study was that the infor-
mation in encryption does not decrease, but only
changes in representation. IT brings in a number of
different areas of information and signal process-
ing, including set theory, encryption, redundancy,
error checking, compression, and information trans-
mission. Artificial intelligence (AI) and Machine
Learning (ML) are also thought to be included in
this field through the application of the Asymptotic
Equipartition Property (AEP) [8].

F. Isomorphic Cipher Reduction

Abstract algebra [9] can also be applied to en-
cryption. A major result of abstract algebra is the
concept that if two problems are solved using the
same mathematics, then the problems must be re-
lated. Horst Feistel from IBM used this approach

when he wrote that at their heart every cipher is
a substitution (S) cipher [10]. Every cipher can be
described by using the mapping function (7→)

Ek(PTi) = CTi → PTi 7→ CTi (12)

Taking advantage of this property, all ciphers may
be compared using the 1:1 principle. Even complex
product ciphers [11] can be reduced to a single
cipher using this technique [12], [13]. Once a cipher
is converted into its equivalent S cipher, product
ciphers may also be further converted into a single
equivalent S cipher using the property of idem-
potence [14], [15]. By applying these techniques
and principles any two ciphers can be compared
to each other. The reduction of ciphers allows the
use of language statistics for recovering encrypted
messages.

G. Language Statistics
Breaking and protecting encrypted messages in-

volves working with language patterns. The reason
that the use of such statistics so is valuable is that
language use is not random - patterns are replete
in communications. If language was truly random,
there would be no way to follow totally random
symbols.

One of the main properties of S ciphers is that
they do not obscure patterns but rather allow that
information to be transferred from plain text to
cipher text [15]. Patterns are inherent in language
both for individuals and the language as a whole.
On the average [16], patterns arise from the habits
of the person doing the communications and from
the syntax and lexicon of that particular language.
Among those statistics are the pmf of the symbols,
Shannon measures for the language, and the repe-
tition of words in typical language use [17]. These
statistics provide valuable clues and information for
a cryptographer.

III. ASSUMING KNOWLEDGE OF ENCRYPTION
CHARACTERISTICS

Both Kerckhoffs [18] and Shannon [7] assumed
that the attacker knows the encryption algorithm,
block size, and other key characteristics of the
encryption process. As early as the late 1880’s,
Kerckhoff noted that encryption algorithms must be
mathematically secure by having a shared secret



among legitimate parties to the message. Termed
the “secret key,” it was assumed that the attacker
is also skilled at the mathematics involved in the
encryption process. Carlson has argued that this is
correct and that isomorphic cipher reduction further
demonstrates that only a rudimentary knowledge
is necessary to successfully prosecute attacks on
ciphers [12], [13], [15]. The assumption that an
attacker has an understanding of important cipher
characteristics has not been proven, but has been
relied upon for cryptanalysis. Applications of the
techniques related to this paper will show that the
assumption is provable and that the analysis is easy
to apply. Therefore, knowledge of key character-
istics is warranted and is not merely an academic
constraint.

IV. VISUALIZING THE COLLISION ATTACK

A critical measure related to the collision attack
is the number of collisions that have occurred to
a particular location in the file/message. Graphing
the number of collisions seen at any point results
in a visual indication of the redundancy in the file.
Collisions are often perceived to be a rare event
since PRNG functions do not collide during their
periodic cycle. However, random numbers produced
by truly random number generators often collide
since the probability of any number reappearing in
a sequence is directly dependent on their pmf. A
random number has the same probability of occur-
ring for each number in a sequence [19]. Assume
that a number has a probability of occurring given
by the pmf as C. Then ∀i, j positions in a sequence
where i ̸= j:

pr(xi = C) = pr(xj = C) (13)

The probability remains the same for any two char-
acters. The mathematics of this event are governed
by the Birthday paradox [6], [20]. However, lan-
guage is not random as it involves habits and syntac-
tic rules [16] and has a characteristic redundancy of
symbols [7] and words [17]. That redundancy will
be reflected in repeated symbols and patterns.

The first step in the process of investigating the
plain text language of the message is to find the limit
of the anticipated redundancy in a language. Since
each language has a defined number of characters in
the alphabet, the maximum entropy for the language

takes place when all of the characters in a message
are randomly selected. This ”encryption” represents
the case where the fewest collisions will occur. It
is not really necessary to do encryption since all
ciphers can be replaced by S ciphers [13] and S
ciphers leak patterns. The results for those selections
of random characters are shown in Figure 5 through
Figure 7. Each curve in a figure represents that
random selection of characters for a given alphabet
size. Each figure shows the results for a particular
m-gram size from m = 1 to m = 5 where an m-
gram is m consecutive letters. Since more alphabet
characters in the metalanguage form larger values of
m, curves flatten out for larger values of m because
collisions come more slowly.

With the lower limit of collisions being related to
randomness, the PRNG used to create the alphabet
character stream should be as close to truly random
as is possible. The data stream has no constraints
from the language that would impose bias on the
resulting pmf. Data is then only dependent on
the PRNG and the size of the alphabet. Statistical
significance for the information is reached by run-
ning many tests (at least 47 cases [19]) and using
the result as the representation of the average by
applying the Law of Large Numbers (LLN) [21].

The next step is to take the count for actual
examples in the language. A sufficient number of
representative texts is selected from a source, such
as Project Gutenberg [22], and the collisions are
counted. If the number of texts is sufficient, the
resulting average curve will represent the average
for the language through the LLN.

Collision attacks are those which rely on colli-
sions of data of some type in order to affect and
attack an encrypted message. Consider the plot of
the number of collisions for a language. Of special
interest is the slope of the plot at a particular point
x where y is the number of collisions at symbol
number x in the file or message sequence.

y = mx+ b (14)

The value of the slope at the point x in the message
is m. For comparison between different curves
(files/messages), the slope of interest occurs when
m = .8 due to the fact a significant corpus has been
seen and sufficient collisions present. Although this
slope was chosen to be statistically significant, it



does not require that all alphabetic characters be
present. Eventually, if each character in the language
is found in the file, then m → 1 and every s ∈ {A}
has been seen at least one time. At this point, the
curve can produce no new information thus there is
no reason to continue further analysis.

A characteristic of the collision plot is that the
y-intercept will always be less than or equal to 0
and individual messages/files will vary

ymax ≤ b ≤ ymin (15)

On average, the first collision should occur at the re-
dundancy rate of the language. This rate is bounded
by the Birthday paradox. The maximum number of
symbols needed to produce a collision is |A|, but
thereafter each new symbol seen will result in a
collision.

Collisions are also used to directly attack ciphers.
Both McGrew [23] and Carlson [24] used colli-
sions to break modes protecting AES and other
ciphers. Using collisions to characterize the en-
cryption method demonstrates the importance of
collision in the encryption process.

V. THE MATHEMATICS

Graphing the collision data allows for analysis
of the information conveyed by those collisions.
The graph is directly dependent on the size of the
alphabet used in the language of the message. The
cumulative number of collisions for the location in
the message characterizes that message in that lan-
guage. The curve will be bounded by pure random
data which never occurs on average. The difference
between the curve for a language [16] and the curve
for the random data is defined as ∆, and is defined
as

∆ = ri − λi (16)

where ∆ is the relative strength of the message
versus pure randomness at the point where mλ = .8
(see Figure 1). λi is the point on the language curve
and ri on the random curve is the point on the
random curve.

Two languages can be compared in the same
way. The amount ∆ should be seen as the cost of
insecurity from random imposed by the syntax and
symbols used for the language. It would be good to

Fig. 1. Relative Strength (Delta) Between Curves

think of this in terms of Chomsky’s observations on
syntax and lexicons [25].

The inherent security of a language is measured
by the application of the average curve for messages
of a language λ. This curve will be defined by |A|
and the syntax (including words) for the language.
Each language will have a unique curve and a
unique range of b values. In fact, each author has
his/her own unique language, and therefore, each
author can eventually be identified by this value.

Taking the same message and encrypting it with
the various ciphers will give relative security for
each cipher. Note that Feistel said that all ciphers are
equivalent to the S cipher [10]. If this is correct, then
the curves are symbol assignment independent and
should be identical. Again, a statistically significant
corpus is needed to create the average curve for the
messages.

Using the slope of m = .8 and calculating the y-
intercept gives a number that describes the message
curve. A range of values for b is possible for a
block size of encryption and the language of the
message. Each value on the y-axis of the graph is
associated with different language/block size pairs.
One of the pairs is correct for the message, but
which pair is correct is not immediately identifiable
just from b. However, knowing the possible alphabet
sizes for the source language can greatly reduce the
exact pair combinations. The more that is known
about the message source, the fewer pairs that must
be investigated. Therefore, the message may be
represented by the y-intercept and use that to map
to the possible language/block size pairs.



VI. ANALYSIS

There are two generally accepted divisions of
language [26]: natural and formal languages. Nat-
ural languages are composed of those languages
which arise from the evolution of human beings
in groups that result in an agreed upon set of
symbols and rules of syntax that are mapped to
phonemes (sounds) [27]. These languages change
with response to language use over time, although
the syntax (rules) tend to remain relatively static.
The base mappings of sounds to characters, called
the alphabet, may change over time, but the evolu-
tion of the alphabet is often much slower than the
change in the lexicon.

Formal languages are those languages that are
“designed” [28]. The language is created according
to rules. Changes to the language, as necessary,
also conform to the rules. An example of such a
type of language is mathematics, another is music.
Symbols and lexicon in the language are very well
defined and agreed upon. The syntax is similarly
well-defined and enforced.

Every language has a characteristic alphabet (see
Table I) which places it in a smaller set of lan-
guages with the same alphabet size. The question
of which language is used for the message can
still be discerned by the data from the lexicon of
the language. Comparing the message curve to the
random curves can eliminate languages with smaller
alphabet sizes. Additionally, the average curve for
a particular alphabet size will overlay the message
curve within the variance and can identify the set
of languages with the correct alphabet size.

One of the interesting features of these curves is
that they can be used to compare the strength of
two (or more) ciphers. The strongest cipher is one
in which there are no patterns to find, ie., totally
random data. A curve of totally random numbers
will be on the far right of any set of collision
curves for a cipher, message, and key. The offset
from this curve to a curve representing a particular
key and message represents a loss of security from
perfect encryption for that message, algorithm, and
key. If the curve is composed of the average data,
then the performance of two different ciphers can
be compared. Curves made up of the data for the
same message using different keys and encryption

Alphabet Size
Hangul [29] 24
English [30] 26
French [31] 26
Dutch [32] 26

Spanish [33] 27
German [34] 30
Serbian [35] 30

Bulgarian [36] 30
Russian [37] 32

Ukrainian [38] 33
Hindi [39] 46

Katakana [40] 71
Hiragana [40] 71

TABLE I
SIZE OF VARIOUS ALPHABETS

Fig. 2. Results for Single Character Block

algorithms can be compared. If these two curves are
identical, then the two encryptions are equivalent in
strength. Furthermore, comparing a cipher and key
pair for one algorithm and the S cipher, it is possible
to gather data proving isomorphic cipher reduction
for a cipher and the S cipher. Ciphers without
randomization all reduce to the S cipher [13], so all
ciphers should be identical with the curve for the
S cipher. This requires testing to empirically prove
the assertion, preferably with at least two languages
with the same alphabet size.

VII. CONCLUSIONS AND FUTURE WORK

This paper has focused on collisions as a metric
for encrypted messages, using them to determine
the possible block sizes of the encryption algorithm
employed and the original language used for the
message. Deriving this knowledge supports Kerck-
hoffs’ and Shannon’s assertion that such knowledge
is available to the attacker when they attempt to



Fig. 3. Results for Two Character Block

Fig. 4. Results for Three Character Block

decrypt the hidden message. Figures 5 - 7 show
the random number graphs for languages that have
different alphabet sizes. This indicates that there is
a difference in security for each size.

Messages can now be described by the y-intercept
for their collision curve. Encoded in that number
are the possible block size and language for the

Fig. 5. Results for Single Character Block

Fig. 6. Results for Four Character Block

Fig. 7. Results for Five Character Block

message. This information focuses on possible ap-
proaches to breaking the message and restricts the
number of possible encryption methods to inves-
tigate. More information can be derived from the
curves and y-intercept. More research is indicated
on this metric.

This study centered on the English language, due
to the background of the investigators. The same
experiment should be conducted on other languages
to verify the assertion that this effect is language-
independent. Such experiments are planned for the
future and will be reported as they are completed.

There is a question about whether different lan-
guages with different syntax rules and lexicons have
a different curve. This result is very characteristic,
since each language has its own pmf. An interesting
experiment would be to test two languages with the
same number of characters in their alphabet to see
if the two languages are distinguishable. The two
languages will have different lexicons and pmfs.
Different pmfs should result in different collision
rates, and therefore, different curves for the average



collision rate.
The same experiment should be run for two

different authors or language users to determine if
they can be differentiated using the collision curves.
Messages encode the pmf and habits of each user.
If the result is two distinct curves, then the outcome
of the experiment supports the concept of habits
in language suggested by stylometry [41] and the
Theory of the Vastness of Natural Languages [16].
Such a result indicates that this method can be used
in security as a signature to uniquely identify the
author of a message.

Implied in the curves is the concept of the inher-
ent security of a language and the ability to measure
the security of an encrypted message. The method-
ology also allows verification of isomorphic cipher
reduction. If the curve for an encrypted message
using a particular cipher is overlaid with the same
message encrypted with the S cipher and the two
are identical, then cipher reduction is confirmed.
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