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Abstract—Weak Pseudo-random Number Generators
(PRNGs) can be improved with additional operations and
techniques. However, some techniques added to the RNGs
in an attempt to improve the quality and randomness of
the generator fail to produce the desired results. Literature
surveys have produced very few ideas and information related
to the constituent steps involved in the individual algorithms
used in constructing the PRNGs. In preference to studying
and understanding the individual elements of the algorithms,
designers have preferred to create new PRNGs and have
missed the opportunity to increase the basic understanding of
the field. If the building blocks of PRNGs are well understood,
along with their interactions, the design of high quality
PRNGs is possible. Understanding what works also requires
understanding what does not work. Those techniques can
then be avoided. This paper is an exploration of some novel
techniques for improving the quality of weak PRNGs that
failed to live up to the promise of improving PRNGs.

Index Terms—Randomness, Random Number Generators,
Pseudorandom Number Generators, LCGs, MCGs, PCGs,
Geffe Generators, Polymorphic RNGs, Composite Generators

I. Introduction
Pseudo-random Number Generators (PRNGs) are ubiq-

uitous and critically important in computing applications.
They are used in everything from simulations to security.
One major challenge of PRNGs is quality. Many applica-
tions require PRNGs that produce sufficiently high quality
output as to be completely unpredictable. This used to
be limited to cryptographic security applications, but the
need for quality PRNGs has increased even in simulations
[1], where weak LCGs were once favored for their speed.
This presents another major challenge: Speed. Speed and
statistical quality seem to be inversely proportional, thus
there is a great deal of value in cheaply improving the
quality of fast PRNGs, for use in applications where both
speed and quality are important factors.

The process of discovering algorithms for improving the
quality of weak PRNGs necessarily results in the discovery
of algorithms that fail to improve the quality of weak
PRNGs or even manage to make the quality worse. This
paper presents a set of just such failures along with some
discussion on why they failed to improve quality and
potential uses for them, despite that failure.

A. Testing Limitations
Testing PRNGs can be difficult and time consuming.

This is essentially a pattern recognition exercise, a prob-
lem with which computers tend to struggle. Common tests
include goodness of fit, the gap test, the order test, the
frequency test, the birthday test, and the bucket test.
Dutang and Wuertz [2] also list some tests that can
be executed on multiple output streams from the same
generator, which are not part of the test suite used for
this paper.
Testing was done using Dieharder [3], a strong suite

of PRNG tests. Dieharder combines many of the original
Diehard tests [4], some of the NIST tests [5], and a number
of other tests. For the most part, poor quality tests from
the original suites are not included1. Most of the tests
included in Dieharder are variations on the previously
mentioned test classes, using different parameters or di-
mensionality, shown to discover different types of patterns.
Dieharder is open source and is still actively maintained,

adding new, high quality tests as they are discovered,
making it one of the strongest PRNG testing suites
currently available. Because Dieharder has such a robust
suite of tests, however, test runs normally take two hours
or more to run on good hardware. This limits the rate at
which testing can be done.
Speed is not only a problem for Dieharder. It is also a

problem for PRNGs. Some of the following strategies re-
ceived significantly less testing, because they significantly
reduced the PRNG speed, making testing too slow to go
through as many runs. Slower PRNGs can take days to
complete a single test run.
Dieharder’s testing metrics calculate success or failure

based on the probability of an observed series of values
from the PRNG. This is fundamentally a comparison
with true randomness. Because low probability series
will sometimes be produced in real randomness, a good
quality PRNG will sometimes produce low probability
series as well. This can result in spurious failures or weak

1Dieharder still contains one low quality test, which was not known
to be low quality when it was added. This test can produce false
“WEAK” and “FAILED” results, but is not relevant here, because
so many other tests also failed.
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results. In Dieharder, “WEAK” indicates a result that
has a 1% probability of occurring in true randomness,
and “FAILED” indicates a 0.1% probability output. In
practice, this means that even an extremely good PRNG
should produce “WEAK” results in 1 test in 100 and
“FAILED” results in 1 test in 1000.

The final limitation is the tests themselves. There is
not any consistent method of determining the quality of a
particular test. Some poor quality tests will manifest their
poor quality easily, but it is likely some of the tests in
Dieharder have undiscovered statistical weaknesses. This
means that some portion of “WEAK” and “FAILED”
results could be caused by weaknesses in the tests them-
selves. The only way to rigorously test PRNGs is to test
them using Dieharder’s “test-to-destruction” mode, and
then compare them with the results of the same testing
against known high quality PRNGs. This mode takes
literal months to complete against fast PRNGs and thus
was not used here. In the cases discussed in this paper, the
failures were so dramatic that limitations of the testing
cannot reasonably be blamed.

II. Related Works
Much of the modern foundations of PRNGs is based on

the work of L’Ecuyler [1], [6]–[11], Knuth [12], and Pan-
neton [13]. Many of the standard techniques introduced by
these authors are used today and emulated. Knowing how
the researchers arrived at their conclusions has guided the
field for decades. Another source of inspiration concerning
the foundations of the mathematics of PRNGs comes from
the field of encryption. Hartley and Shannon’s work on
entropy helped to establish metrics for determining the
mathematical quality of PRNGs [14], [15]. While this
body of work does establish many metrics for determining
PRNG quality, it does not identify techniques that fail
to produce good results. Little other published work
on topic of such constituent techniques used in PRNG
algorithms exist. High quality PRNGs are a “holy grail”
of the commercial technology world. Good PRNGs are
considered trade secrets by their owners and vigorously
defended in courts. This only happens because of the
scarcity of available algorithms.

Mathematically proving a PRNG to be high quality is
almost impossible, which is why statistical testing suites
like Diehard were originally created. However, it is often
quite possible to mathematically prove that techniques
used in PRNGs impair quality. Two metrics commonly
used for this purpose are λ and ρ [16]. The symbol λ
represents the cycle length. A short cycle length indicates
poor PRNG quality. In contrast, ρ represents the number
of outputs required to determine the state of the PRNG.
A small ρ is also indicative of poor quality. Large values
for these quantities are necessary, but not sufficient, for
high quality.

The values of both ρ and λ have related concepts found
in Shannon Theory [15]. Consider the role of Abstract

Algebra [17], which says that if the math for a problem is
the same math that describes another problem, then the
two are related. Further, it also indicates that the approach
for one problem will work for the other problem. This same
concept is one of the foundations of the work done in the
field of Topology, as well [18]. Shannon Theory identifies
unicity distance as the quantity of cipher text required
to break a cipher. In the study of PRNGs, ρ indicates
how much information is required to break the formula
on which the PRNG is based. Therefore, the Shannon
value n plays the same role as ρ in PRNG analysis. In
Shannon Theory, the redundancy of the language (Rλ)
indicates how often repeated characters are likely to be
seen in an encrypted text. If the repeated text is considered
to be the PRNG output stream then the redundancy
is the cycle length with absolute precision. Therefore,
the Shannon Theory quantity Rλ corresponds to λ in
PRNGs. The correspondence between the two sets of
numbers also indicates that entropy [14] heavily underlies
and influences both fields. Since both are so interrelated,
the tools of Information Theory (IT) [19] are applicable
to both problems, and the techniques of IT can also be
applied similarly. PRNGs and their algorithms should be
examined in light of this relationship and in the context
of encryption and IT.

Users and practitioners typically do not talk about
failure because the techniques failed. However, there is
significant knowledge that can be derived from the failures
experienced by other researchers. Too much time is wasted
in repeated research into techniques that previously were
shown to be ineffective. If those results were reported
then researchers could have avoided the lost time and
concentrated on more effective lines of research. It is in
this spirit that the results of research that was not fruitful
are offered.

Crypt1 and PCG provide a contrast in methodology
that highlights the value of testing and cataloging in-
dividual techniques used in PRNGs to avoid ineffective
techniques that waste resources. PCG included the cre-
ation of a number of innovative output permutations and
applied them largely as a group [20]. Work on Crypt1
started with the permutations introduced in PCG and
began by testing each permutation independently [21].
This testing found that many of the permutations used
in PCG provide no significant benefits and that one
actually reduces statistical quality. Making the knowledge
of which permutations failed to produce good results
publicly known is no less important than identifying the
permutations that are good, so that future researchers will
not waste their resources rediscovering what others have
already found. To this end, this paper seeks to disclose
techniques that were attempted but failed to produce any
improvement, during the development of a simple PRNG
designed for temporary use in another research project.



III. Prime Numbers
Prime numbers are especially valuable in random num-

ber generation and other security applications. One ma-
jor reason for this is that they can be used to create
very long cycles, reducing the frequency of repetition in
PRNGs. Due to memory constraints, digital computing is
fundamentally cyclical. Given any statically typed integral
variable, continually adding 1 to it will eventually cause
it to overflow its maximum value and start over at its
minimum value, producing cyclic behavior. Adding larger
values will cause a similar effect, ultimately always cycling,
but prime numbers are guaranteed to always visit every
possible value the variable can hold, so long as the prime
number is not a factor of the variable range. In general,
repeatedly adding a value that is coprime to the range of
the data type will always visit every possible value of the
data type exactly once in each cycle, maximizing cycle
length. Prime numbers maximize this potential, because
they are less likely to be coprime than composite numbers.
If, however, the value used to increment shares a factor
with the variable type’s range, the cycle length will be
substantially reduced, and some of the values will never
be visited. In the context of base-2 computing systems,
where variable ranges are typically powers of 2, any odd
value is sufficient. However, the best results come from
prime numbers and odd numbers with only one of each
prime factor. An advantage of prime numbers is that when
multiplied by other prime numbers, the result is a number
with only unique prime factors. Repeated factors create
the potential for smaller cycles.

A. Prime Stride
PRNGs generate sequences of values through an iter-

ative process. Normally, the state of the PRNG is used
to produce output after each iteration. Knowing that the
entire state range of a PRNG will be visited, even if some
iterations are skipped, so long as the skip length is coprime
to the cycle length, it seems intuitive that skipping some
prime value of iterations for each output will reduce the
correlation between adjacent outputs. It seems like this
should be an effective strategy for improving the quality of
weak but fast PRNGs, especially since this sort of skipping
can often be trivially integrated into the PRNG without
any performance cost2.

Unfortunately, this strategy does not actually work.
Testing using Dieharder, with strides of 3, 5, 7, 11, 13, 17,
19, 23, and 101 produced a total of 4853 passed tests, 464
weak tests, and 4700 failed tests. This is a failure rate of
46.9%, which is marginally higher than the failure rate of
46.3% of the core 32 bit LCG without adding the prime
strides. No individual prime stride produced significantly
better results than the others.

2For example, in an LCG, one could add a stride of 7, by
multiplying both the multiplicative constant and additive constant
by 7, which can be trivially optimized into new constants by the
compiler.

It is not clear why this strategy failed, but there are
some speculative conclusions. One notable factor is that
for this particular PRNG, increasing the stride to be
larger than 1 is equivalent to using different constants.
LCGs are very sensitive to the constants used, and the
LCG used in this case uses constants taken from a list
of known good quality constants for LCGs. This suggests
that this particular modification was doing nothing more
than changing the initial LCG into a different one, which
happens to have similar statistical weakness. It is notable,
however, that the new LCGs (all nine of them) had
similar statistical properties to the original. Most potential
constants for LCGs produce far worse results than this.
This suggests that given a known good constant for an
LCGs, new good constants can be discovered merely by
multiplying the constants by a prime number3. Despite
the failure of this strategy, it does seem to have revealed
some valuable information about the properties of LCGs.

B. Irregular Prime Stride
A more advanced strategy than using a single stride

is using multiple prime strides, that are rotated through,
such that each iteration of the PRNG skips a different
number of states. Unlike a static prime stride, this is not
equivalent to merely using a different pair of constants.
This is more like iterating through 53 different LCGs,
each one starting with the previous state and iterating
once using constants equivalent to the core constants
multiplied by this iteration’s prime number. This makes
it very similar to a Geffe generator [22], using 53 different
LCGs. The prime numbers used in testing included all
prime numbers between 3 and 255 inclusive, of which
there are 53. Such a PRNG cycles through the list in an
irregular order (using a stride of 31, modulus the length
of the list). One particular advantage of this strategy
is that it increases the cycle length of the PRNG. The
number of primes in the list is 53, which is itself a prime
number, increasing the cycle length of the PRNG by 53
times. This strategy again met with failure. Testing using
Dieharder, produced 341 passed tests, 35 weak tests, and
422 failed tests, across 6 test runs. This is a failure rate of
52.9%, again compared with the core LCG’s failure rate of
46.3%. The figure is beyond the expected rate of deviation,
suggesting that this strategy actually made the statistical
quality of the PRNG worse.
That the failure of this strategy is worse than the

simple prime stride is counterintuitive. It seems to be
a more advanced strategy. On the other hand, LCG is a
fairly fragile algorithm to begin with, requiring carefully
selected constants to avoid falling into very short cycles.
Perhaps more experimentation using this strategy with
other PRNGs and larger prime numbers would reveal

3This cannot be 2, as the will reduce the cycle length by at least
half. Since the modulus is a power of 2, having both constants
divisible by 2 will constrain the state to odd or even value depending
on the initial state.



more information. This does show that the strategy of
using prime multiples of known good constants does have
limits.

IV. Output Permutations
In general, the use of output permutations has proven

very effective. O’Neil’s PCG [20] and Williams’ Crypt1
[21] proved the effectiveness of simple rotate and xorshift
permutations, while Crypt1 proved the effectiveness of
both homogeneously and heterogeneously partitioned ro-
tate and xorshift permutations. Presented here are several
variations of permutation.

A. Byte Boundary Crossing Output Permutations
An innovation on heterogeneous partitions is partition

sizes that are not powers of two. In theory this should
achieve more shuffling in less predictable ways, because
it can achieve more cross-byte mixing in a single per-
mutation than even simple heterogeneously partitioned
permutations. This strategy appeared to work, however,
it required significantly more instructions to accomplish.
The result was permutations that executed significantly
more slowly than byte aligned partitions but produced
approximately the same improvement in statistical quality
when both strategies were used in series of two or more
permutations. Given that a single byte boundary crossing
permutation takes at least twice as long as a single simple
heterogeneously partitioned permutation there is never a
situation where byte boundary crossing permutations can
add statistical value.

It is possible that with hardware designed for arbitrary
alignment and length bit manipulation, some statistical
benefit could be obtained from this strategy. With the
limited statistical benefits observed, however, it is not
clear the improvement would be more than minor. Perhaps
the greatest potential benefit would be in having far
more permutations to choose from when generating unique
PRNGs from components.

B. Poor Quality Permutations
Not all partitioned permutations produce good quality

results. The quality of the various partitioning schemes
vary substantially. The vast majority produce very good
results, but some seem to be mediocre or worse.

The homogeneously partitioned rotate using 32 bits
partitions on a 64 bit value consistently failed to produce
good results. Further, it tended to substantially reduce
the statistical quality of any permutation series it was
used in. Out of 53 rotate permutations, including the
basic 64 bit rotate; 32, 16, and 8 bit homogeneously
partitioned rotates; and 49 heterogeneously partitioned
rotates, comprising all possible 64 bit rotate permutations
that stay within native type alignments, this was the only
rotate permutation that produced such poor results.

It is not clear why this particular permutation caused
such dramatic quality issues, but it is clear that not all

permutations are equal. This suggests there is significant
potential for curated sets of permutations that are proven
to be of superior quality to the average. Unfortunately,
comprehensive testing of all rotate and xorshift permuta-
tions (of which there are 53 of each). Even in small series
this methodology is completely infeasible. The ideal series
length seems to be in the range of 4 to 8 permutations.
With 106 total permutations, just the series of length 4
result in 126.2 million possibilities in number. On high
end hardware (Intel i7-10750H, which has 6 cores), a
single Dieharder test on default settings takes well over
an hour, even using all 6 cores in parallel, it would require
more than 2,401 years to run a complete test. It might be
possible to reduce this to a handful of years using one or
more supercomputers, but the cost would be prohibitive.
Statistical analysis of a much smaller number of series
might be sufficient to exclude permutations most likely to
be of lower quality or to select a subset of permutations
that are more likely to be higher quality though.

V. Generators
A number of generators were tested with permuta-

tions. In most cases the permutations significantly im-
prove the statistical quality of the generator. Tested
PRNGs included LCG, Xoroshiro128+, Xoroshiro128**,
Xoshiro128+, Xoshiro128**, and LCG128mix, an LCG
based PRNG, with a specialized xorshift output permuta-
tion4. These are all 128 bit PRNGs, thus the permutations
were applied to only half of the bits, which where used to
produce the output after application of the permutations.
Xoroshiro128+ consistently failed to get good results,

with permutations applied. Without permutations, it
tested similarly to the other generators, but when permu-
tations were applied, the quality either failed to improve
or sometimes even declined, where the other generators
very consistently improved quite dramatically.
Again, it is unclear precisely why this particular PRNG

was affected negatively by the permutations when the
others did so well. This hints at some hidden statistical
weakness of Xoroshiro128+, which Dieharder was unable
to discover in the output of the raw generator but which
the permutations made discoverable. While these results
suggest Xoroshiro128+ has some statistical issues, they
seem to hint at another valuable use of permutations,
in testing PRNGs in general. It is unknown exactly
how the permutations make the statistical weaknesses
discoverable, but discovering this would also be useful in
designing additional statistical tests which could be added
to Dieharder.

VI. Conclusions
Exploring failure can be very useful in learning, and the

failures discussed here all have significant room for future
exploration. Better understanding why these failures occur

4This is not based on O’Neill’s xorshift permutation family.



could have enormous implications in PRNG design, which
could have a huge impact in the field of cryptography [23].
Many applications of PRNGs are low stakes, and even
simple LCGs would be sufficient. There are a handful of
applications, however, where statistical quality is a critical
factor.

Perhaps the most obvious application where statistical
quality matters is cryptography, where poor statistical
quality can seriously compromise security. LCGs are
commonly used in Monte Carlo simulations, for their
speed, but such simulations can suffer significantly in
quality, when a poor quality PRNG is used. Additionally,
in applications where multiple PRNG instances are used
and correlation between them is problematic, quality can
be an enormous factor in performance. For example, in col-
lision detection and avoidance in wireless communications,
where PRNGs are used to desynchronize devices that
are colliding, raw LCGs are terrible, because even with
different seeds, there is correlation in their outputs that
can make desynchronization difficult to achieve quickly.

The main limitation in this paper is the small number of
techniques tested. The testing was done as part of another
project, and it was limited by the needs of that project.
There are many techniques used in PRNGs that have
not been tested. There are also some limitations in the
statistical testing. Mathematical analysis may be able to
prove some existing techniques ineffective. The application
of Information Theory could be extremely valuable in this
endeavor. The only limitation that cannot currently be
overcome is the weaknesses of statistical testing, which
means this is likely to be an ongoing effort, as new
statistical tests are developed.

Developing a better understanding of PRNGs may be
absolutely critical to the future of cryptography, especially
as faster and faster computing technologies are developed.
Quantum computing may not be the end of secure encryp-
tion many initially believed it to be, but it will almost
certainly significantly increase the necessary statistical
quality of cryptographic algorithms, including PRNGs, to
maintain security in the long term. In this endeavor, a
better understanding of what does not work is no less
important than understanding what does.

VII. Future Work
In all of these failures, there is substantial room for

additional exploration. The failure of prime strides for
the LCG used to test it suggests weaknesses in the LCG,
but it may demonstrate weaknesses in the use of prime
numbers themselves. Further, if the weakness is in the
LCG, perhaps there is some potential for using prime
strides in statistical testing of other PRNGs. A good
starting place for future work on this is testing prime
strides with other PRNGs.

The failure of irregular prime strides also suggests
weaknesses in LCG. Because of the irregularity, it is
unclear what the implications might be with respect to

the use of prime numbers in this context. Again, there
might be some use of irregular prime strides in statistical
testing, and a good starting place would be testing with
other generators.
Failure of byte boundary crossing permutations was

not entirely surprising. Manipulation of arbitrary length
bit strings is known to be quite expensive on modern
hardware. It is possible, however, to design custom hard-
ware that can accommodate this. Hardware encryption
devices or circuits could easily provide fast and cheap
byte boundary crossing permutations. Before spending
significant resources on this, however, it would be nec-
essary to prove the value of such permutations. More
comprehensive testing of these permutations would be
necessary to this end. A good starting place for this would
be to produce significantly more byte boundary crossing
permutations, and the next step might be testing a suite
of these permutations, applied to the output of many
different PRNGs.
The failure of poor quality permutations has already

been discussed in this context. The next step is larger
scale testing of the 106 existing permutations in series of
4 to 8, using statistical methods to estimate the quality
of the individual permutations.
Failure of the Xoroshiro128+ PRNG with permutations,

where apparently similar quality PRNGs did not fail with
permutations, seems to indicate that Dieharder’s test suite
still has room for additional tests. There is significant
importance in this, in the context of cryptography. It is
not clear what the best starting place for future work here
is. Perhaps a good place would be deeper mathematical
analysis of the algorithm. Given this, it seems likely the
field of pseudo-random number generation would benefit
significantly from more collaboration with the field of
mathematics. Indeed, it is possible more discoveries in
mathematics could be made through this sort of collabo-
ration.
Often failures go unexplored. However, the crypto-

graphic value of learning more about how PRNGs work
and do not work is so great that the exploration of these
failures and similar ones could be critical to the continuing
security and privacy of our governments, institutions,
businesses, and individuals.
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