

This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document "Help with completing a taxonomic proposal"

Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example.

MODULE 1: TITLE, AUTHORS, etc

Code assigned:	2014.016aV			(to be completed by ICTV officers)		
Short title: Rename 12 picorna (e.g. 6 new species in the genus 2 Modules attached (modules 1 and 9 are required)		1 🔀 6 🗌	2 🗌 7 🗌	3 🗌 8 🖂	4 🗌 9 🔀	5 🗌

Author(s) with e-mail address(es) of the proposer:

Nick Knowles (nick.knowles@pirbright.ac.uk) on behalf of the *Picornaviridae* Study Group

List the ICTV study group(s) that have seen this proposal:

A list of study groups and contacts is provided at <u>http://www.ictvonline.org/subcommittees.asp</u>. If in doubt, contact the appropriate subcommittee chair (fungal, invertebrate, plant, prokaryote or vertebrate viruses)

Picornaviridae SG

ICTV-EC or Study Group comments and response of the proposer:

Date first submitted to ICTV: Date of this revision (if different to above): 07/07/2014

MODULE 8: NON-STANDARD

Template for any proposal not covered by modules 2-7. This includes proposals to change the name of existing taxa (but note that stability of nomenclature is encouraged wherever possible).

non-standard proposal

2014.016aV

(assigned by ICTV officers)

Title of proposal: Renaming of 12 picornavirus species

Text of proposal:

Code

In order to move towards a more consistent genus/species nomenclature (and in some cases to remove host species references) it is proposed to rename the species shown in Table 1. The virus common names, e.g. encephalomyocarditis virus would remain unchanged, thus helping to distinguish them from the species names. Possible renaming members of the *Aphthovirus* genus will be addressed in the future.

Table 1. Proposed new picornavirus species names.

Genus	Current species name	Proposed new species name	Virus common name*
Avihepatovirus	Duck hepatitis A virus	Avihepatovirus A	duck hepatitis A virus 1-3
Cardiovirus	Encephalomyocarditis virus	Cardiovirus A	encephalomyocarditis virus 1-2
Cardiovirus	Theilovirus	Cardiovirus B	Theiler's murine encephalomyelitis virus, Vilyuisk human encephalomyelitis virus, thera virus, Saffold virus 1-11
Erbovirus	Equine rhinitis B virus	Erbovirus A	equine rhinitis B virus 1-3
Hepatovirus	Hepatitis A virus	Hepatovirus A	hepatitis A virus 1
Parechovirus	Human parechovirus	Parechovirus A	human parechovirus 1-16
Parechovirus	Ljungan virus	Parechovirus B	Ljungan virus 1-4
Sapelovirus	Porcine sapelovirus	Sapelovirus A	porcine sapelovirus 1
Sapelovirus	Simian sapelovirus	Sapelovirus B	simian sapelovirus 1-3
Senecavirus	Seneca Valley virus	Senecavirus A	Seneca Valley virus 1
Teschovirus	Porcine teschovirus	Teschovirus A	porcine teschovirus 1-13
Tremovirus	Avian encephalomyelitis virus	Tremovirus A	avian encephalomyelitis virus 1

*, the virus common name would remain unchanged thus differentiating it from the species name.

MODULE 9: APPENDIX: supporting material

additional material in support of this proposal

References:

None.

Annex:

Include as much information as necessary to support the proposal, including diagrams comparing the old and new taxonomic orders. The use of Figures and Tables is strongly recommended but direct pasting of content from publications will require permission from the copyright holder together with appropriate acknowledgement as this proposal will be placed on a public web site. For phylogenetic analysis, try to provide a tree where branch length is related to genetic distance.

This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document "Help with completing a taxonomic proposal"

Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example.

MODULE 1: TITLE, AUTHORS, etc

Code assigned:	2016.034a-di	(to be completed by ICTV officers)			
Short title: To create one (1) r the family <i>Siphoviridae</i> . (e.g. 6 new species in the genus A Modules attached (modules 1 and 10 are required)	-		3 ⊠ 8 □	57) new sp 4 🗌 9 🗍	5 □ 10 ⊠

Author(s):

Andrew M. Kropinski—University of Guelph (Canada) Jens H. Kuhn—NIH/NIAID/IRF-Frederick, Maryland (USA) Evelien M. Adriaenssens—University of Pretoria (South Africa)

Corresponding author with e-mail address:

Andrew M. Kropinski Phage.Canada@gmail.com

List the ICTV study group(s) that have seen this proposal:

A list of study groups and contacts is provided at <u>http://www.ictvonline.org/subcommittees.asp</u> . If in doubt, contact the appropriate subcommittee chair (fungal, invertebrate, plant, prokaryote or vertebrate viruses)	ICTV E Subcomm	Bacterial hittee	and	Archaeal	Viruses
---	-------------------	---------------------	-----	----------	---------

ICTV Study Group comments (if any) and response of the proposer:

Date first submitted to ICTV: Date of this revision (if different to above): June 2016

ICTV-EC comments and response of the proposer:

MODULE 2: NEW SPECIES

creating and naming one or more new species.

If more than one, they should be a group of related species belonging to the same genus. All new species must be placed in a higher taxon. This is usually a genus although it is also permissible for species to be "unassigned" within a subfamily or family. Wherever possible, provide sequence accession number(s) for **one** isolate of each new species proposed.

Code	20	16.034aB	(assigned by ICTV offi	cers)			
To cre	eate 5'	7 new species withi	in:				
		1		Fill in all that apply.			
Ge	enus:	Pa6virus (new)		If the higher taxon has yet to I			
Subfai				created (in a later module,			
Family: Siphoviridae			write "(new)" afte	r its proposed			
-	Order: <i>Caudovirales</i>			 name. If no genus is specified, en 			
		Cuntornates		"unassigned" in t			
Name of new species:			Representative isolate: (only 1 per species please)				
Duaniau	ih a sta	minum minum ATCC20200	Dronionihostoriu	m mhogo ATCC20200D C	18262225 1		
1		rium virus ATCC293991 rium virus ATCC293991	1	m phage ATCC29399B_C m phage ATCC29399B_T	JX262225.1 JX262224.1		
Á		rium virus ATCC295991 rium virus Attacne	A	m phage Attacne	KR337651.1		
	Propionibacterium virus Keiki		Propionibacteriu		KR337649.1		
<u> </u>	Propionibacterium virus Kubed			Propionibacterium phage Kubed			
-	Propionibacterium virus Lauchelly		<u>^</u>	Propionibacterium phage Lauchelly			
	Propionibacterium virus MrAK		Propionibacteriu	± • •	KR337650.1 KR337643.1		
Propionibacterium virus Ouroboros			m phage Ouroboros	KR337654.1			
^		rium virus P1.1	<u>^</u>	Propionibacterium phage P1.1			
^		rium virus P1001	<u>^</u>	Propionibacterium phage P100_1			
Propion	ibacte	rium virus P100A		Propionibacterium phage P100_A			
Propion	ibacter	rium virus P100D	Propionibacteriu	Propionibacterium phage P100D			
Propion	ibacte	rium virus P101A	Propionibacteriu	Propionibacterium phage P101A			
Propion	ibacte	rium virus P104A	Propionibacteriu	Propionibacterium phage P104A			
Propion	ibacter	rium virus P105	Propionibacteriu	Propionibacterium phage P105			
Propion	ibacte	rium virus P144	<u>^</u>	Propionibacterium phage P14.4			
Propion	ibacte	rium virus P91	Propionibacteriu	m phage P9.1	JX262215.1		
Propion	nibacter	rium virus PA6	Propionibacteriu	m phage PA6	DQ431235.1		
Propion	ibacter	rium virus Pacnes20121	25 Propionibacteriu	m phage Pacnes 2012-15	KJ722067.1		
Propion	ibacter	rium virus PAD20	Propionibacteriu		FJ706171.1		
^		rium virus PAS50	<u>^</u>	Propionibacterium phage PAS50			
		rium virus PHL009M11		Propionibacterium phage PHL009M11			
Propionibacterium virus PHL025M00			Propionibacterium phage PHL025M00				
^		rium virus PHL037M02		Propionibacterium phage PHL037M02			
		rium virus PHL041M10	1	m phage PHL041M10	KJ578761.1		
<u> </u>		rium virus PHL060L00	1	m phage PHL060L00	JX570705.1		
<u> </u>		rium virus PHL067M01	<u>^</u>	m phage PHL067M01	KJ578765.1		
		rium virus PHL070N00		m phage PHL070N00	KJ578767.1		
<u> </u>		rium virus PHL071N05		m phage PHL071N05	JX570710.1		
^		rium virus PHL082M03	<u>^</u>	m phage PHL082M03	KJ578770.1		
Propionibacterium virus PHL092M00 Propionibacterium phage PHL092M00				m phage PHL092M00	KJ578773.1		

Propionibacterium virus PHL095N00	Propionibacterium phage PHL095N00	KJ578774.1
Propionibacterium virus PHL111M01	Propionibacterium phage PHL111M01	JX570702.1
Propionibacterium virus PHL112N00	Propionibacterium phage PHL112N00	JX570714.1
Propionibacterium virus PHL113M01	Propionibacterium phage PHL113M01	JX570713.1
Propionibacterium virus PHL114L00	Propionibacterium phage PHL114L00	JX570712.1
Propionibacterium virus PHL116M00	Propionibacterium phage PHL116M00	KJ578776.1
Propionibacterium virus PHL117M00	Propionibacterium phage PHL117M00	KJ578778.1
Propionibacterium virus PHL117M01	Propionibacterium phage PHL117M01	KJ578779.1
Propionibacterium virus PHL132N00	Propionibacterium phage PHL132N00	KJ578780.1
Propionibacterium virus PHL141N00	Propionibacterium phage PHL141N00	KJ578781.1
Propionibacterium virus PHL151M00	Propionibacterium phage PHL151M00	KJ578783.1
Propionibacterium virus PHL151N00	Propionibacterium phage PHL151N00	KJ578784.1
Propionibacterium virus PHL152M00	Propionibacterium phage PHL152M00	KJ578785.1
Propionibacterium virus PHL163M00	Propionibacterium phage PHL163M00	KJ578786.1
Propionibacterium virus PHL171M01	Propionibacterium phage PHL171M01	KJ578787.1
Propionibacterium virus PHL179M00	Propionibacterium phage PHL179M00	KJ578788.1
Propionibacterium virus PHL194M00	Propionibacterium phage PHL194M00	KJ578789.1
Propionibacterium virus PHL199M00	Propionibacterium phage PHL199M00	KJ578790.1
Propionibacterium virus PHL301M00	Propionibacterium phage PHL301M00	KJ578791.1
Propionibacterium virus PHL308M00	Propionibacterium phage PHL308M00	KJ578792.1
Propionibacterium virus Pirate	Propionibacterium phage Pirate	KR337653.1
Propionibacterium virus Procrass1	Propionibacterium phage Procrass1	KR337644.1
Propionibacterium virus SKKY	Propionibacterium phage SKKY	KR337648.1
Propionibacterium virus Solid	Propionibacterium phage Solid	KR337647.1
Propionibacterium virus Stormborn	Propionibacterium phage Stormborn	KR337652.1
Propionibacterium virus Wizzo	Propionibacterium phage Wizzo	KR337646.1

Reasons to justify the creation and assignment of the new species:

•

- Explain how the proposed species differ(s) from all existing species.
 - If species demarcation criteria (see module 3) have previously been defined for the genus, explain how the new species meet these criteria.
 - If criteria for demarcating species need to be defined (because there will now be more than one species in the genus), please state the proposed criteria.
 - Further material in support of this proposal may be presented in the Appendix, Module 9

We have chosen 95% DNA sequence identity as the criterion for demarcation of species in this new genus. The members of each of the proposed species differ from those of other species by more than 5% at the DNA level as confirmed with the BLASTN algorithm.

MODULE 3: NEW GENUS

creating a new genus

Ideally, a genus should be placed within a higher taxon.

Code	201	6.034bB	(assigned by ICTV officers)		
To create	a new	genus within:		Fill in all that apply.	
Subfa	mily:			• If the higher taxon has yet to be created	
Fa	mily:	Siphoviridae		(in a later module, below) write "(new) " after its proposed name.	
С	Order:	Caudovirales		 If no family is specified, enter "unassigned" in the family box 	

naming a new genus

Code	2016.034cB	(assigned by ICTV officers)
To name tl	ne new genus: <i>Pa6virus</i>	

Assigning the type species and other species to a new genus

Code	2016.034dB	(assigned by ICTV officers)		
To designa	ate the following as the type s			
Propionibacterium virus PA6		Every genus must have a type species. This should be a well characterized species although not necessarily the first to be discovered		
•		w species created and assigned to it (Module 2) and any that . Please enter here the TOTAL number of species		

(including the type species) that the genus will contain: 57

Reasons to justify the creation of a new genus:

Additional material in support of this proposal may be presented in the Appendix, Module 9

Recently, large numbers of Propionibacterium phages have been isolated predominantly using *Propionibacterium acnes* ATCC 6919 as the host (<u>http://phagesdb.org/clusters/BU/</u>). Currently, 83 representatives are deposited in NCBI databases. Because of the time required to run individual BLASTN searches we have used the BLAST features of Gegenees [3] to group these viruses (Fig. 1 and Fig. 2). They all share \geq 85% sequence identity to the type virus, Propionibacterium phage PA6 [2]; possessing ca. 29 kb genomes with a mol% G+C content of ca. 54 (somewhat less than the 60% present in the genomes of their host). All of these phages are virulent.

Origin of the new genus name:

Based upon the name of the first sequenced member of this genus.

Reasons to justify the choice of type species:

The first sequenced member of this genus.

Species demarcation criteria in the new genus:

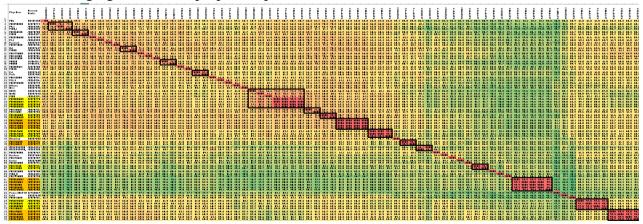
If there will be more than one species in the new genus, list the criteria being used for species demarcation and explain how the proposed members meet these criteria.

We have chosen 95% DNA sequence identity as the criterion for demarcation of species in this

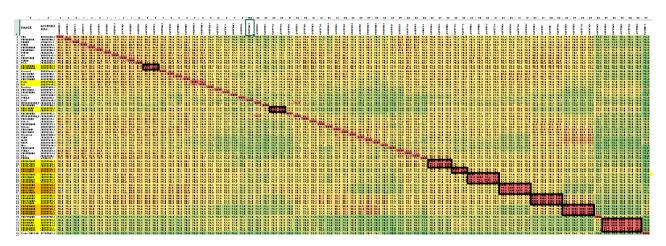
new genus. The members of each of the proposed species differ from those of other species by more than 5% at the DNA level as confirmed with the BLASTN algorithm.

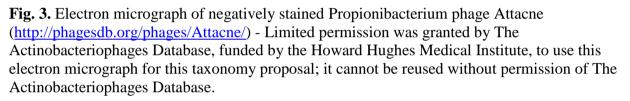
MODULE 10: APPENDIX: supporting material

additional material in support of this proposal


References:

- 1. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008; 36(Web Server issue):W465-9.
- 2. Farrar MD, Howson KM, Bojar RA, West D, Towler JC, Parry J, Pelton K, Holland KT. Genome sequence and analysis of a *Propionibacterium acnes* bacteriophage. J Bacteriol. 2007; 189(11):4161-7.
- Agren J et al. (2012) Gegenees: fragmented alignment of multiple genomes for determining phylogenomic distances and genetic signatures unique for specified target groups. PLoS One.;7(6):e39107


Annex:


Include as much information as necessary to support the proposal, including diagrams comparing the old and new taxonomic orders. The use of Figures and Tables is strongly recommended but direct pasting of content from publications will require permission from the copyright holder together with appropriate acknowledgement as this proposal will be placed on a public web site. For phylogenetic analysis, try to provide a tree where branch length is related to genetic distance.

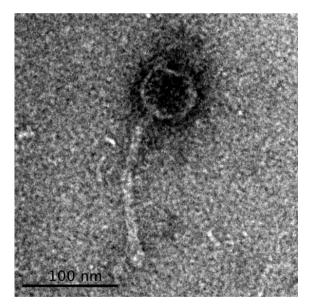
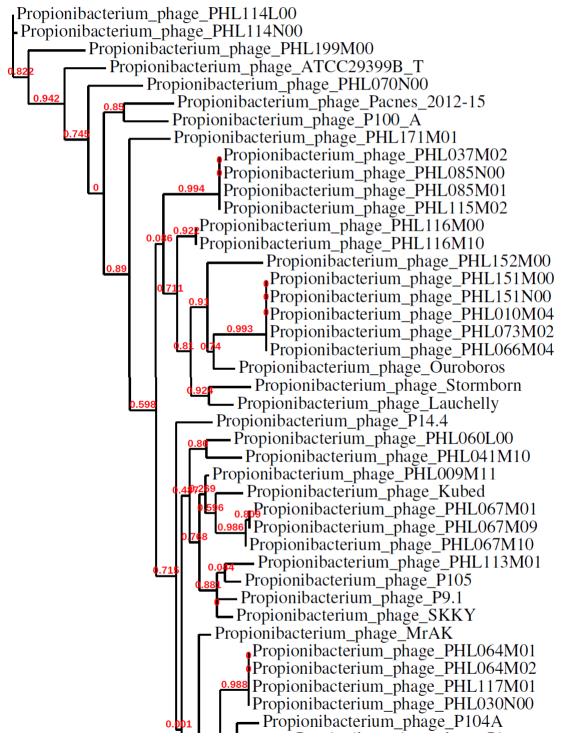

Fig. 1 BLASTN analysis of all these viruses using Gegenees [3] with "custom" settings of fragmenting algorithm - size: 100 bp, shift 50 bp. The results were exported to Excel and the heatmap is colored according to percentage identity (>70% green, >80% yellow, >95% red). Strains belonging to the same proposed species are boxed in black.

Fig. 2. TBLASTX analysis of all these viruses using Gegenees [3] with "custom" settings of fragmenting algorithm - size: 100 bp, shift 50 bp. The results were exported to Excel and the heatmap is colored according to percentage identity (>70% green, >80% yellow, >95% red). Strains belonging to the same proposed species are boxed in black.

Table 1 . Properties of phage PA6 and other viruses belonging to the genus <i>Pa6virus</i> based upon
the data on 33 phages given in the Actinobacteriophage Database
(http://phagesdb.org/clusters/BU/)

Name	RefSeq	INSDC	Length (bp)	GC%	Protein	tRNA
Propionibacterium	NC_009541.1	DQ431235.1	29,739	54.0	48	0


phage PA6					
(average)		29,397*	54.1	44.5	0

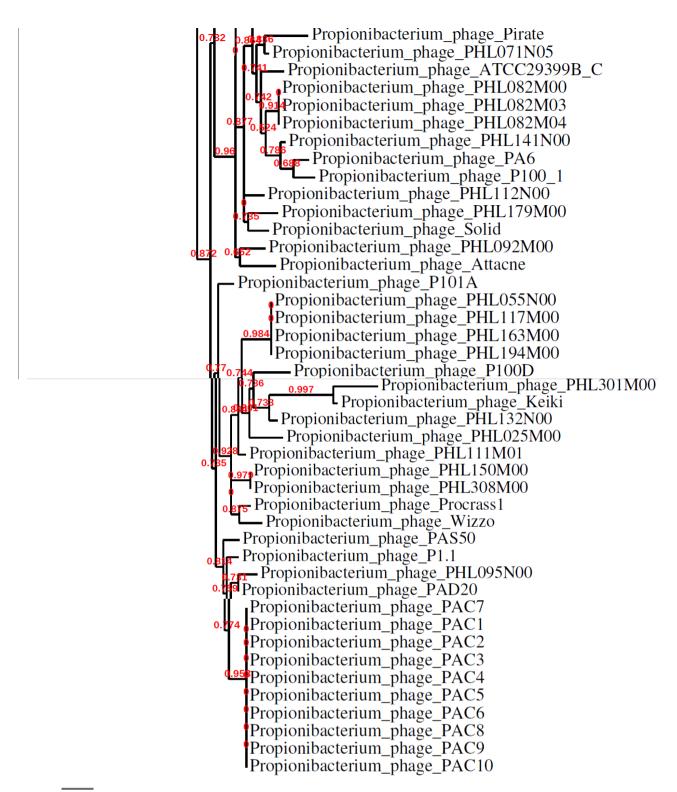

* 11-bp 3'cohesive overhang (TCGTACGGCTT)

Table 2. Phages which are considered strains of viruses within the *Pa6virus* genus.

Propionibacterium phage	Accession No.	Strain of
		Propionibacterium phage
Propionibacterium phage PHL082M04	KJ578771.1	PHL082M03
Propionibacterium phage PHL082M00	KJ578768.1	PHL082M03
Propionibacterium phage PHL082M02	KJ578769.1	PHL082M03
Propionibacterium phage PHL308M00	KJ578792.1	PHL151M00
Propionibacterium phage PHL055N00	KJ578762.1	PHL117M00
Propionibacterium phage PHL194M00	KJ578789.1	PHL117M00
Propionibacterium phage PHL163M00	KJ578786.1	PHL117M00
Propionibacterium phage PHL067M10	JX570709.1	PHL067M01
Propionibacterium phage PHL067M09	KJ578766.1	PHL067M01
Propionibacterium phage PHL116M10	KJ578777.1	PHL116M00
Propionibacterium phage PHL114N00	KJ578775.1	PHL114L00
Propionibacterium phage PHL010M04	JX570704.1	PHL151N00
Propionibacterium phage PHL066M04	JX570711.1	PHL151N00
Propionibacterium phage PHL073M02	JX570703.1	PHL151N00
Propionibacterium phage PHL085M01	JX570707.1	PHL037M02
Propionibacterium phage PHL085N00	KJ578772.1	PHL037M02
Propionibacterium phage PHL115M02	JX570708.1	PHL037M02
Propionibacterium phage PHL064M01	KJ578763.1	PHL117M01
Propionibacterium phage PHL030N00	KJ578760.1	PHL117M01
Propionibacterium phage PHL064M02	KJ578764.1	PHL117M01

Fig. 4. Phylogenetic analysis of large subunit terminase proteins of Propionibacterium phages constructed using "one click" at phylogeny.fr [1]. "The "One Click mode" targets users that do not wish to deal with program and parameter selection. By default, the pipeline is already set up to run and connect programs recognized for their accuracy and speed (MUSCLE for multiple alignment and PhyML for phylogeny) to reconstruct a robust phylogenetic tree from a set of sequences." It also includes the use of Gblocks to eliminate poorly aligned positions and divergent regions. "The usual bootstrapping procedure is replaced by a new confidence index that is much faster to compute. See: Anisimova M., Gascuel O. Approximate likelihood ratio test for branches: A fast, accurate and powerful alternative (Syst Biol. 2006;55(4):539-52.) for details."

0.06