

酸 invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.
[X] No.
[] Yes, the name of the U.S. Government agency and the Government contract number are: \qquad
[] Additional inventors are being named on separately numbered sheets attached hereto.
Respectfully submitted,
PEPPER HAMILTON LLP

Irah H. Donner
Registration No. 35,120
600 Fourteenth Street, N.W.
Washington, DC 20005-2004
(202) 220-1200

June 17, 1999
Facsimile: (202) 220-1665
DC: \#117221 v1 (2SG501!.WPD)

APPLICATION

FOR
 UNITED STATES PROVISIONAL PATENT

To all whom it may concern:
useful improvements in:

ELECTRICALLY CONTROLLED AUTOMATED
DEVICES TO OPERATE, SLOW, GUIDE, STOP AND
SECURE, EQUIPMENT AND MACHINERY FOR THE
PURPOSE OF CONTROLLING THEIR UNSAFE,
UNATTENDED, UNAUTHORIZED, UNLAWFUL
HAZARDOUS AND/OR LEGAL USE, WITH REMOTE
CONTROL AND ACCOUNTABILITY WORLDWIDE

Of which the following is a full, clear and exact description:

ELECTRICALLY CONTROLLED AUTOMATED DEVICES TO OPERATE, SLOW, GUIDE, STOP AND SECURE, EQUIPMENT AND MACHINERY FOR THE PURPOSE OF CONTROLLING THEIR UNSAFE, UNATTENDED, UNAUTHORIZED, UNLAWFUL

Related Applications

This application claims priority from U.S. Provisional Patent Applications 60/122,108, filed February 26,1999 and 60/089,783, filed June 18, 1998, and PCT International Patent Application No. PCT/US99/00919, filed January 15,1999, incorporated herein by reference.

This application is related to U.S. Provisional Patent Applications Nos. 60/071,392, filed January 15, 1998, incorporated herein by reference. This application is related to U.S. Patent Application No. 08/975,140, filed November 20, 1997 and PCT Application No. PCT/US97/21516, filed on November 24, 1997, both of which claim priority to U.S. Provisional Patent Application No. 60/032,217, filed on December 2, 1996, all of which are hereby incorporated by reference.

Background of the Invention

Field of the Invention

These innovations and technology have been designed to improve the public's safe use of vehicles, equipment and machinery. They have been first designed to improve on the already deadly and destructive situations of out of control vehicles due to operator incapacity, and/or car theft and carjackings. The objective has been to help limit and/or restrict as many fatalities, personal injuries and property damage as possible. This will basically be accomplished by reducing the amount of time and space these horribly uncontrolled and irrational events exist for and/or take place in. These innovative systems and devices are not a panacea. The invention is simply designed to improve on an already poor public safety situation by limiting the time and involved area of these irrational events (e.g., out of control machinery).

It is the full intention of this technology to ultimately support and help provide fully automated robotics systems that can remotely control vehicles and equipment in a responsible and accountable manner in the future through the best and most optimum progression of commercial developments, first, from uniquely combined Commercial Off The Shelf C.O.T.S. products, and secondarily, as a condensed, consolidated set of hardware, firmware, and coordinated software programs in accountable, protected system of products that will become multi-industry standards and insurance requirements and rate qualifying devices for remote control and robotics.

In an effort to initiate a collaborative process and be a part of any dialogue along these lines either already in progress or planned for in the future, this technology will develop and continually augment, its preprogrammed controls, communication systems, and functional peripheral devices, sensors and systems to be a part of the diverse equipment and systems already merging, communications with programmable control circuits and electrically controlled devices, like those detailed in this application. It will also continue to offer the most needed solutions for a progressive accountable process of remote control and device deployment as well as increase and enhance computers and software to ultimately run, safe, accountable robotics vehicles and highways as has been discussed earlier in all the related patent applications.

The programs of the present invention will first structure acceptable accountable remote control protocols in a progressive layer of commercial enhancements to best marry their social, economic, environmental, and technical presence through commercial markets. This is a necessity because, there actions will be governed by the individual systems capabilities. "Triage" control will be programmed for the best option at any given time to control a vehicle and responsive systems in the safest manner through any available equipment on the market at a given time and/or outfitted on any particular host piece of equipment. Because, there will be such a wide variation of individual equipment capabilities, a great deal of effort has been taken to backward engineer, as well as, accommodate present engineering and future engineering in this process to develop acceptable modalities and standards for accountable aggressive remote control at various levels. There will be many versions of "Triage" that will first have as a goal to slow,
stop and secure a vehicle stationary position.
The next progressive development detailed in this application will control the steering in degrees. And finally the speed control either using OEM cruise controls modified for this purpose or any of the acceleration controls detailed in this application and/or related patent innovations that will be responsive to the interface data commands given by any onboard control circuitry. A protected Primary Focal Node a (PFN) will house this control circuitry and communication circuits to receive transmissions and/or directions supplied by GPS signals and interactive highway transmitters, RF signals, or infrared beacons and/or any cell phone locating technology, along with distant sensors to remotely guide and control speed and direction remotely in robotics scenarios. Ultimately this inventions Primary Focal Node a (PFN) will manage preprogram travel plans for long and even short travel, as well as, handle completed vehicle operations, if so desired.

This invention will first commercialize these devices for specific use with law enforcement stressing the need for responsible supervised optimally physically visible scenarios first. So any technical bugs can be worked out and the learning curve for the rest of humanity can be plotted and develop with proper progressive guide lines and instructions for the safest public use. This also needs to be done progressively to equip the individual vehicles with these devices. Either for the new vehicles and/or for any after market or retrofitting of old ones. This will be initially accomplished through Commercial Off The Shelf parts or C.O.T.S. innovations, a process already described in earlier related applications. Secondly, this invention will strive to commercialize these devices along with its electronic control systems to be as much a part as possible in developing the interactive highway systems in any collaborative effort that presents itself. As this process progresses, the original third modality, described in PCT/US97/21516, a private, public and/or commercial monitoring and control system of any size will be created and combined to fulfill the scope of this invention for not only the automobile industry but also, for many community public safety programs, which, are termed Green Eyes and Spider Eyes program and detailed in this and related patents and involve machinery and equipment. This commercialization will interface its technology and any other associated technologies through the 1000 series devices along with the 1100
controller systems and the 1200 network to ultimately create fully automated and robotics public transportation systems that will produce more individual freedom for all the public, increase its safety, security and develop accountably for society to transact its mechanized business responsibly and with fair exchange to each other individually. (The time question is: when and how long?) And this question finds its answer in how well all work with one another in any joint ventures, with real genuine cooperation from the individuals, businesses, and governments involved. Time estimate, circa 2015, for fairly extensive and sophisticated social transportation and environmental control systems. This is a modest estimate for full robotics in an acceptable, accountable and/or societal form for personalized transportation. But there will be a vast amount of changes in any personal transport vehicles.

Background of the Related Art

Humanity is already married to its technology, and like all other marriages it will only be as functional as those in the relationship. The vehicles, machines and equipment are here in this human existence. This technical automation, communication, and control of machinery has already been proven to be a real present day need for humanity as it strives for its own individual social emotional development. So all that remains is to make this technology available, affordable, and perfect it, to be as secure, reliable, responsible, respectful of and as accountable to the individual, to any business and to the government it will be serving. This is the goal of this technology for remote control of humanity's equipment and the responsible development of robotics.

The invention has been designed to work with all willing technologies to develop a secure and accountable communication and control systems for every piece of Machinery through a Machine Messaging Network (MMN), detailed in PCT/US99/00919.

There are many other commercial interest in this area, as well as different technologies. These technologies have very specific and finite focuses with their remote control and/or automated vehicle systems in which they do not address aggressive remote control and accountability. While there is a great deal of similar developments, this
technology and the innovations detailed here and in the related applications are unique and were created to achieve real time aggressive and accountable remote control though as versatile means in communications, control circuitry, and peripheral devices and systems and to provide these qualities as part of any standard developed for automated and remote control.

One other already issued U.S. patent, incorporated herein by reference, to Prince Corporation, now merged with Johnson, controls claims after a car's ignition has been turned off and the fuel pump has been deactivated.

The experimentation on this invention's technology to restrict fuel to the power plant to create an effective slow down was an unknown parallel development of similar concepts but without question resulting in uniquely different modalities and vision of purpose. There is no intention of this invention to compete with any already existing business, manufacture, government agency, and/or public interest at this time. Only a genuine and very real desire to be cooperative, supportive, informative and a real worthy partner to do good and fair business jointly for the betterment of humanity and its responsible machine use whenever and wherever possible.

With that stated, similar parts of this technology already exists in piecemeal (i.e., C.O.T.S.) products. But it is abundantly clear and obvious that the invention has its own unique devices, modalities, systems and C.O.T.S. innovations developed into protocols to complete the total task of automating for accountable remote control every piece of equipment in the world. However, it is also abundantly clear that this technology has been specifically designed to couple and interface with all existing technology in all stages of remote control development to enhance their systems and complete a far greater remote control system product then ever imagined before. This application and related applications detail clearly the most unique development for accountable controls over humanities equipment and its social, economic and environmental impact and functions.

This invention develops the monitoring and control system (i.e., this application's 1000-1100-1200 series devices and systems, Coyote Tricksters, interactive highway Helping Hand, and Spider Eyes as well as Green Eyes Programs), either as isolated monitoring, control and/or management systems or as part of a massive reporting system
that incorporate the World Wide Web (WWW). This is created by merging data collected by PFN boxes on the equipment, through their data transmissions to servers that post this data on public web pages, or on any level home web pages, or e-mail boxes, through either cooperating government agencies, commercial corporations, social organizations, and individually set up and/or owned and operated web sites. These phone node gateways and/or RF signal gateway terminals can be interfaced to any computer network system of any size for monitoring, analyzing and/or remotely controlling equipment. This creates the real-time link for the machine messaging network by utilizing the world wide web to make some of the larger and longer connections (MMNWWW) and RF equipment and telephony technology to send the control signals.

To continue the early development of these most sensitive law enforcement protocols this technology will try to seek out companies already doing responsible business, such as Lojack, who use special police radio frequencies in tracking stolen vehicles for law enforcement in a limited but responsible manner presently. This invention will also seek out telecommunication companies (i.e., pager and cell phone companies) as well as any radio equipment manufactures and make a strong attempt to combine this technology's accountable and protective features with the efforts of existing products and programs like the GM "On Star product. Most definitely this technology will seek out all the automobile manufactures and their supply line manufactures to coordinate the development of peripheral controls accessories and sensors to interface with this technology's protected primary focal node as part of any industry standard for automotive electrical systems.

This technology recognized early on the absolute need to coordinate and create standards for accountability in any automotive altercations involving machine messaging from remote locations with insurance and governmental regulations and approval, which greatly enforces the need for a standard. This is very much needed for risk management insurance with the 911 system and law enforcement today, and most necessary to continue with this technology's purpose to provide accountable aggressive remote control, analytical data acquisition, and robotics, to more adequately serve all of the public's needs. This is being done to more rapidly fulfill the public's needs with
responsible remote control devices in all of the industries and not run into the same growth problems AOL experienced. The plan has always been to create this technology, first as a combined effort with existing C.O.T.S. products and systems as has been detailed within all of the related applications, and then secondly to coordinate and consolidate these combined products and services into new safe service products for the public good, ease of use, safety, and an improved quality of life.

The OnStar program has already made important passive, but responsible inroads in reporting and/or contacting 911 in possible automobile emergencies when there is an SIR deployment, through their control centers. This invention welcomes any possible collaborative arrangement and/or interface links with OnStar in the development of this technology (MMNWWW), or in any interactive highway projects, and in this technology's unique accountable, and aggressive remote control, management and/or security systems at any level of willing involvement.

In developing these security protocols, this technology provides all the appropriate encrypted codes needed to provide secure transmission of sensitive data from any equipment's PFN if that might be needed or a requirement for personal, monetary transactions or sensitive data.

The invention is designed to combine and coordinate all vehicle machine and equipment technologies. And it is designed to be a natural and good commercial consolidation for space and cost to jointly interface and finally locate all hardware and control circuitry along with the software into a safe and protected area, legally and physically on each piece of equipment, which will be termed a (PFN) for protected primary focal node. This has always been the stated purpose and goal of the invention to help make humanities' equipment safer, more accountable, more efficient and economical with responsible remote control for the public, for the individual, and for commerce. As always maintained with any and/or all of the devices or components concealed and/or protected to maintain data that is or are stored on location in as pristine a state as possible, and also to maintain a capability to report this same data to at least one remote location for application specific management and redundant storage. Which is the basic nature and scope claim of this technology in this application and all the related
applications. This is accomplished with the PFN and this technoloy's Trust Remote Activity Controller Software (TRAC).

It has also been a conscious intention to create these innovations from the first as C.O.T.S. parts to bring about their deployment in the most easy, rapid and efficient manner as commercially possible by cutting manufacture time and cost in developing them and to make available safer vehicles and equipment in a timely and affordable fashion for the public, and thirdly to make available these systems to more easily retrofit older vehicles, and other machines and equipment. There is no need to reinvent the wheel when it is not a necessity, just make the wheel better by adding new innovative technical spokes and uses. In all of these innovations, C.O.T.S. applications are addressed first to bring all influenced technologies, their products, the varied industries and people to an interactive commercial setting. So that involvement and incorporation of these technologies can best be severed while the public is serviced appropriately with good commercial offerings. This means coordinated good and real services and products that will be good business for all.

The major reasons this technology is first developed from C.O.T.S. products are for better public familiarity and market acceptance by the consumer, the small investor, and the sophisticated investor, and because of the natural collating and combining effect for all the different manufactures in these merging industries, and also to provide some backward and forward engineering capability to the process of developing a standard for responsible remote control devices and systems, and finally to point the way to the most logical and acceptable use of this technology's consolidated and integrated circuitry choices. This process also helps the software production to be interfaced into the most concise and efficient PFN's for every application and for every piece of equipment, as product evolutions either as circuit and device products or as other C.O.T.S. evolved products used in these unique ways for new purposes.

As the automation of controls for equipment, vehicles and machinery continue to advance to robotics from present day remote control and machine messaging though artificial intelligence, the need for accountable machine activity is as important as the development of the actuating devices that complete these remote and automated actions.

Therefore, much time and detail has already been devoted to this in this invention's related applications, and to the creation of redundant data record memories and a secure protected interface structure to preserve an accurate record, while protecting electrical control circuits simultaneously.

Even though this application extensively describes the controlling actuators to perform remote and automated control functions for most any manufacturer of vehicles, equipment and/or machinery, it will also describe and detail an extensive sensory and data acquisition feedback system to the protected primary focal nodes (PFN), to account and confirm all essential command communications and responses, both on location and/or redundantly sent to at least one remote location or gateway terminal for any desired network options. This is managed by this technology's TRAC software and any system monitoring PFN's TRAC software.

As has been extensively described in all the related applications, the use of C.O.T.S. products will first be employed for a number of reasons. Obviously, it is the quickest most efficient, inexpensive way to rapidly merge existing technologies, their manufactures, and components to achieve an accountable remote control for aggressive situations in machine use presently. Also, the invention has been designed to accommodate future development for accountable sophisticated remote and automated control scenarios for everyday pieces of equipment and machinery as well as, help meet the social, science needs for these merged technologies to best perform these robotics functions. The invention is capable of providing a record to appraise, value and judge any equipment action and/or its components for societies organizations, the public, insurance concerns etc. (e.g., for manufacturer's risk management, completed operations, product liability, etc.). This application will concentrate on the devices to affect remote and automated control and their monitoring system.

Brief Description of the Drawings

Figure 1 is a drawing to basically give location to all the innovative devices on standard internal combustion equipment with a high emphasis on the automotive fields. The description for Figure 1 is very extensive as it completely explains all the innovations
as to their physical locations and how they mechanically fit, interact and work with all the standard mechanical systems. This drawing will serve to organize the following drawings, which will give even more complete descriptions and illustrations to the standard part or device augmentations that are needed to complete all the individual modalities for these functions of the invention.

Figure 2 is an electrical description for the first prototype of the standard pager activated remote control system. Control Hardware And Telecommunications (CHAT) box system. It is included here in its completed prototype form, because it is being used to demonstrate and experiment with these onboard automated device innovations and show that they can be interfaced with any and all remote control technologies (i.e., RF equipment, cellular, phones, pager chips (digital and/or analog variations)), and are presently ready for market. The power requirement to operate this one-way PFN prototype is 12 vdc for automotive applications. However, in-house current and automotive application a transformer and rectifier would transform the current to operate this circuit and charge the emergency batteries.

Figure 2.1 shows the one-way and two-way PFN prototype categories. This is determined if they can only receive a one-way system, or if they can receive and transmit a two-way system. The figure shows an off-board remote control and monitoring computer network with memory storage for the two-way systems, and an on-board memory storage at two levels for the one-way and two-way systems as well as a fair amount of the peripheral remote control devices sensors, accessories the PFN system can control monitor and make accountable.

Appendix 1 lists some of the present prototype C.O.T.S. components used in the one and two-way PFNs. These prototype parts demonstrate the feasibility and capability of all the systems interfaced through a PFN. Items $1,2,3,5,7,8$, all camera systems, are being experimented with for the different industries to see what application they are best suited for.

When these cameras are utilized for automated guidance in the mobile management patent a system using a laser light beam will be targeted on a lane marker or the road edge. Once the laser light is locked on the line or road target a software
algorithm will compare the electrical signal from any camera(s) viewing the roadway to detect the cars position by the relationship of the laser dot on the road and how far away from the lines the dot is, as well as the direction the dot has moved from the line during movement. This is determined through the electrical signals digital pixel representation identifying the road target and the laser dot an activating the automated steering stepper motors to turn the steering linkage to maintain the correct lane position for the vehicle. This might require two camera angles and two reference laser spots. For optimal accuracy, of course, the PFN will be receiving distance data as another electrical signal transduced from sound echoes and/or infrared systems to be compared in software protocols for proper travel spacing between vehicles which will adjust the speed of the vehicle through the many modalities detailed in this application for automated acceleration and braking processed through the PFN 4 and 6 in this figure are a video card and converter for laptops to be used in a plug and play modality with personal laptops for sending images via the web and for any personal reasons or business. Web functions can also be performed by the PFN computers.

Figure 2.2 is a general drawing showing the double wall construction of this technology's prototype PFN's Protected Primary Focal Node for the many varied applications. The concept of a protected memory and/or a protected encasement for any of the electrical components is not intended to be limited by this drawing. PFN structures can be of any configuration or structure and will be application specific even as any standards are determined to help universalize an accountable protected interface for any particular remote control technology.

Figure 2.3 is an illustration showing the remote monitoring and management of data functions. This figure shows the three basic components communication equipment, processors, and data storage designed in to the PFN prototypes in a double wall protected encasement. In mobile applications, GPS as well will probably be interfaced and stored in the PFN. The network monitor in and data storage 1208 is the system and hardware components to support this technology's "spider eyes" and "green eyes" program. Also, at the bottom of the page, two squares that say interface connector and PCM, Direct, and/or HPC. PCM means Powertrain Control Module, Direct means that the PFN
controls the components directly on the host piece of equipment, and HPC means Host Programmable Controller.

Appendix 2 is a set of three pages numbered A. B, C out of Grainger Catalog 1996 No. 387 , listing some typical programmable controllers that are available for preprogramming control functions on factory machinery or stationary equipment etc. They are by no means the only ones and this technology can interface and protect any controllers on the market. These are examples of host programmable controllers (HPCs). The PFN will interface with these controllers like it would with the powertrain control module in automobiles or it would control all the machine functions from this technology's many varied processors and/or controllers, or the PFN could utilize one of these programmable controllers as its primary processor. Whatever is the case ultimately these processors should be afforded the protection of the PFN if possible. And of course, application specific software programs would be written to process the data to and from the input out put pins for remote control and automated functions as well as activate any memory storage devices to track the machine messaging, telemetry, or audio or video data. This is accomplished by this technology's managing accountability software, TRAC.

Appendix 3 is a set of ten pages numbered lettered A,B,C,D,E,F,G,H,I, J straight out of the Grainger Catalog 1996 No.387. These pages are used to provide all the varied gear motors available to activate any machine and/or equipment controls and/or their functions with electrical energy. These pages provide to anyone skilled in the art all the specification and data to determine which gear motor best meets the physical and mechanical requirements to perform any application specific control function on a host piece of equipment along with the operation currents they operate on (e.g. automotive voltage, house current, industrial and/or commercial currents). Along with gear motors controlled by relays mechanical and electrical the PFN invention can be configured to operate any electrically energized devices, solenoids, electromagnets to control valves for hydraulics oil, water or fluid and/or gasses, air, water, fuel flows, etc. and control other electrical device motor controllers. Pages I and J are only two DC motor pages for variable speed. These are some of the DC motors used for the automotive industry for
steering. Page K is some of the straight DC motors for 12 - and 24 Vdc with out gear reduction to drive fans, pumps and compressors. Page L and page M are dc variable speed controls that can be interfaced with the PFN processor or in many cases is already connected to a OEM programmable controller.

Appendix 4 is the first one hundred eighty-six pages in Grainger Catalog 1996 No. 387 of ac motor selection information with all the motors and their specifications are included here. This data is for Daton motors, however, there are other manufactures, GE, Baldwin, Westinghouse and many of the configurations are standardized (frames, shaft sizes, HP, and mounts, etc.). This list is being provided so that anyone skilled in the art can determine the correct motor to use in any automated or remote control function as well as the necessary components to interface it with this technology's PFN systems whether it run's on house hold current, or if has to run on industrial and/or commercial currents. The mere fact that some countries have to have motors configured for different current (e.g., 50 hz) that may not mentioned in this document does not exclude their being controlled by a PFN. This technology is meant to be utilized on a global level. The following 20 pages display more gear reductions and gear transfer cases these motors can be attached to slow the motors rotational speed and increase their torque for power.

The effort in providing as much data here is to prove the feasibility, reduce the cost for research and development by providing C.O.T.S. products and to create an organizational tool to automate and remotely control any and all machinery through he PFN by readily providing the products to fabricate an application specific actuator or automate a function for anything. Of course, the electrical interfaces will require the correct relay and hard wire component for the PFN control currents, current controls, and protection for the host machines electrical system.

Appendix 5 is thirty-five pages out of Grainger Catalog 1996 No.387. These relay pages detail out a versatile group of electrical control relays that can be utilized to interface this technology's PFN control circuits with the motors detailed in Appendix 4, and also a way to control current to solenoid valves and other electrically controlled devices on a host piece of equipment. Also in this section are some push/pull solenoids box type and other solenoids that can be configured to activate a control levers on a piece
of equipment or control latch mechanism or to interrupt a function, so that anyone skilled in the art can readily pick the electrical components to activate and either fabricated a basic automated device function or to develop an isolated command function processed by a PFN to a preexisting OEM accessory.

Appendix 6 is another 25 pages out of the same Grainger catalog lettered A through Y because, of the different areas of hydraulics devices covered in this section which are used so diversely to work and control functions through out all the industries. A, B, and C are electrically controlled solenoid valves and only a sampling of many that control valve mechanisms to direct hydraulic flow and pressure to do work, either by pushing or pulling in piston applications, rotational functions as does a hydrostatic motor and/or hydraulic motors used in track machines like skid steers and some robots and/or automatic product feed applications, saws grinders vehicles etc. D and F are DC motors for hydraulic pumps F, G are AC power pack for hydraulic pumping. There of course is much larger systems however most hydraulic control functions can easily be achieved with the components detailed here. There electric hydraulic pump systems can also be controlled by the PFN utilizing the appropriate and previously listed relays. And the hydraulic pressures these systems develop will be diverted by the electrically activated sandwich valves. Figure 28 depicts, which of course is a DC application but the same can be achieved for an AC application as well. Parker and Vickers are two major manufactures of hydraulic control devices and Gates is a major hose supplier, however, there are many, and the fact that all suppliers/manufacturers are not named should in no way exclude them from the use of the PFN or when these components provide automated and remote controls in any accountable process.

Appendix 7 is another group of pages taken from the same Grainger catalog and put together so that anyone skilled in the art could utilize air or compressed gas to activate automated and remote control actuating devices electrically through the PFN processors. These same functions can be achieved for water, fuel flow and/or steam as has been stated, however, there would be application specific parts and sealing surfaces to handle the product's properties being governed, to energize a work function. The first twelve pages deal with the electrical solenoid diverting valves A through L. The next
nine pages, M-U, give all the possible cylinders that can be used to physically activate functions for automated and remote control functions for more push pull applications. Pages V, and W show the air motor devices that can perform rotational activities by air. An effort has been made in Appendices 2-7 to provide all the different actuating
stamp II computer and self contained relays as well as other on-board relays and electrical control devices. This is the basic one-way PFN modality and the Slow Stop and Secure functions are detailed in plain English in Figure 2. However, it is important to remember that these same energized output pins can be interface with any peripheral devices on any host machinery so long as the electrical signal given from the stamp II computer activates a 12 vdc control side solenoid or motor to direct the host equipment's remote and automatic shut down functions no matter what type equipment the PFN is on. However, any voltage or current requirements for any machine can be met. Either transformers and/or inductors or rectifiers would be configured to provide any voltage requirements from 5 vdc , and the like. Of course, any number of software control commands may be used in the present invention.

Figure 4 (1000 series) displays a typical motor revising relay circuit that is used in the prototypes to change motor polarity and direction. This relay circuit in the prototypes is energized from the pager remote control package in Figure 2 and is responsible for energizing the innovative devices in this application.

Figure 5 (200 series) illustrates, in detail, all the C.O.T.S. parts and their components, as well as the variation and augmentations that the invention does to the seat parts to utilize this mechanism to tension the brake system. It also shows with more detail the locations with isometric drawings that this device would use to perform the stop and secure function. And another piston system modality is illustrated.

Figure 5.1 is a drawing of the traditional emergency brake locking ratchet pedal that has been an automated and motorized.

Figure $6(100$ series $)$ is a drawing of the pedal stop accelerator device mounted and concealed under the carpet. While it is not shown presently, this device has been experimented with the center hand pull emergency brake system.

Figure 7 (100 series) is a drawing that shows the prototypes used to interrupt cable controls and it has seen experimental use basically to interrupt the accelerator function, which it performs very well, and also reinstates cable action to the throttle, when programmed to. It should be mentioned that this system can be used effectively anywhere cable controls are employed and that any quick release cable system
specifically made to basically interrupt a normal cable function would fall with in the nature and scope of this innovation, when used to automate controlled shutdowns or to disengage a cable functions through electrical mechanical means.

Figure 8 (100 series) shows some other simple accelerator cable release systems that are being experimented with presently. Also shown here is the interruption of the pedal assembly linkage. Many of these cable releases can be designed into any manufacture line with relative ease to provide cost effective remote control actuators for automated shutdowns in emergency situations.

Figure 9A (100 series) displays a standard GM throttle assembly for fuel injection with a electromagnetic clutch disk system. When energized it pulls in and locks solid with a mating disk to turn the throttle through shaft.

Figure 9B shows an air mixture solenoid in another isometric drawing that is controlled electrically by the invention during some slow down modalities.

Figure 9 C is an isometric of the throttle assembly having a servo motor attached to its through shaft that can also be controlled by the inventions control hardware and soft ware in other slow down modalities. This is a form of drive by wire where the motor has a cam or gear reduction, or worm gear reduction that correlates to the amount of depression of the accelerator pedal or operator controls.

Figure 10A (100 series) continues to show other modalities to release the cam from the through shaft to throttle down a power plant electro-mechanically and allow it to free wheel leaving the butterfly valve in the idle position. The 10B section shows the latest throttle position sensor and this is one sensor that is interrupted by the unique trickster circuits to deceive the power train control module PCM if need be in certain circumstances. These are used in many variations that require electrical augmentation to slow down a vehicle and kill the ignition and fuel injectors directly. This can be easier to retrofit because it requires no change to any of the OEM software that times the spark and fuel injector solenoids. 10C shows a sensitive vacuum switch, which is being used to also cut off a cranking circuit for remote starting by signaling that the engine is running so that the crank current is then interrupted.

Figure 11 (300 series) shows three locations for an additional butterfly valve or
gate to control air flow into the engine. This is accomplished by either solenoid or servo motor controlled butter fly gates on the air intake duct, air cleaner system, and/or air horn.

Figure 12 (300 series) deals with the latest standard power brakes on Chevrolet and Oldsmobile products, but there is also descriptions on how to automate other manufacturers' standard brake systems in the first drawing and in the description for the 300 series brake innovations. However, because of the latest ball screw piston modulator valve having the ability to be innovated to automate the brake system this valve will be described in complete detail as to how the invention will utilize it to automate braking for these systems. The top drawing shows the brake system components. The isometric at the bottom shows all the electrical connectors for the modulator valve, solenoids, and motor pack.

Figure 13 (300 series) shows how the modulator valve looks, its motor pack, its drive system, and the standard physical hook up to the master cylinder above.

Figure 14 (300 series) The first three drawings on Figure 14 show a cross section of the modulator pump with top left (14A) one front wheel control and with the piston in the down position. Center (14B) cross section another front wheel control with the piston all the way in the up position and the upper right of figure 14 (14C) a dual assembly that controls both the rear brakes together. Lower left (14D) picture is a front wheel speed sensor and the (14E) picture is a rear wheel speed sensor.

Figure 14 F shows management of PFNs for other vehicles and machinery diesels.
Figure 15 (400 series) deals with the fuel system and most especially in these drawings the standard fuel injection systems of today. Once again, the drawings are of GM parts but the augmentations and innovations do apply to all vehicles that have these parts as displayed and easily reconfigured to achieve the remote control goals to slow and control speed through fuel availability. Also, there is description given during this section and other filings that deal with the carburetor and the throttle body injection types of fueling. The top drawing is the entire system and the lower picture shows the regulator and connection pipes for the quick disconnect hoses.

Figure 16 (400 series) illustrates 16 A as the injector rails for one type of system. 16 B shows an injector in a cross section view and 16 C shows a regulator that has been
innovated to make it a dump valve as well to starve fuel from the power plant. This is a achieved by combining the regulator and the inventions dump valve system that was detailed in the first application. There are 3 separate systems and modalities displayed in this drawing, one is motor driven, two pressure driven, and three solenoid driven but all controlled electrically.

Figure 17 (500 series) This shows the standard transmission switch for another GM part but any transmission and/or transaxle that uses solenoid shift spools can be controlled in the same manner and is therefore pretty generic for many of the standard hydromatic power transfer systems today that rely on their PCM's power train control modules for shifting instruction. These two pictures show the switch the cable link up for park function and the electrical connections for the switch.

Figure 18 (700 series) This figure has 3 pictures showing the standard rack and pinion GM steering with the innovative changes to automate the racks gear box by motorizing its rotation which is done through automated controls (i.e., motors cables, jack shaft, etc.).

Figure 19 (700 series) is more of the rack innovation and description.
Figure 20 (700 series) shows how the motorized system can be attached anywhere alone the steer shaft linkage and the many possible column mounts. Also, throughout this section will be other figures on other automated steering systems. They are extensively described and detailed in this formal filing. While many of these steering systems see use in the automotive industry and these innovations them will help to more widely serve all the different steering systems used by the varied automotive manufactures, they are also going to be widely applied in other industries, that use vehicle platforms to navigate.

Figure 21 (700 series) is an exploded view of the steering column out of a GM car to show the drive pulley on the steer shaft linkage and the column mount for the first prototypes.

Figure 22 (900 series) has been used to detail the three major components to controlling engine timing for the spark and fuel in the GM cars. The top picture is the PCM. The second is the coil pack and the third harmonic or a crank shaft sensor.

Figure 23 (900 series) shows the cam shaft sensor location, and the lower figure shows another type of crankshaft sensor. These are also engine timing controls that are interrupted by the 1000 trickster circuits which send a pre-tuned current level or generated digital pulse to fool the PCM or any control circuits they are interfaced with.

Figures 24 and 25 (1000 series) are trickster circuits. 24A is an electrical diagram for the relay and variable resistor that can be turned on to a pre tuned voltage to deceive an analog logic circuit like a PCM or any other control circuits including the invention that it is receiving a particular signal from a sensor when in reality it is created by the trickster circuit. 24 B is a digital pulse generator coupled to a relay that can give a digital signal to deceive the control circuitry, both 24 A and 24 B are hooked to a double throw double pole relay so that they can maintain the original signal in the deactivated state NC (normally closed) and deliver the trickster manufactured signal when the relay is energized. These electrical innovations allow the invention to perform these above stated functions without a lot of reprogramming concerns to the software. Just install the simplistic inexpensive tricksters between the OEM sensor or signal device and the electronic monitor and control hardware and deceive the normal running software program. Most all augmentations can be achieved for all these modalities that require timing and fuel mixing to achieve a smooth even engine deceleration for a slow down function and/or ignition cut off.

Figure 25 (1003 COYOTE Circuit) is used to activate the automated brake systems when the doors are opened. This circuit has many other uses to be detailed.

Figure 26 (1100 series) is a handy device for motorist who run out of fuel. It is the fuel caddie which allows for the quick connection to the fuel system with cars that have electric fuel pumps.

Figure 27 (1100 series) is a drawing of how the helping hand tow and train coupler will be placed on vehicles.

Figure 28 (1100 series) is a drawing of the hydraulic circuit that will run the helping hand pistons.

Figure 29 (1000 series) is a drawing of the electronic security seal.
Figure 30 (1000 series) is a drawing of the security sealed area for the PFN.

Summary of the Invention

In this application the invention details automated devices for, equipment, vehicles, machines and their systems to complete, preprogrammed and remote control functions. Initially for vehicles, and specifically cars and light trucks are the focus to start developing the mobile management innovations of this remote control technology. The first aggressive remote control is used to slow, stop and secure vehicles that are being used in an unauthorized manner, either intentionally or unintentionally. This software program is termed PASSS. This stands for Proprietary Automated Slow Stop and Secure vehicle software. The next evolution of this aggressive software for TRAC is Proprietary Automated Guidance Slow Stop and Secure (PAGSSS) vehicle program. Secondly, guidance is aided to the mobile management systems for vehicles to increase remote control capability and help provide more physical devices to make more robotics for the smart cars and interactive highways. Finally, in this application other types of control devices are detailed for industrial, commercial and home machine and equipment management. In this application many systems are described and their hardware detailed extensively. The basic goal of this application is to provide all the hardware devices and circuitry to remotely control every piece of equipment worldwide.

Slow Down Systems are designed and detailed to restrict throttling, first to slow down any vehicle made by most every major manufacture of vehicles worldwide. Most of the systems have been designed from every manufactures own commercial off the shelf products C.O.T.S., or their supply line manufacture to help for a responsible but economic commercialization of remote control, and the future robotics, of the smart cars and interactive highways.

This first sequential remote controlled shut down leaves the vehicle engine running for driver steering and braking control. Initially, only acceleration is eliminated from the driver's control. Then there is a timed brake application, which performs a controlled-stop, with the vehicle finally resulting in a secured stop in a stationary spot, with the engine left idling. Then the engine has its electrical ignition killed of fuel supply interrupted in a number of modalities. In fact, there is a number of modalities for all these sequential functions (i.e., to slow, stop, secure motionless, and finally turn off the power plant). This is the first remote control protocol that the
invention features to counter the unauthorized use of a vehicle (first it eliminates acceleration only, second it slowly applies the emergency, service and/or regular brakes, third it maintains a brake application with the vehicle held in a stationary position, and then it finally kills the power plant). The first prototypes merely complete this task to slow, stop and secure the vehicle in a stopped position, then kill the power plant. These functions can be performed in a number of ways. Either timed preprogrammed responses initiated and controlled by programmable control circuits solely and/or control circuits coupled to communication devices and systems for remote machine messaging and control. These variations will accommodate less sophistication in either the communication device and/or processors employed to complete these tasks. This first system has had much experimentation and has set up optimum times for each phase to take place in a vehicle slow down scenario, but any sequence that performs the same functions are all considered to be within the nature and scope claim of the invention. Also, upon the activation of this emergency shutdown sequence warning lights (Flashers) and taped messages or information devices are activated to inform any surrounding vehicles and the driver of the shut down event. Additionally activated are recording devices that can store all forms of data recovered during the event. While, these systems are designed to be activated by any communication system and the average citizen, they are recommended and, intentionally, designed to be used and/or coupled with the proper protocols and/or law enforcement personnel. This is PASSS, this technology's Proprietary Automated Slow Stop and Secure shutdown protocol.

The second automated vehicular remote control enhancement detailed in this application will add guidance through automating steering components like (motors, valves, and cylinders, etc.). And they will be controlled by interactive environmentally conscious software monitoring the vehicle operation, through vehicle sensors and operator sensors, e.g., distance sensors, cameras and road edge detectors, along with in the cabin, the nose, breathalysers, head tilt, pulse rate, pupil response sensors and software, etc. This second variation will be termed PAGSSS, and this automated protocol will also, be able to be initiated through simple remote control communications for the emergency take over situation and/or for the unauthorized use of a vehicle scenarios. The same protocols that control larger land based wheel
outfitted platforms, trucks, semi's, buses, etc., will be detailed as to the devices and systems necessary to automate these same unique functions to slow, guide, brake and secure them in a stopped position in this application. However, this application documents this technology in great detail to initiate and accomplish, while progressively commercializing for society accountable remote control. These progressive steps and developments for responsible remote control and robotics in mobile management are considered unique as commercial product protocols that address acceptable modalities for legal and insurance rules, regulations and concerns for man and machine accountability and liability. The mobile management application will further advance the systems to detail all the devices for a vast variety of transport equipment that will be remotely monitored, controlled and provided robotics systems.

The truck and car industry has recently been plagued with car and truck jacking and these minimal control scenarios are a very needed improvement in public safety and they will only be the first step in acceptable accountable remote and automated vehicle control. As the programming and tracking of vehicle movement utilizes the most sophisticated and accurate GPS, digital cell phone technology and computer highway management and smart car software programs and systems the amount of collaborative human and machine driving control will develop to where full accountable systems will be a social necessity. This application will detail many of the actuating devices that will be used to perform these functions on the vehicle and how they will be monitored and made accountable for these remote, robotics, and automated control scenarios.

As stated earlier, the invention will develop its technology and commercialize it with other technologies to completely automate accountable controls for vehicles, equipment, and machines through C.O.T.S. products and cooperative commercial agreements that utilize designs and/or technology to complete this goal, all of which is detailed within this application and all of this technology's related patent applications, incorporated herein by reference.

An Electronic Steering Control Module ESCM module will be constructed and/or dedicated as a steering control interface circuit which will have some burned in software (firmware) to complete automation and provide basic remote control steering
protocols for an improved controlled shutdown (PAGSSS). This function may also be completed by the inventions computers entirely as detailed in the related patent applications and/or accomplished through the vehicle OEM PCM or any programmable control circuitry if so developed in the future as a consolidated development of this technology's continual effort to combine control functions and circuits or the above mentioned ESCM module physical circuit can be controlled through the Primary Focal Node or (PFN) software, TRAC, and circuitry interface (the inventions computers) or (the OEM's PCM or comparable control circuits) to involve complete robotics as a system development. Any and all of these circuits may also, enjoy a protected status inside the PFN or in another suitable location; either, provided total or partial physical protection or not. However, the ESCM control system as well as, any computerized steering controls designed to safely guide a vehicle in an emergency shutdown are considered to be within the scope of the present invention, when used for and combined with remote and automated control and/or part of any accountable system or protocol requiring this kind of protected integrity for any of the named reasons in the related applications (interactive highways, and smart cars, etc.), this technology's PFN with TRAC and PAGSSS . These circuits and programs will be described in the series 1000 innovations. This will also be accompanied with the complete description of C.O.T.S. parts and innovative components that make up the 4 part sensor array 909 in Figure 1, which also contains a target for receiving specialized law enforcement remote control signals (913 variations). 912 is a combined antenna that will pick up a wide band of different radio signals that will be part of a combined communication network in the securely contained control center, termed the PFN. These antennas may be separate as part of functional C.O.T.S. products presently, even though the products are combined in only one secure and/or secluded location and finally these variations will be integrated (with a few exceptions) and be serviced by a universal antenna system or bus.

Part 911 is the distance sensors that will send and receive signals, compare them to a known rate of speed, process the amount of time of travel in relation to the distance, thereby calculating the distance traveled by the signal between the vehicle and another object and assign an electronic signal to value that distance and time so that the onboard software can equate speed, time and distance of the vehicle in
relation to other environmental objects. First, through the inventions computer in the present prototypes, but ultimately combined with OEM controllers, other distance and environmental data will be provided, as well as augmented, by the video and digital, cameras part 910 (i.e., Nanny Camera, etc.) that will be directed, through on-board programming, to impending impact and/or recognize road surfaces and/or conditions to give data back to the control systems. Also, the PFN's will be in contact with any highway information systems that will be alerting and setting off program flags for altered operational instructions. These instructions to the automated host vehicles control systems will direct the ESCM for automated controlled steering. And any number of already described automated steer controls and brake system, either, C.O.T.S. interfaced or specially designed to first take control of a out of control vehicle and deactivate it as rapidly as possible by PASSS or PAGSSS. Of course, ultimately these sophisticated TRAC systems and innovations will operate the vehicle through a fully robotics set of on-board and off-board devices interfaced through these extensively described systems for automated accountable interactive highway and smart car scenarios, which are all TRAC-based. Much of these systems and innovations is detailed in this application. These systems will also allow individual personal transport vehicles to be totally accessible to most all impaired persons, the aged ,and the young ,as well as, be drivable by those, who are capable, enjoy and/or freely choose this option. This will improve the individual's personal freedom of travel to any place a vehicle can go as well as, make these travels safer for all.

This is the progressive commercial development of remote control to more complete robotics systems to include the smart cars and interactive highways for the car and truck industries. While, this application specifically details the hardware to perform these remote control functions for all equipment, it will also, describe all the protected accountable systems PFN/TRAC, detailed in all the other related applications, that are needed to marry up to society's laws, rules, and regulations, as well as, society's institutions, organizations and capital economy to best commercialize acceptable remote control and/or future full robotics systems.

This summary has concentrated on land vehicles with wheels. This will also be the case throughout this application in giving examples of remote control capability, but in no way are the related systems and innovations confined only to the
auto industry. The innovations contained in this application will provide remote control capability for every piece of equipment and machinery anywhere, as well as, provide systems to monitor control and provide accountability. Most all physical actuating components that will perform remote control functions on any piece of equipment will be described, illustrated and/or detailed with their part numbers if applicable along with their altered innovations in illustrations.

Since the future is destined to have people living longer it is going to be necessary for robotics systems to provide needed services to keep individual freedom at a maximum for all. With the use and development of these innovations there are many decisions and provisions that have to be accounted for by society. In this application, these issues are addressed as pertinent statements along with much consideration as to the necessary elements to provide responsible remote control and accountable systems. However, the use and control of these innovations will always be decided by the ones that employ them and this will always be their responsibility.

Best Modes of Carrying Out The Invention

Controlled Automobile Shut Downs

This initial goal, as stated earlier, is to first slow a vehicle down, then stop it, and most importantly secure it, in the stopped state. To accomplish this, this technology incorporates and combines presently manufactured commercial off the shelf (C.O.T.S.) parts in innovative ways to allow for the most rapid development and inexpensive deployment of these new remote control systems to increase public safety. These first named parts are all General Motors (GM) and are presently used for the automation of a standard automobile seat. However, most every vehicle and equipment manufacturer will be detailed with a commercial off the shelf configuration or supply line set up to easily support these automated and/or remote control functions.

The GM application will primarily use seat controls. Some others will use automated seat belt restraint motors, as well as, other varied automobile servo motors and varied powered actuators either motors diaphragm canisters, and/or cylinders powered by vacuum, air and/or hydraulic fluids, etc. to complete remote controlled functions. In the event suitable C.O.T.S. parts can not be configured for a particular
piece of equipment from its own manufacture product line a innovative configuration from other available C.O.T.S. products or this technology will probability provide an inexpensive alternative to automate and/or remote control any such particular function.

These presently detailed parts were chosen for their universal supply line manufactures and commercial connections to most all the major automobile manufactures around the world. They were also chosen, because some of them have flexible cables, and/or flat or strip gear drives of different length and applications, which allows their motors to be installed in another place from where the actuator device and/or physical structure and action is needed. Another important consideration for some of the GM configurations was their high torque capability.

These first GM parts are a 12 volt motor PN (listed in fig 6), which has a gear reduction right angle worm drive as part of its assembly. There is also varied length cable drives, PN (listed Fig 6) that give some flexibility to the drive, which allows for the placement of the motor in another location from where the work that is to done by the next two parts. They are 2 drive actuators, one is a Ball nut device PN (listed in Fig. 6) attached to the cable drive that normally is responsible for raising and lowering the seat through electrical switches on the door panel which reverse the polarity of the motor. The motor is attached to the other end of the cable. This motorized ball nut device has been designed with some physical reconfigurations, electrical circuitry and has been re-deployed on and through the floor board and under the carpet to serve as a secluded accelerator pedal stop (in the prototype). This will be incorporated and protected in the floor for final products. When the circuit is energized, the accelerator pedal cannot be held down and is raised all the way up so the car can only idle which slows the vehicle down gently while still providing power for operator steering and braking. This only removes the operator's ability to accelerate a vehicle. This can be done incrementally, however, in the present prototype it has been designed to completely eliminate any acceleration by depressing the pedal when this innovative device is activated. In this first phase to restrict acceleration many different modalities are detailed in this application to complete the slowdown in the PASSS shutdown program. All the different manufactures parts are named, identified and detailed as to how they have been altered to make available versatile devices to
complete this acceleration block function as well as, for all the following remote and automated control functions. However, most of the prototypes have been created from GM parts and vehicle to date.

The second actuator drive is also taken from these same seat controls. It is the horizontal right angle gear drive PN (in Figure 6), which is responsible for the forward and backward movement of the seat. It is connected to the opposite end of the same kind of cable and motor system already named, however, here the gear drive is fix mounted to an outer channel so that its drive gear meshes with a strip gear that is attached to an inner channel. So when the motor is activated the entire seat also mounted to the outer channel move together either forward and/or backwards as the polarity of the motor is changed through seat control switches. It is this dual sliding motorized channel system that has been employed in the timed and controlled deployment of the standard mechanical emergency brake pedal system for the prototype. However, the inner rail is outfitted with a slide bar hook bracket that allows for the normal usage of the emergency brake in the slide area. The slide bar also acts like a hook that applies the foot pedal when it is activated to completely stop the vehicle and secure it in a stationary position. For this slide bar hook attached to the inner rail to have something to pull against the outer channel, it has a turn buckle bolt system that has one end fix mounted to it. On the other end the adjustment bolt passes through either the wheel well and/or floor board so it can be properly adjusted for the throw of the pedal to apply the emergency brake and then it is locked down in that position.

Once again, there are many modalities for this Slow to Stop and Secure function of braking the vehicle with new parts and innovations to C.O.T.S. parts and combinations. It is the explicit purpose of this application to completely detail every possible modality for every variation of vehicle to provide these remote and automated control functions. While this system in the prototype is activating the foot pedal lever, these systems are also deployed in other locations to activate the emergency or manual brake system to initiate the second phase of this technology's PASSS shutdown protocol with the vehicle secured in a stationary position. Also, in this application are various other motorized and powered automated brake application and accelerator stop or elimination modalities .So, in no way should any different
combination or variation of the same or similar devices and/or systems used to slow, stop and secure the vehicle in a stationary position (this technology's protocol) be considered different and/or unique. They are all a form of PASSS.

For the automation of the steering, the motors, gear reduction and cable drives are the same for the GM prototypes, these same drives, or similar ones, are proposed for the Chrysler, and Ford, vehicle prototypes, as well as, for their brake and accelerator functions. The innovated device for the prototype will incorporate a similar cable hook up to its own jack-shaft drive system that can be mounted parallel to the normal steering parts and rotating shaft or surfaces so that it can drive a $1 / 4$ inch belt around two pulleys in this steering modality. One pulley is on the jack shaft and the other on an accessible area of the rotating steer shaft linkage, so that when the motor and cable system is activated it will rotate the steer shaft in the appropriate direction to turn left or right. This belt system is accompanied with a standard solenoid activated tensing system to allow for an operator to defeat it under appropriate circumstances. The prototype example system are GM Delco parts, that can be utilized even on other vehicles if so desired, but in no-means are they the only parts that can be utilized in this innovative manner. This Guidance System is the physical guidance system to create the second generation of PASSS and PAGSSS.

Once again, it is the primary purpose of this application to provide all the major vehicle, truck, industrial trucks, track vehicles, ATV's, and other land based vehicle manufactures with innovative designs and simple solutions using their C.O.T.S. parts, where ever possible to complete all the remote control functions described through out these patent applications. So any reducing of engine RPMs and/or Controlling Powertrain Components and/or their functions as well as controlling any Braking and/or steering systems in a controlled fashion for the purpose of restricting a vehicles speed and controlling guidance and/or its use through remote control, and/or preprogrammed means (i.e., electronically through any electronic control system, programmable controller, computer and/or control circuits either IC or relay switching or series switching that can interface either with any RF signal) at any frequency and/or utilize any type of cell phone technology (i.e., digital or analog, pagers, paging chips, and/or any components that can either transmit and/or receive information) and data either alpha-numeric or voice commands or any data stream
(i.e., analog or digital including infrared, laser or light wave transmission) or any modulation of these types of signals for the purpose of electrically activating from a remote location any solenoids, servo motors and/or electric pistons or controls for fluid air or vacuum driven motors, valves, and/or any pistons and strip gears (i.e, hydraulic and/or motorized ball screw type of power transfer mechanisms) as well as, hydraulic or air driven either on-board an OEM host vehicle or added to the vehicle machine equipment for the purpose to control the following standard mechanical components (i.e., cables, linkages, air flow gates, and/or valves, i.e., butterfly valves and/or valves that control gasoline, propane, and/or natural gas or diesel fluid flow lines) as well as any, hydraulic (i.e., power steering, transmission, pressurized plumb) circuitry either OEM or redirected that can serve as a controlled energy source, and/or any add on bottled pressurized gaseous systems or compressed pumped air systems either OEM and/or added on that are used for the express use to energize and/or deenergize any and/or all the above mentioned and application devices parts and/or components for the expressed purposes of either to slow down, guide, and/or stop completely in a secure stationary position a mobile vehicle, as well as, limit and/or control any functions from any remote control devices as have been described herein, and/or effecting any components by gating or regulating and/or redirecting or reducing and/or stopping the flow and varying any flow and/or pressure in any fuel components, braking mechanisms or systems and/or steering components and/or functions or any of their component mechanisms fall within a PASSS and PAGSSS scope. Also, any enabling and/or disabling of any of the standard manual components (i.e., pedals for acceleration, and/or braking systems, either service and/or emergency systems and steering systems as well as any levers handles catches, latches and latch releases) that can be made to effect the engine and/or motor RPM's, or vehicle speed and/or stopping and steering activities and/or effect any general usability of a vehicle machine or a piece of equipment affected by preprogrammed functions and/or from a remote location through any of the above mentioned transmitting and/or receiving devices that can be interfaced with a host vehicle for these purposes no matter what the range and type of RF signal phone or communication technology, light transmissions or pager transmissions.

These complete descriptions of the mechanical design and configuration are being given to make clear that this invention and any and all of its configurations existing as C.O.T.S. parts presently are considered unique, when used to control vehicle speed, braking and/or steering in these automated PASSS and PAGSSS shutdowns or in any other automated function described within this referenced application in any vehicle, machine, or equipment applications if it is done for remote control applications and/or any preprogrammed and/or for any safety consideration described herein with and/or with out accountability and/or security protocols and/or in any protective encasements. Even though the invention seeks to meet the public's immediate needs economically with these readily achievable C.O.T.S. products in as quick and safe a manner as is possible, it also, maintains and claims completely that any automation or remote control of any of these aggressive functions stated herein, that are performed by present or future remote control, and/or preprogrammed controls be they interfaced C.O.T.S. circuits or devices and/or any integration of circuitry to be still part of this technology, when the same mechanisms and systems, e.g., for: speed control, steering, braking and power plant disablement's perform the same:

$$
\begin{array}{ccc}
\text { I } & \text { II } & \text { III } \\
\text { Warn\Guide\Slow, } & \begin{array}{l}
\text { Stop and Secure } \\
\text { in one position, }
\end{array} & \text { Kill the Engine }
\end{array}
$$

This three-phase shutdown protocol for an automated and/or remote control deactivation of automobiles or vehicles is a major part of this technology's nature and scope claim for all the applications involving remote control vehicles, this technology's Mobile Application Specific Management Program (MASMP).

Of course, at this point it is important that any device that can increase the speed of a vehicle whether mechanical or through any electrical means if only a electrical transdusive device, i.e., potentiometers, field weakening systems, silicon circuit relays SCR systems and/or any controlled chemical and/or molecular interaction that yields and controls the provision of energy to a power train and/or controls that power trains delivery of power to propel and/or restrict and/or detain a vehicle or any stationary equipment control for any and all the above purposes,
reasons and the scope of all the related patents and/or any controlled device to control a vehicles speed function falls within the nature and scope of the invention when it has been automated for any of the already described reasons and most especially if it is done with memory storage for accountability and/or is enhanced by a secure and/or secluded encasements, like this technology's PFN and TRAC software systems. (Note: Because the nature of these inventions is to combine and universalize the use of all associated technologies; any and all compatible and/or unique designs by others that either parallel these inventions and/or add some versatility and/or uniqueness will be given every opportunity to commercialize their product and/or incorporate and/or merge their business as might be possible to full fill the public's best interest if there can be a reasonable and mutual commercial and financial venture agreements.)

Presently, in this application, complete descriptions of all these developments will be given by the mechanical systems they involve as described and depicted by the following drawings. These diverse remote control and automated claims of interface is being done to help commercialize responsible remote control and to give value to all of this invention's devices.

These are the present systems and parts that are being used in the prototypes and demonstration units to automate slowing, guidance, stopping and securing functions for the automotive industry as part of the PFN invention. Presently the slowing, stopping and securing functions are coupled to the remote control pager system already disclosed in U.S. patent application No. 08/975,140. In that application there was also described a fuel control valve system and the invention has developed a prototype of this unit as well; along with many other prototype systems and shut down protocols through experimentation. All have different qualities and properties and mechanisms, that will serve to automate control systems as they can be applied to all kinds of equipment and machinery not just the automotive industry.

Figure 1

(THIS FIRST DRAWING IS DONE TO COMPLETELY ILLUSTRATE WHERE THESE AUTOMOTIVE DEVICES WILL BE LOCATED AND THE SYSTEMS THEY WILL BE COUPLED TO AND THE MANNER IN WHICH THEY ARE CONNECTED). The following number system will be used throughout
this application of drawings to be consistent with the systems these devices effect. Throttle control components will be numbered in the 100 series, the emergency brake system will be coded with the 200 series numbers, the service brake will be represented by the 300 series, the fuel system will be 400 , and the transmission and transaxle will be 500 numbers, additional and accessory brake systems will be 600 , the steering and guidance components will be numbered in the 700 's, the rear axle will be 800 numbers and on-board electrical components sensors and control circuits will have 900 numbers, also the electrical components will have a lighting bolt indicator line in this figure while all other devices will be indicated by a standard curved indicating line to the number. And finally the reason there is duplicated numbers in this drawing is because this drawing represents the two most popular standard drive train systems, which are the front wheel drive and the rear wheel drive. This was done to give the most complete and exact description of these innovative device deployments 100 which is a throttle servo motor and/or a solenoid that can be energized to create a specific aperture or orifice opening of the throttle throat to directly effect the cubic feet of air allowed into the power plant, i.e., gasoline or diesel motors.

101 is the accelerator and/or throttle control cable that connects the pedal to the throttle valve, i.e., butterfly (This gating or blocking process) of the air flow can be accomplished by a number of devices and any such devices, e.g., even expandable bladders are considered within the scope of the invention, when any such device is used to control the engine rpm or are a part of any automated control system or shut down. 102 is a standard cable with a junction box that interrupts the cable from actuating the throttle valve. This is done by a solenoid releasing a seesaw lever, or a set of interlocked double discs or cam devices that is completely described in an additional drawing figure 7. Also, in this drawing there is a standard cam system housed in a similar cable junction containment which accomplishes the same lever action result.

103 shows a pedal stop mechanism that restricts the driver from depressing the accelerator pedal and/or activating any linkage to increase engine RPMs, i.e., gear-nut drive, worm gear, ball screw or screw drive, angle or right angle gear drive, piston mechanism, i.e., hydraulic, air either from a compressed gas bottle and/or accumulated
bottle system or energized by any such on-board pumps and/or compressors and/or any electric memory metal device, servo motors and/or solenoids that can activate any blocking mechanism and/or catch and latch devices to hold or make stationary any moving parts that control the throttle by restricting movement. All these same
devices also could be used as part 100 to control throttle position by anyone skilled in the art with very little to have these devices activate the throttle linkage or through shaft to control air flow or any earlier mentioned means that can restrict air flow to the power plant.

The activation of any of these above mentioned parts will completely eliminate a driver from accelerating the vehicle by the regular accelerator controls. And also if cruise control is present it would be either electrically de-energized through the brake switch circuit with a series circuit relay or by using the same kind of series circuit relay to interrupt the main power supply to shut down the cruise control entirely. Also, the power train control module PCM could be directed to de-energize the cruise control on most all vehicles and/or simply be mechanically disengaged from the cruise control's capacity to accelerate the vehicle though interfering with any of the physical control mechanisms, i.e., linkages, cables cams, valves with the same modalities described for the standard acceleration and throttle system interruptions. This is the FIRST modality sequence to slow a vehicle down for either remote control or preprogrammed automated controls and it will be completely described and illustrated in this application, along with all the ways to SLOW and STOP a vehicle, as well as, secure a vehicle by either of the brake systems which are automated to be applied through an electrical current or signal from being sent from above referenced control systems termed as a PFN. There will also be other locking systems that keep the vehicle in a stationary position and/or also slow and stop the vehicle by engaging or disengaging drive train components electrically. And, of course, all these functions can be performed in real time with accountability through this technology's TRAC software.

The 200 series parts and/or innovative devices, in Figure 1 comprise the standard emergency and/or parking brake system, which when coupled to the 100 series parts will comprise a complete detainment and securing system - first slowing the vehicle by eliminating any acceleration through the (100 series parts) and then
implementing and applying the brake through the (200 series parts), bringing the slowing vehicle to a complete stop with the brake secured and applied so that the vehicle can not even coast or roll while unattended and/or under any improper control and/or unauthorized control. There will be additional drawings showing the circuitry and mechanical parts of all the 200 series parts and innovative devices.

However, at this time it is important to point out another uniqueness to this automated braking system and protocol, which will be incorporated in this automated series circuitry described for this brake application if so desired. It is that the brake will automatically be applied if the drivers seat switch reports no person present by opening a circuit and/or the driver's door and/or any door is opened while the wheel sensors and/or any motion sensing device is reporting vehicle movement and/or if the engine is running. A driver warning will also be given as is standard in many vehicles today, however, this technology is capable of providing this driver notification in verbal warnings, as well as, IP lights, LCD displays, buzzers and bells. It is also possible to activate these braking systems by the seat belt switch but it is possible a driver might just be readjusting the harness an falsely activate the warnings and brake slow down. The proper protocol or safe program for these and additional uses will take into consideration specific vehicle configurations and real life circumstances. Experimentation thus far for this protocol has demonstrated greater safety for the Off loading of passengers in the rear seat of the standard sedan, by preventing movement of the vehicle, while any door is open. Also, the car is immediately sent into emergency brake application mode if the driver or occupants are bailing out of the vehicle. This was designed to for the unsafe unattended auto theft scenario when the irresponsible thieves generally leave the stolen car running in drive as a mobile distraction to tie up police pursuit while they make a getaway on foot. With this technology's shut down protocol, when the thief bails the car stops, allowing the officers to mindfully pursue the culprits only. Once again, this protocol is accompanied with audio warnings and verbal warnings and hazard lights and information signs as well to inform law enforcement of the process. In most cases law enforcement will be knowledgeable of this protocol and be responsible for the activation of this shut down protocol command, whether it be initiated by the police or some cooperating commercial monitoring and remote control service.

The emergency Brake (200 series parts) are: part 200 displayed as a cable tension mechanism comprised of an inner and outer channel where the inner channel has a strip gear attached to it and meshes with a rotating gear either attached directly to a motor shaft or a gear transfer box as the systems mentioned earlier that is attached to the outer channel. With the rotation of the gear attached to the outer channel the inner channel will move back and forth as the rotating gear travels across the strip gear that is connected to the inner channel. When one of these channels is attached to part 207 the rear wheel parking bake cables and the other channel is attached in a fixed mount to the car chassis - when this mechanism is activated in this scenario it can either tense the cables applying the brake and/or relax the cables releasing the brake (for a motor application this would be accomplished by reversing the polarity on the motor and the same seat controls are used for this prototype).

For a solenoid application with just sliding guide channels this would be accomplished by energizing and/or de-energizing the solenoid and having spring tension to accomplish the reverse function. Of course, methods and parts to be decided by the specific vehicle and any leverage consideration to achieve this electrically energized mechanical activity. 201 is representative of either a hydraulic or an air and/or compressed gas driven piston system. Its ram and the cylinder base would be attached to the same attachments points as the part 200 strip gear channel tensing system which is also true for part 202 and 203 which all share piston configurations, but rely on different mechanisms and power sources to complete this task. That is why these parts are displayed in parallel in Fig 1. Only one of these parts would be necessary to complete this tension function of both rear brake cables in a simultaneous manner. This is a push/pull action.

It is to be noted that all these parts 200-203 could be designed to work in the 100 series part functions and to alter and/or effect changes to the cars throttling system as well. Presently, some air piston throttling is done in car racing sports with a compressed gas bottle to energize a piston that effects the throttle. It is conceivable to use these mechanisms reconfigured for these functions to control a vehicle and to restrict its use and/or remotely control its speed using these devices as actuators; and solenoid valve to electrically energize desired flow. It is equally important to remember that most all types of vehicles can utilize either this modality and/or one of
the other modalities detailed in this application to apply any of the cable brake systems on a vehicle and throughout all these application specific effected parts and their numbers will be named whereever readily known. However, the detailed modalities described herein and used are the uniqueness even without any detail with specific affected OEM parts and their numbers accompanying the drawings.

First, the 100 series systems will slow the vehicle and the 200 series will stop and secure the vehicle in a stationary position. Part 201 could receive its energy to function from either an emergency canister of a safe compressed gas as already mentioned, e.g., CO_{2} or dry air or its energy source could be provided by a small air compressor system like the ones used on cars that have air ride suspension systems for a softer and/or more responsive suspension, e.g., Olds Ninety-eight from the year circa 1987 to present. This is only meant as an example, any standard on-board compressor system could easily be regulated and electrically directed through 12 volt solenoid valves, i.e., Bellows corp style and Air equip. to complete these desired tasks. In fact, specific parts and part lines are only mentioned here to demonstrate the easy commercialization of these needed advancements through the readily available C.O.T.S. parts that can be easily obtained and reconfigured and combined to complete these unique functions, but this should in no way be considered the only way to complete these functions. These all can be reconfigured to work with remote control systems and/or be electrically controlled.

Part 201 if energized hydraulically could be served by the power steering pressure and/or an automatic transmission hydraulic pressure and, of course, regulated with pressure relief valves and electrically controlled valves, e.g., Vickers products, and/or the Waterman valves used in the industrial truck of fork lift industries which have 12 volt solenoids for the auto and applicable industries as well as many of the solenoid valves already in use in the auto industry for many of the transmission applications, etc. 201 could also be energized by the standard service brake system where through normal applications of the brakes an accumulator or blatter is pressurized to an adequate pressure to work the piston with specialized seals for brake systems and regulated by relief valves and controlled solenoid valves, i.e., Micro lock company line, also there are a lot of specialized racing companies that manufacture electric wheel locks energized on brake pressure.

201 could receive its service brake fluid pressure from a modified ball screw piston modulator valve like the ones used in the new GM cars to control brake fluid pressure to each wheel in their antilock brake system. This modulator valve is referenced in Figure 1 as part \#301 and the modification and all other uses as they apply to these innovations of this ball screw piston valve system will be described completely when part 301 is described. However, to develop the pressure to work the 201 piston and any other automated pressure needs that have not been created by the master cylinder an electronic micro lock would be placed between the valve and master cylinder so that when energized will block the return of brake fluid back to the master cylinders reserve as illustrated in Figure \#14 as part 397 which will allow the motor pack when energized to raise it respective pistons to compress the fluid in their cylinders. This is a fairly simple manufacturing change to an already existing part to achieve automated pressurization of the service brake system. There are other manufactures using brake modulators that can be converted to an electrically controlled automated brake pressure system to apply the brakes in a remote control scenario.

Another simplistic way to achieve this pressurization of the service brake is to install an automated master cylinder either incorporated through the power brake system and use either vacuum or hydraulic assist, i.e., power steering or transmission as is often done in the fork lift industry for power assisted braking and activate any of the actuator devices already described in the manner in which they are described, i.e., pistons, etc. The activation of the master cylinder and/or any additional automated parallel master cylinder installed in the circuit, specifically for any of these automated purposes, can also be achieved electrically, i.e., solenoids, electric cylinder, i.e., memory metal pistons, motor driven ball nuts ,ball screws gear drives or gear transfers, as well as, any worm drive affixed to the master cylinders piston plunger directly and/or through activating any of the pedal linkages and/or cables to compress the fluid in the cylinder chamber. All of these devices have been and will be completely described but are being referenced here as varied applications that can be employed to achieve electrically controlled push pull functions and later rotation functions for the automated steering and other rotation functions.

Part \#202 represents a motorized mechanical ball screw-nut-worm gear piston application for this cable tensing function there is many such devices and manufactures of these devices and systems. Many of these product lines can be found through companies like Invetech American Bearing corporation along with complete literature to there specifications and functions. Part 203 illustrates some new electric pistons sold through Tech magazine and Digit Key Corp.; both are large mail order houses for electronic components. These are memory metal pistons which are not practical at this point for the brake tensing function, but might be in the future. They are mentioned at this point for their pulling action and piston configuration. And they are mentioned here because they have other functions involving this invention, primarily to electronically controlled catches, locks, and/or latch releases for the PFN and secure containments where these pistons will operate access panels and doors electrically through command codes given and received by the inventions communication and/or control circuits. Part 204 pictures a gear nut drive mounted under a hand pull parking brake lever which pulls part \#208 which has a cable that is connected normally to the two rear wheel emergency brake cables where part \#200 through 203 are positioned and illustrated in Fig. 1. Any of the other devices displayed earlier, i.e, pistons, worm gears, ball screws, solenoids gear drives and motors can also be configured and ultimately displayed and described to complete this function as well as activate this lever from different angles and/or attachment locations and chassis or frame mounts making any such device that automates the manual function of the hand held lever parking brake lever within the nature and scope of the invention. The pedal stop gear nut numbered 103 in figure one and is completely detailed in figure 6 which is also the one used in the first prototypes for the hand lever.

Part 205 is shown to also connect to part \#208 and it is an illustration of the standard foot applied emergency brake that assembly that has been modified with the same strip gear tensing device depicted as part \#200. 205 's function would be to pull the pedal down to apply the brake and also to return the pull down arm to release the brake so that when a responsible operator releases the brake cable it will relax releasing the rear brakes, another push/pull function. It is this mechanism that has been chosen and will be used in the prototype and demonstration units to
commercialize these technologies. Once again all other earlier described systems can be most easily configured to achieve the automation of this standard foot pedal parking brake assembly. Also, the regular emergency brake ratch assemblies can be motorized with a gear drive and controlled electrically in the same manner. Note that in most vehicles only one of these innovations would be used with respect to how the OEM has set up their parking brake system. The OEM's set up would dictate the appropriate modality for the least expensive and most ideal configuration for these innovations to be employed.

The 200 series parts and innovations are responsible for continuing and controlling the slow down process and ultimately securing the vehicle in a stationary position. The 100 series parts and innovations eliminates any acceleration of the vehicle and begins the controlled slow down. It is the use of these two combined systems that the first prototypes and demo units will be constructed from. This will employ the 100 series device of the pedal stop ref \# part 103 in Figure 1 by using a typical seat control motor, drive a gear nut cable which in turn drives the gear nut to elevate a stop on a shaft off the floor board which is concealed under the carpet to stop the accelerator pedal in its highest position to keep the engine at an idle state. The elevation could be controlled to allow a specified certain capability to accelerate through the earlier mentioned control systems 900 series and onboard sensors on the vehicle, i.e., speed sensors 900 series parts, i.e., wheel and/or transmission. As referred to above the second stage 200 series will continue the slow down to a complete stop and secure state of the vehicle. This will be accomplished in the prototype and first demo units by applying the foot brake with a strip gear and inner and outer set of channels driven by another seat control motor and drive cable connected to a power transfer worm gear drive, i.e., like the one used in GM cars as a horizontal adjuster drive, in fact this whole mechanism, channels, slide buck bushings, cable drives, horizontal adjuster drive gear, are the C.O.T.S. parts for the first prototype. This and the nut drive that is the pedal stop for the accelerator are all C.O.T.S. parts and are used through out the auto industry as automated seat controls. However, when used for these unique uses to slow, guide and/or detain a vehicle either remotely, preprogrammed and/or by any series circuit relays activated by onboard switches and/or sensors to increase any safer operational level for vehicles
machines and equipment as well as, control any of their use for any financial economic and/or environmental reasons, are all considered unique as thoroughly detailed and made to all fall within the nature and scope of these innovative patent applications for accountable remote control and robotics. All these already existing C.O.T.S. parts and devices will be described, illustrated, identified and named in these applications. The C.O.T.S. approach has been done deliberately to more quickly deploy these systems to save lives today.

The 300 series parts and components involve the service brake system and how it could be used in a similar manner as the emergency brake to complete a controlled slow down to a stop and secure the vehicle in a brake applied stationary position. The advantages and disadvantages will be described and illustrated completely as well as, all the parts and innovative mechanisms in Figure 1 and subsequent drawings. Part \#300 illustrates the master cylinder and brake pedal location. This part and assembly has already been described in the automated state by using some of the 100 and 200 components and will subsequently be described in greater detail with drawings to illustrate and name the specific parts and innovations for each of those systems in this formal application. 301 was also mentioned earlier and is the brake modulator valve body that has 3 motors in a motor pack and is currently being installed on late model GM cars form 1997. This system will be modified in accompanying drawings to activate the service brake system without using the master brake cylinder pressure which is not the case in the present version of this ball screw 3 piston assembly.

Presently the valve only can utilize whatever pressure the master cylinder creates and will go into bypass mode at any pressures greater than what is generated by the pedal being applied. As for normal service situations this would remain the same, but in the event that the vehicle needed to be slowed down through the service brake's system the return bypass relief would be blocked as the ball screw pistons were activated and a regulated flow controlled through either a preprogrammed EBCM electronic brake control module for the current anti-lock system and/or channeled through another valve body and controlled by other control circuitry either on-board or added on as the devices described throughout these applications for the invention. After 301 the modulator valve, parts 302, 303, 304 and 305 illustrate the
brake fluid lines going to each wheel, respectively. 302 is the right front wheel brake line. 303 is the right rear wheel brake line. 304 is the left front wheel brake line, and 305 is the left rear wheel brake line. In reference to these brake lines if an add-on system was to be employed that created brake pressure either by accumulating pressure and storing that pressure in an accumulator or bladder or canister controlled by electric solenoid hydro-locks or if an additional automated master cylinder was employed and activated as described earlier the equalized pressurization of brake line part 303 and brake line part 305 would be the best mode for completing a safer controlled brake system application.

306 shows rear disk brakes. These disk brakes could be outfitted with an electrified magnet with an abrasive wear surface disk or plate that is supported from the caliper anchors and rides close to the disk and works by trying to hold the wheel disk fast and stop the wheel rotation. A C.O.T.S. substitute for this would be the electric trailer brakes set up made by Bendix, which would be configured to be equally effective on the rear two wheels rotation through matching the wheel rotation and individually energizing the braking magnets. Once again speed sensing devices on the car along with the OEM control and the invention's control circuits will be interfaced for the least expensive most effective modality for any specific vehicle and will be continually describe throughout these applications as specifically as possible. 307 the standard drum and brake shoe set up. These drum and shoe brakes could be modified to accept any of the earlier described mechanism to activate and expand the shoes out to the drum surface by, i.e., cams attached to gear drives, pistons, solenoids, as is done with electric trailer brakes and pulsed through a preprogrammed circuit that receives vehicle speed data and equates the on/off time or amount of current to be applied. These will also be completely described in subsequent drawings. They would be fix mounted on the backing plate dust cove on the stationary end and the actuator portion of any of these devices would be fixed to the emergency cam lever free to travel normally when not in the active state.

Electrical Vehicles and Machines

In this 300 series section, the invention foresees a use for different kinds of braking systems as a possibility to conserve weight in the emerging electric car industry. The use of a wheel generator attached to each wheel could accomplish a number of functions as its fields would be energized for a braking mode. First the inertia of the car would be slowed by the load it will take to generate electricity which would also charge any electrical power storage system, i.e., battery. As a result the distance an electrical vehicle can travel will be lengthened in an efficient use of the inertia from the car to generate and store additional electrical power. To take this one step further, it is well understood that DC electric motors can be electrically configured to generate electricity as well in a reverse function. So the advantage here is that the same drive motor could be configured to be part of a generating braking system through switching fields thereby creating a complete electrical drive train and braking system, which saves parts and weight with the switching controlled by the accelerator and brake pedals. This will allow for an easy conversion to automated and remote control scenarios electrically.

In an all-wheel-drive, four, two, three motors and the like could be employed. Four motors if each wheel is to be outfitted separately for some all-terrain applications with their own final drive gearing. It is also possible to use a three motor configuration if just the front two steer wheels are outfitted with motors to give drive traction and the rear two wheels would have posi-traction or a limited shift drive axle with both wheels powered through a standard differentials with a single motor attached to the input shaft of the differential. Just two motors could be employed if the motor drives were on the input shafts of the final differentials for the front and rear drives. For standard two-wheel-drive, just one motor that either drives through a differential for the front or rear set of wheels, but in this case and the last one mentioned. The two motor four-wheel-drive for the braking function properly the differential would have to be either a limited slip and/or fixed differential. For front wheel drive at least a limited slip to allow for tuning and in this case probably other braking systems described in the invention will be incorporated cost effectively to assure a smooth control in the braking process to accomplish the stop and secure
scenario and sophisticated remote control. Of course, any number of motors may be used, depending on how many wheel systems and power/torque is desired.

These standard final drives are detailed in this technology with electrical motors, and controls because, this is the evolution of the auto industry to utilize a drive by wire technology. So the control of these circuits and components was foreseen early on that will control speed, braking and steering will all fall with in the nature and scope of this technology to provide responsible and accountable remote control through any electrical and/or mechanical means. Also, with the electronic OEM wheel sensor controls and modules, e.g., electronic brake control module antilock system of today only the voltage considerations should be reconfigured and instead of activating any modulator valve it would just send its directions to an EVC module. An electric vehicle control module mini computer or controller that through silicon relays diode thyrister field weakening systems and field switching system would through its preprogrammed soft ware would direct the sending and retrieving of power discharged from the battery and generated from the vehicles inertia. This will save parts and conserve energy by the EVC1070 ability to direct current and the polarity from the motor generator switching circuit through readily available current sensing IC circuits available today. This EVC1070 control module will have this technology's PFN/TRAC system.

Many of the familiar standard driver controls of today, i.e., accelerator and brake pedals and steering wheel will be apart of the electric cars of tomorrow and other energy alternative vehicles. These innovations completely and fully describe and detailed in this application and the preceding ones can also be used on these new vehicles.

This next section, the 400 series, will presently be completely given extensive description and illustrations. Part 400 is the standard fuel pump assembly for today's vehicles. It comprises an electric fuel pump with a strainer and fuel level float sensor and in some cases a bypass valve. The control of the fuel pump is performed by controlling the power train control module circuit to the pump and not either though the interruption of the fuel pump relay and/or any other direct interruption of electrical power sources to the pump. There is in most cases two circuits that can supply power to the pump. While it has not been the intent to utilize the pump as a primary slow
down mechanism and/or the direction for the experimentation and development of this invention technologies, the invention does discuss in detail certain technology unique to controlling the fuel pump and pressure related devices and timing control devices in a fuel injection system and throttle body injection system in a safe manner and presently claims them as. This filing of the invention's technology concerning the control of the fuel pump that was developed through the testing of other unique circuits and devices that interface with an OEM's electric pump and the vehicles onboard control systems and which are effectively used to slow and stop the engine are going to be described completely. These will be shown to do so in a unique way to anyone skilled in the art. These unique innovative methods are completely described and will be forthcoming.

This invention's unique process allows the interruption of the fuel pump and/or injectors without running any specific separate engine timing software program that times the injectors to achieve the smooth slow down of the vehicle. In one modality it employs the above-mentioned 1000 series trickster circuits to control the fuel and spark timing through simple inexpensive relay controlled pre-adjusted resistors and/or preset pulse generating IC chips to send the desired electrical signal from an interrupted sensor to trick the OEM electronic module system. But makes no changes to its hardware and software, i.e., power train control module, injector control module theft deterrent module, and the ignition module. The desired signal is determined by taking a reading of a sensor in the RPM and RUN state desired. Then adjust the variable resistors to a multi-meter readings for analog voltage and/or tune the pulse and/or width of the signal with an oscilloscope for any digital data streams to the desired respective frequency or voltage level. The resistor or chip is wired most generally to a double pole double throw relay, that either gives the OEM sensors signal for normal operation or disconnects the OEM sensor and sends the trickster signal that makes the module software adjust to a predetermined desired level.

The sensor circuits interrupted most generally for this slow down process and specifically in this modality are shown in Figure 1 as 900 series part locations and are normally OEM sensors. These sensors will be detailed later along with circuit designs displayed so presently they will only be named and referenced to Figure 1 for locating their function and purpose. 920 is the throttle position sensor that gives a electrical
signal data as to the aperture of the throttle valve to the power train control module and ignition module for the purpose to adjust the mixture of fuel. 921 is MAF mass Air Flow sensor most time located in the air horn and not appearing in Figure 1, but in subsequent drawing \#11 part 142 it also provides information to the PCM for fuel and emissions controls. 905 represents the camshaft sensor and also sends its signal to the ignition module and the injection control module. 906 is a distributor induction pick up and also is used to control engine timing function ignition and fuel. 904 is a standard fly wheel sensing design used frequently on Jeeps 907 is a harmonic balancer sensor once again both of these sensors are used for engine timing. In most cases, only two of these sensors would require the 1000 series trickster circuits to achieve the correct electrical setting to achieve the slow down. This has been coupled to the earlier fuel valve system 403 or any of the unique ways to interrupt fuel flow by tricking the ICM and the PCM to send less fuel by the 1000 series trickster signals. As an augmentation to this system there can be an automated gate valve controlled by solenoid or servo motors and/or any of the actuating devices already referenced either mounted as an addition to the front of the air horn or anywhere in the air horns intake passage to gate and thereby restrict the cubic feet of air to a preprogram level that is electrically controlled by the invention and activated in conjunction with the 1000 series trickster circuits to control the spark and/or fuel to keep a balance mixture with the restricted air flow. Alternatively, any of the above described air flow controls effecting the OEM throttle could be employed.

In continuing to describe Figure 1, 401 is the fuel tank, 402 the fuel supply line, 403 depicts an in-house innovative accessory an earlier design of a valve which has already been explained and described, and therefore, will only be referred to as it pertains to interface with other new innovations or as might be necessary to clarify its uniqueness from any other related patents granted and/or any pending applications making claims involving fuel system parts. 404 is the injector control module and will be discussed and how this invention if employed uniquely alters the modules functions and injection system. 405 in the front wheel drive motor location is the injector rail. 407 in the rear drive motor configuration is an injector of which there is usually 4,6 or 8 to equal the number of cylinders. 408 is the fuel regulator on the return line to the tank to maintain adequate fuel pressure. Another unique device that
has been developed in the testing and experimentation of the fuel valve part 403 is an automated fuel regulator that, through an electronic solenoid or motor or pressure activated, can be a variable relief valve that when it is activated and deactivated can dump or increase the fuel rail pressure that result in slowing the vehicle down. Experimental units have been used with the earlier discussed add-on air horn gate valve to better balance air fuel mixture for yet another smooth slow down, and/or in other device couplings used with the 1000 series circuit to augment timing irregularities for yet another smooth slow down. This automated and/or variable regulator will be illustrated and described in further detail as a possible augmentation for some vehicles to achieve a smooth slow down.

The 500 series innovations will be parts and devices that control transmission and/or transaxle (i.e., front wheel drive vehicles) functions that can first slow a vehicle down and ultimately engage the park pin through solenoids and hydraulic dump valves for hydromatic/hydraulic/fluid drive and/or hydrostatic and/or automatic transmission. Also, this section will describe how a standard or manual transmission with a hydraulic clutch, and/or a mechanical clutch assembly with cables and/or linkage can be disengaged and engaged to first slow a vehicle and stop its motion if detected by any vehicle wheel and/or transmission speed sensor. The complete slow down and stationary stop protocol of this technology will be completed with the motor shut down and the clutch will be engaged to use the motor to brake the vehicle. The transmission is locked in gear from a solenoid latch which is activated, when the clutch was disengaged to slow the vehicle. So now when the clutch is re-engaged after the motor has been disabled at a creep speed it will hold the vehicle in a stationary position. With the automated engaging of the clutch in most all manual transmissions, today cars will be prevent from re-cranking their starter motor, because of the safety switch on the clutch which will be operated in the appropriate manner physically or simulated with a trickster circuit from this technologies of trickster circuits 1000 series.

These devices and innovations are the same design as those used for the 300 series service brake system to activate and/or create brake pressure as these hydraulic clutch mechanisms usually use brake fluid. However, if they are hydraulically assisted as is the case in some instances the earlier hydraulic device actuators and
electronic controls would be employed. If the clutch is a mechanical either cable or linkage controlled device the 100 and 200 seat controls and other earlier described actuator devices would be employed. For other vehicles already using electronic signals to control shifting and/or transmission functions through OEM solenoids and/or servo motors. These signals would be interrupted and/or augmented through either any on-board control module PCM and/or any add-on control circuitry and preprogrammed software already discussed extensively but will be further illustrated and explained as to the transmission function to slow and to stop a vehicle.

Slip Disk Drive Train Interrupter

Part 500 represents a solenoid or servo motor to automate the functions on a transmission in fig 1.501 depicts another innovation that will for the most part be comprised of C.O.T.S. parts. It is an electromagnetic surface magnet grooved clutch disc that is attached to the fly wheel which is bolted to the crank shaft of the motor. The motor flange housing that mates with the bell housing has brush paws that make two circular rotation contacts on an separated circuit insulated disc that is attached to flywheel with the magnetic clutch device so positioned so that it can easily be repaired through standard access ports for a part failure and/or bolts can be installed to return the vehicle to an attached flywheel to torque converter configurations for any reason. The torque converter has bolted to it a flexplate and/or an acceptor plate with a matching grooved surface to accept the electromagnetic clutch disc and engage the torque converter transmission hydraulic pump, and input shaft to the transmission. The earlier mentioned brush paws would be connected to ground on one brush paw and an interruptible 12 volt service from this inventions control circuitry would be supplied to the other brush paw which would energize the electromagnet clutch disk and drive it with the rest of the above-mentioned powertrain. Other applications are for fly wheel inertia vehicles and the electric wheel technology not just for remote control function but to better control the transfer of energy to the wheels and/or other industrial applications. Racing applications for quicker starts and definitely in engine repair as to easing the extraction and installation labor in removing all the standard torque convert bolts from the flex plate, for this system. There will be complete drawings and descriptions of parts and innovative design modifications. This also is a
unique device for other machinery and equipment to disengage any power transfer system.

Part 600 is an illustration of add-on brake system to slow and lock up the drive shaft. This configuration balances the internal drum to function well at the RPMs that the automobile requires. However, this drawing is another ideal place to show the position of such a standard braking device which is extensively used in industrial settings such as heavy equipment fork lifts, and even stationary machinery that have shaft to gear and cam drives, i.e., presses, paper cutters HI Die's and metal stamp machinery. Part 601 is a more practical application of an add-on drive shaft brake system and is used by some truck manufacturer and especially in the past. It is a disc that is attached to the drive shaft which is much easier to balance for high revolutions with the caliper mounted to the frame or more preferably the differential to ride more consistently with the suspension and stay more true to the disk and the shaft it is mounted on. However, the best location on an automobile and/or truck would be close to a center shaft and bearing and/or fixed rear mount transmission. Once again this braking device gains most of its uses in the heavy equipment, material handling and industrial settings. Because these brake devices share many of the mechanical and hydraulic components as the service and parking brake systems already described they too would use the 100 and 200 series actuating mechanism with the control circuitry that has been explained.

The 700 series involves a detailed description and development of remote control steering that will be commercialized in a specific manner and over a period of time. These device innovations to be automated for remote and preprogrammed controlled steering will be discussed in the progression that they are to be commercialized in the safest manner possible especially in the automobile industry, first PASSS, then PAGSSS, then robotics driving. There is a great need to control vehicles that are operating in a dangerous manner and along with slowing and stopping them an automated guidance system can increased some margin of safety to these already destructive situations in a lot of circumstances.

Along with the automotive applications some of the other types of power steering used industrially that will be automated will be describe in figure one briefly and covered in more detail with illustrations in the formal application. Presently in
figure one these elements will be named and described clearly enough that anyone skilled in the art can easily visualize and create these innovations for the most part from the C.O.T.S. parts already in service in different applications today as described presently in the following modalities.

700 series steering systems

Because of the many different steering systems, manual and power steering for vehicles and equipment, a little time is going to be taken presently in this introduction (Figure 1) to detail the steering systems that will be in this formal application. And all the provisional and experimental devices and prototypes will be given some detail.

Part 700 represents a standard pinion, or a steering gear. It also could be a standard orbital valve that guides the hydraulic fluid to one side of the cylinder to dive a ram with a center mounted piston in a desired direction to steer the wheels, i.e., forklift industry and highlifts. Or, once again, as a pinion steer gear would drive the rack in the cylinder mechanically, while directing the fluid flow to power assist the piston rack in moving the tie rod ends to steer the wheels. In the industrial truck and forklift industry the orbital valve or the hydraulic control flow assist valve could be part of a steering wheel gear box assembly like 703 a power steering gear box, i.e., Saginaw ball screw steer gear box with a directional valve and is hosed to an assist cylinder to aid in a mechanical steering system. 701 represents a piston. Also, 703 is a power steering box that is assisted hydraulically.

However, in the normal automotive rack and pinion steering the steering gear will be all one piece with the rack within the cylinder and it is this system that will be most extensively be detailed and illustrated to show how automated steering can most easily be achieved not so much by altering the OEM's systems but by adding the automated controls to them. This is why some detail is given to describe the operation of the systems they are connected to. So, throughout this application extensive descriptions on how all the other steering systems will be automated will be described in as much detail as possible.

These 700 parts and locations named and illustrated are where the innovative prototypes are designed to be attached. The prototypes will provide remote and preprogram sensor control of the rack and pinion, steering gear, steer shaft, any
linkage, steering wheel, and/or steer column assembly with some or all of the following parts, as they are present, altered or modified and/or innovatively provided for any and all the vehicles and equipment for remote guidance through this technology. These areas for automation will be described in detail. The first modality chosen by the invention involves the use of the 100-200 series seat controls cable drive motor electrically connected to a controlled reversing circuit as displayed in this application similar to the ones employed for the accelerator stop and the emergency brake actuator mechanisms. Which in turn is controlled by either a 900 series onboard controller (ESCM) through any controller, computer system, or comparable similar control technology, which can either be interfaced with this invention's processor circuits, computers, their sensors arrays, i.e, distance and camera communications, i.e., and control relays.

The 1000 series through 1200 series interface of these innovations will all energize the motor in either direction, with varying degrees of sophistication and responsibility. The 900-1000-1100-1200 series parts and systems will be discussed in full and in sequence later in this application. Only the vehicle steering automation will be discussed presently. However, all of these series will ultimately become a part of an intricate automated steering system. With the reversing of the motor being addressed completely in Figure 4 and the motor assembly and the cable drive changing direction through electrical control circuits it is necessary to discuss an experimental innovation that has shown some promise for automated steering applications. It utilizes the same seat control device the emergency brake pedal uses the right angle horizontal adjuster drive. This drive has been mounted on the steering gear housing and/or supported on a bracket from the steering gear rack mount bolt so that it is in alignment with an add on gear 712 figure 23 on the stub shaft of the pinion gear. There also is a pivot end mount on the horizontal gear activated by a solenoid to tilt the gear down and mesh it with 712 . Otherwise, the stub shaft will free wheel, i.e., normal steering There also is some experimental work with small Air Condition system of electromagnetic clutches attached to a stub shaft with the inventions gear a variation of 712 that meshes with the horizontal drive being held in contact with the electric clutch surface, so when energized and pulled away from the inventions splined slip sleeve or collar which is connected to the steer shaft column linkage with
a special column mount. All variations of the 712 part will be fully detailed and drawn in the formal application. Both these systems will work in automated steering applications.

A second modality to automate the standard rack and pinion power steering is to access any section of the steering wheel shaft and mount a gear or a sprocket or a pulley around its circumference and connected to a drive that would either mesh or be chain linked or even belt driven to the same or similar type of drive motor assembly, i.e., seat controls/horizontal adjuster drive with electric clutch, as described above and controlled in the same manner, and/or instead of a chain a cogged belt or v-belt with a shive mechanism or a locking cogged hub that is solenoid activated or electromagnetically locked in, e.g., electric clutch which gives control of the engagement as described and employed above already. There is another completely different steering modality.

This third modality for automated steering involves the hydraulic piston system of steering, and in this case the hydraulic delivery lines that activate the directional throw of the center attached piston to the ram would have their fluid flow controlled through a electronic solenoid shuttle valve circuit that is energized only for remote functions through a series of Waterman solenoid control valves first to activate the remote control circuit and also to control the directions. The shuttle valve could be a dual-sided spindle type valve that would control the flow through the orifice by degrees, this function could also be activated by a ball screw piston drive that would pass thorough the center of the double pointed piston to control the flow to each side of the piston. Also these types of control valve systems will work to turn directionally any hydraulic motor system to drive a strip gear in either direction. Most of these hydraulic systems are used in industrial slow speed applications like, e.g., lift trucks, hi lifts articulating loaders. All these parts and components will be detailed itemized and completely described and for the most part are comprised of C.O.T.S. parts for the initial offerings and prototypes.

The 800 series parts are various modalities to disengage rear ends and/or differentials, transaxle final drives, and rear axles to deactivate an automobile from accelerating through the final transfer of power to the wheels. And, then, secondly lock up the differential and/or final drive systems after the vehicle has been stopped
and the motor has been disabled so as to secure the vehicle in a stationary state. 900 series parts-- 916-17-18-19 and/or 908 would serve as the monitoring devices, i.e., these standard speed sensors will report on the stopped and/or slowing condition so that the stopped state could be achieved and secured. The first modality for this altered differential would be to have a internally splined slip collar that is circumferential grooved to accept a fork lever arm that is either connected to an internal solenoid or servo motor or has a sealed shaft to an outside actuator mounted to the housing like the high low differential shifters on many trucks today. Another embodiment of this modality would be to have an engaging disc that normally road with the Bull gear and was connected to the planetary assembly which transferred the energy to the axles either by a solenoid that shifted out of the splined center hub of the receiving bull gear or servo motor and/or electromagnetic clutch, or in this case interlock. 801 displays the solenoid and/or servo motor external placements. As for the internal placements and types they will be fully describe and detailed as will these shown in figure one. The final modality 802 involves a slip sleeve either to an axle and/or in any wheel hub that will allow one wheel to free wheel as if a axle has been broken and can not torque against the other to propel the car in either direction. Once again these devices would be controlled electrically but could also be actuated hydraulically or any of the ways described extensively throughout this invention.

Introduction to the control devices, on and off the vehicle, include some which are already existing prototypes with their accompanying drawings and others will be described in their experimental and present design state. Also as they are described they will be explained as to how they are planned to be commercialized to maintain the safest and efficient marketing of these innovative devices to automate vehicle control. These devices described within this application or ones very close to them will most probably be the automated devices that remote control and computer systems will be governing to some degree everyday from the present long into the future. That is why this technology's product developments have been designed and developed first from this primary remote control device application and will be expanded to encompass every needed remote actuator to accountably control humanities equipment worldwide, from the PFN through TRAC software, a programmable and modular software system.

Those functions by onboard robotic systems and interactive highways, commercial and, governmental and/or industrial system, computers will complete the ultimate robotic interface of artificial intelligence for societies machine use through controllable machine messaging as has been detailed throughout all the related patents. This will involve all the series devices from 900-1200 electrically and electronically hardware, hardware imbedded software firmware a, software and encrypted systems. For this reason it is necessary to discuss the remote control devices and systems that will be utilized by law enforcement to control most especially the steering function but will also allow them to detain a vehicle through the slow, shut down, stop and secure device; protocols PASSS and PAGSSS, through all the specialized communication and control systems that will direct these automated controls of a vehicle, i.e., laser guided modulate signals, microwaves, receivers and transmitters set to respond to specific police controlled frequencies and provide instant vehicle identity (ESN), so that a vehicle can be singled out specifically, that is speeding or more importantly requiring immediate remote deactivation for public safety concerns.

In Figure 1, 902 is a new innovation the electronic control steering module (ECSM), part of PAGSSS program. This module will receive its data from the computer which relies on the video systems and distance sensors on-board to give eyes to the vehicles guidance system. The electronic steering module will receive some of its sensor data from the EBCM the electronic brake module as to the coordination of controlled braking and the effortless control steering in GM cars. A Pintle valve in the power steering pump and controlled by the OEM EBCM relying on the steering wheel sensor data retrieved and processed to control ease of steering vs road sensitivity at higher speeds will be interfaced with the new innovative ESCM which will control the pindel for pressure and a second control valve system, e.g., electro solenoid Waterman valve will, control the hydraulic flow and direct it through electrical circuitry to energize either the oil flow to energize either a piston direction or hydraulic motors. ESCM (electronic steering control module) also can serve as a two way switch to direct the seat control type motors to rotate the steer shift linkage and stub shaft parts to steer left and right for the rack and pinion steering, modality, etc.

The 909 sensor array multi-antenna and target system is coupled to long and short range transceivers or crystals in the 900 control center. These transceivers will be completely described in the 1000 series devices. It is these devices coupled with police operated transmitters with special security measures that will allow an officer to point and stop a specific vehicle and/or control its automated systems. The law enforcement officer using this device will have his badge number or Social Security Number encrypted as part of the signal given to detain and/or control a citizens vehicle, which will be recorded in the inventions permanent record device as well as any accumulated sensor data from 909 and in the cabin audio video recorded data regarding the incident. The hand held device probably later consolidated as part of a radar device will be able to verify the officers identity before a chip inside the device will allow the device to work in stopping a vehicle, i.e., Lockheed Martin fingerprint system or the new system that can identify a gun owner and only let that person discharge the weapon with the needed accompanying identity wrist band, etc. All the possible identifying systems that prove good C.O.T.S. candidates for this purpose; and the stated purposes of the invention, i.e., earlier filings and driver identity systems, will be named and described as to how they can be utilized. Also earlier in prior applications interactive highway systems and commercial servers can be used to confirm logged on officers in a particular patrol area to authenticate an officer for the worried motorist through the various communication devices on-board their vehicle and these interfaced systems.

The 900 series is all the OEM's electrical components and others manufacture's add-ons along with this technology's peripheral sensing and control circuits to interface everything into accountable remote control systems. They are the primary electrical components and major computer controls, including the communications and GPS components, record keeping devices and sensors, all initially as C.O.T.S. innovations, which have always been a claim of this technology as well as, any type of physical secure interfacing for these devices and components on either a host vehicle or any piece of machinery or equipment. These initial 900 series C.O.T.S. products are thoroughly interfaced through many innovative 1000 series circuits and control systems, which are uniquely evolved to consolidated and integrate into a multitasking solid state system that will also benefit from this
technology's claim of physical and legal protection with a secure environmental encasement to meet society's need and requirements to provide accountable data storage in the remote control scenarios and to protect other vital and expensive electrical components in a PFN containment. This claim for accountability and protected circuits including any and all of the necessary types of record keeping devices/systems and identification equipment/systems detailed is considered to be of a great and unique societal importance and value for the responsible development of automated remote control systems and robotics, along with the TRAC system, to authorize and authenticate commands and activities. And has been so stated as one of three most important and unique properties of this technology, with special emphasis and recognition here on any protected record keeping, locally and remotely, for society's accountability as unique to this technology. However, any and all attempts to protect any circuits to provide accountable and/or responsible remote control no matter what the specific circuit design and/or application and/or function should all be considered to fall with in the nature and scope claim of this technology.

It is immediately apparent that this technology has been expressly and inclusively designed to easily couple and provide technical interfaces and cooperative commercial settings to quickly and efficiently support any existing manufacture efforts in all of the effected industries with valuable commercial technology, plus a real responsible direction and insight to achieve accountable and acceptable automation and remote control for mans machines around the world. While, these control, communication and record keeping innovations are discussed and detailed at some length in this application the real focus of this filling is to detail the actuating devices on the host machinery. And also, to detail the on-board accountable sensing devices and systems that will report back to these above mentioned control, communication and data storage circuits and devices with data about the responsive actions from any of the remote and/or automated monitored activities that are a result of commands given and/or received from these same circuits and devices contained within a PFN as the most ideal setting.

Part 900 is on the vehicle command center or Protected Primary Focal Node a (PFN) which will ultimately be a protected and secured in, for example, a single location housing, but presently will also take the form of a series of equipment
interfaces possibly housed in a number of locations on the vehicle to best combine all the present OEM, and C.O.T.S. devices, (some of these are protected and shielded and some are not, however, the accountable recording devices will all be protected from environmental damage, and tampering, as well as the accomanying TRAC software). All the OEM control systems, communication systems, geographic location systems, and trouble code data storage systems, will be interfaced with this technology's control devices, communication systems and sophisticated data storage to provide and fulfill the inventions stated purpose and capabilities, which is to be a sophisticated and accountable record keeping system capable of recording and reporting back on all vehicle operation, operator activities, and environmental data recovered, as well as, directly control the vehicle functions through these presently described automated devices, innovations and adaptive modalities of C.O.T.S. and products and OEM equipment.

920 is the powertrain control module. 940 through 959 is this technology's computers, programmable controllers and/or simple control circuits (also detailed in patent applications PCT/US97/21516, U.S. Provisional 60/122,108 and PCT/US99/00919) to control all the desired automated functions in this application. The reason the invention has 19 numbers allotted to its own control circuits is because it will have many various designs for all the specific vehicles and/or equipment as all these systems interface, and merge with. However, basically there is only 2 levels of computers. The 940 series and the advanced 950 series. 940 is the first inexpensive (Parallax) Stamp I, Stamp II and the 188 euro-board 100 programmable controller and/or computers for the present prototypes of this accountable remote-control invention. These have been planned and configured to evolve as either a series of stamp computers to complete all the necessary functions for most any vehicle automation and communication routing, as well as, data storage routing desired. Of course, other computers may be used.

Most likely, the invention will seek to consolidate as much as possible through 949 into a more sophisticated mini computer like the 188 mentioned earlier, that can be tailored for the desired functions through a limited amount of hardware connections and software programs, so as to consolidated all the functions more efficiently. 950 is the advanced total equipment computer and/or programmable
controller (with 386, 486' and/or Pentium processors on 100 euro-cards with plug in edge connectors that can run all the robotics and accessory functions driven by other plug in cards that function also function as communication modems and that can incorporate all the crucial OEM control software or can even replace the OEM circuits as well as, handle all radio and cellular phone interfaces and modems (with the appropriate firmware and software to even function as a mobile work station PC for the automated commuter). All will run TRACT software to be made part of any accountable process, as determined by application specific standards.

With respect to 920 , Philips Corporation in Europe is one of many companies developing sophisticated automotive electronic controls to handle a lot of these accessory duties. There are many other manufacturers in the electronics and automotive industry that are doing the same. However, this technology has been designed to do all these functions in different and unique inexpensive ways to drive this development with real responsible commercial direction and to combine any and all existing manufacture efforts, as well as, enhance any and all of them through this technology's vast versatility. This has been done to insure the most complete and accountable development in all the remote control fields for all types of equipment including all forms of machine messaging, communications, control circuits and computer networks as well as all the detailed peripheral devices. 951 personal computers (laptops, organizers and notebooks) 952 and 953 voice recording devices 954 equipment data record device. 954 video record \log inside cabin 955 outside video record $\log 956$, i.e., with all records burned into condensed or compressed on Disks or comparable storage system or held in RAM chips and/or a hard drive device.

Either and/or all the systems will be able to preserve and protect software determined relevant as application specific data for authorized retrieval from a physical and legally protected area. Even though the functions are given different numbers here for easier understanding; the data will be stored primarily in two forms on any vehicle and/or piece of equipment. (a temporary real time limited storage and a application specific permanent storage that will have a redundant off-board storage by being reported to at least one remote location in any of the two way communication systems. All these devices to 955 will ultimately be part of the 950 series vehicle computer with the capability to support keyboard operations, along with this
technology's steering wheel mouse control device. Also, all systems will be voice recognition and command capable with basic learned operator commands (in any appropriate language). The system will also provide dash displays and other cabin displays including being capable to support the electrical and computer service for a hologram wind shield or screen display, i.e., like the Pontiac Grand Prix for partially and fully automated travel and to provide a work station if so desired. Drag, point and speak and other programs are detailed in the PCT/US99/00919, however, all these systems will be detailed more in this application and in all the other related applications. 960 has been reserved as an interim area to cover C.O.T.S. record storage and communication systems. GPS is included here as a data receiving communication system and the computer systems will ultimately run the software right on-board through programs like Delorme's "Street Atlas" rather than rely on a gateway control computer link like that used by many of the car manufactures monitoring and service programs (e.g., GM's "On Star' program). However, this technology can marry well with any of these monitoring systems and still offer more accountable aggressive remote control enhancements to their existing systems. All these systems will ultimately be consolidated into this technology's 950 Equipment Computer Control Communication and Records unit. This 950° ECCCR" sophisticated unit will contain the electrical guts for the most desirable protected PFN components and will have universally compatible hardware and TRAC software to create the brains of the invention in one location on each piece of automated equipment. It will be accompanied with all the described sensors and communications systems, as well as, a sensing system for these described automated motorized innovations.

With the 950 control circuits combined together with this patent application's electrical actuators a system, similar to the neuro-muscular functions in humans, can be created for most all of machine use, and it will be made completely accountable for robotics through a machine messaging network that can perform and review performance responsibly for any and all desired remote and automated functions, through TRAC system software. It is a primary goal of this technology to provide a secure electrical interface platform and containment for accountable remote-control and to established it and certify it as a standard for all the industries. So that all of its
designs and uses can be regulated and written to by the appropriate governing agencies, institutions, industry associations and/organizations when they are developing their rules, laws and regulations that will control remote control and robotics activities for humanity. This is the purpose of the PFN and a major goal of this technology.

The 960 numbers have also been issued to more easily describe the 1000 series trickster circuits and specifically designed connectors and fasteners to interface these computers and all the other systems till they evolve into one hardware device and one system with more consolidated and compatible TRAC software for the 950 ECCCR. The earlier 900 numbers will be kept for all sensors and the normal auto electric devices generally in use on most all of the equipment or vehicles today. 920, the powertrain control module and/or vehicle PC or computer, ideally and ultimately be protected in the secure box or PFN and so legislated as a standard by congress with regulations from DOT, DOD, Highway Safety Commission, Law Enforcement (justice department and insurance concerns and companies, as well as, to maintain fair trade and commerce for equipment and vehicles for the life and use of these machines in society). And every effort by this technology will be made to coordinate with any standards effort for these merging technologies (i.e. control circuits, communication, data storage, environmental monitoring, remote control device for vehicles and machinery etc.) with their manufactures to commercialize the best product offerings for the public, while helping to structure their safe and legal use.

The 900 thru the 1200 series starts with the 900 series onboard devices and control systems to achieve a full interface with the off-board 1100 and 1200 control, monitoring and service systems, as referred to in U.S. Provisional patent application No. 60/032,217. The 100-900 on-board automated systems and the OEM's electrical components interfaced with all the inventions, sensors, recorders control systems and communication links will form this most ideal focal node and mobile interface platform for this technology to perform its function. This PFN function was described at some length to show the full scope of these innovations as needed elements to automate humanities machinery for responsible remote control and robotics.

The 909 sensor array assembly that is responsible for gathering a lot of video data, for recording and also responsible for retrieving distance data and receiving
communication data is going to serve as an introduction to the 1000-1200 series devices and systems. This introduction is meant to accomplish two things: first, to show how these automated devices in this application will evolve in their usage with this total technology invention, and second, to give a collage description of how the devices will all interface to achieve the stated purposes of the invention and the full potential of these new innovations. This is by no means a minimal effort. It will be very descriptive and easy for one skilled in the various arts to see that the interfacing of these C.O.T.S. systems are well with in the grasp of the invention's technology and its capability and design to develop these systems commercially.

The 909 has an inexpensive camera, 910 which will be continually running, while the car is in motion. There is also auto run software to operate the camera when the vehicle is in a parked mode which will be detailed later ("Spider Eyes"). However, normal monitoring software in the invention's computer will pick up input from the distance sensors part \#911 and direct external cameras to snap picture of impending contact and record data that is valued by the inventions software (application specific for a crash or traffic altercation, etc.). The computer will have certain powers to discriminate on the storage of records to save space as defined by application specific software. It will also imprint on any valued record the video camera ID location F_R_B_L_ which will identify the recorded view from the front, right side, back, and left side respectively thereby displaying on the video record the moment of impact and any other vehicle image as well as the angle of impact. There is also another video or digital camera system detailed in earlier related applications with only one roof mounted camera location. This drawing shows four locations for the 909 sensor array system, however not this many cameras are necessary at first or ever. Figure 1 is descriptive of the views not the specific camera locations, however, permanent distance sensors, and the short range communication link or police targets 913 and interactive highway communication or combined antenna systems 912 also have fixed mounted locations.

For example, one modality needs only one standard (monitor or Cp) camera to be mounted on the roof (mentioned earlier). This camera is placed in an aerodynamic one-way transparent but stealthfully concealed dome, which allows it to rotate invisibly on a position plate outfitted with a contact arm that rides on an accessible
variable resistor coil's windings to sense different current levels or on a sensing disk that will send a different digital electric signal that the control computer can delineate as a specific camera position. The first design is analog but the second is a digital system that can do this function as well. The computer then correlates the signal sent as a set degree of vehicle view where the camera is pointed to by comparing the distance sensors electrical signals showing the closest object and fastest moving object approaching the vehicle, which are optionally prioritized by a compare list in the application specific computer software for, e.g., auto altercations, etc. The computer then electrically operates by servo motors the camera to view this incident while recording the degree angle of impending contact. 0 angle being relative to the vehicle which will always be dead ahead or pointing to the front, perpendicular right 90 degrees, directly behind 180 , and directly left 270 degrees as reference. Other reference angles may also be used.

As mentioned earlier, this data is processed through a compare list function in the TRAC and MASMP software from the position disks electrical signal as it correlates to increments of a full 360 degree circle sending different electrical signals (levels of voltage or digital pulses) as it is guided by the distance sensor signal and compared by the computer software. The more sophisticated the computer, the longer the software compare list and the more discriminatory and efficient the camera angle views and the speed they are run. The computer will record, optionally, in snapshot mode to save storage space or record in real time video movement with the computer's software determining which mode is required for the record and/or by the capability of the system on-board. Of course, recorded impacts will be prioritized by any software as reported by crash deployed protection devices or specific sensors for surveillance for the purpose to best record as long as possible all the contacts and preserve them in the inventions protected storage area, all managed by TRAC software.

The invention will employ the C.O.T.S. devices presently available, i.e., the many automated camera systems, and computer monitoring programs used for surveillance and seek to incorporate and interface with them and then consolidate and sophisticate these systems as this inventions unique use and function for these devices are developed into the most efficient and inexpensive system for the public. Also the invention will seek to combine the emergency 911 system through its
telecommunications and police radio frequency companies like LoJack, On Star, and all the other supply line law enforcement suppliers with their electronic components into using the protected containment and unique interfaces to organize and combine, as well as create a mobile vehicle platform that can fully service the public without over duplicating functions and creating more unnecessary equipment cost for the providers, servers, and the individual public.

These records will be maintained until they are removed or downloaded by the proper authorization (part of TRAC protocol) and will trip a trouble code to show their presence in the PCM module or in any other appropriate control circuitry onboard and energize a light on the drivers instrument panel as well as either energize a small colored light in the exterior license plate areas and/or ultimately send a short range RF signal that is received by area police receiving nodes or interactive highway systems that might be called to respond by sending services to an accident scene or provide law enforcement. The RF signal (possibly a Lojack device or cell modem dialer) to a 911 node or non emergency police phone node a function determined by the invention software determining impact or reason for the transmission. Any communication will also give the vehicles electronic serial number modulated with it, i.e., same as a VIN \# all vehicles are given through government guidelines and correlates to any specific vehicle storing possibly related records. This signal could also be retrieved by any interactive highway system or off-board monitoring service that can store for the authorities in a buffer for later review if more information is required to analyze an incident, then clear the vehicle TC (trouble code) with the information saved either in a remote location or physically recovered in a portable data storage system, all managed by the TRAC software, programs and protocols. The 1000 series on-board communications and interfaces will have a section that completely describes the racking or stacking of transmitting and receiving devices along with the refined PFN product development that combines a universal amplifying system, as well as, a combined antenna system to consolidate, conceal and save space. However once again the C.O.T.S. systems will also be described and how they will be interface and connected at varying degrees and diversity which is an advantage in the C.O.T.S. modalities, but normally means a trade off for space and time of use for these assorted devices. C.O.T.S. systems are also good for building a vehicle or
machine system incrementally for specialty needs, which in some cases might be the correct choice economically and especially for retrofitting older equipment.

1100 series is basically the combination of the smart car devices for automated and remote control of a vehicle to interface with and communicate with other vehicles and the interactive highway's. The vehicles will be able to communicate with the Interactive highway control center through the specially protected and regulated PFN's or areas which will house at least some form of recording equipment and monitoring equipment to make all these automated devices and control devices as accountable as any driver must be for any control actions, when either any onboard and off-board control devices perform, automated vehicular control. Because this is ever so important as humanity computerizes its vehicular traffic patterns and controls that movement through these computer systems and remote control devices to achieve fully automated robotics travel as detailed in figures 27 and 28 of this application as well as all the related patent applications.

With the introduction for the 1100 transportation and 1200 Public service Net or Web system to describe the 910 on-board camera system and its alternative public functions and uses, the present invention can call 911 automatically, when the vehicle has been in an accident and notify the 911 system of its location and the vehicle speed that the car was going, when it had the accident. The invention has this capability as well and it has always maintained it is capable of reporting and recording vehicle function in the event of an accident as well as preserve an on the vehicle record or report this data to preserve a record off-board though any provider and/or server system desired or authorized as a solo system or as a gateway to larger networks. This has always been an integral part of the earlier Black box system as has been described in U.S. Provisional application No. 60/032,217. Where the 911 system has been discussed as part of the public net work that would be involved in the black box and billing box vehicle units that were designed to interface and network with these commercial public servers and government provider systems. In PCT/US99/00919 and U.S. Provisional application No. 60/122,108, these companies and agencies are detailed as part of the worldwide web to handle the accountable PFN data as servers and providers for remote-control and monitoring purposes, both for individual and private applications and also for gross commercial and mass or public monitoring and
control by consensus through the public provided web pages as detailed in all the related applications. All of these functions will be managed by. TRAC software.

A moment will be taken presently to describe more fully the law enforcement section of the 1200 series systems, which is a network this technology calls (SPIDER EYES). This is one of the areas that will be termed a provider area, because it will be providing services for and to the public directly controlled by the government with duly appointed and/or elected agents to work collaboratively with the public to improve public safety. Throughout this technology an effort has been made to define the term "provider" as more than just a commercial service. It may well be a commercial server that provides a public service link up or interface or acts as a server for a public safety service, however, when this is done as a public safety service it should be recognized as such by society and exempt from tax and even remunerated for any operational cost by the community. This opens the door for these presently expensive communications system and commercial companies to provide highly specialized and regulated contract monitoring systems to defray the total consumer and citizen cost to provide greater public safety and remote control services. All these commercial support provider services should be commercialized at the very least like utility companies so they have to answer to the public's concerns, through periodic reviews and public board meetings or forums. These contract providers would have to be bonded licensed, and be able to meet any needs to track communications and machine messaging to maintain accountability in reporting and recording any and all transmissions (like through TRAC system software), and there would be bidding for any specific area that limits or has limits on how it can process its emergency communications (e.g., 911, etc.) so that the qualified commercial providers would have a fair and equal chance at the business. The TRAC software provides for a federal standard, which is termed FACT, Federal Authorization Control Technology.

There can be coordinated and licensed commercial servers that can supplement and expedite many services for the populous and aid in keeping government cost down and developing and improving the technologies. However, when they are handling legally sensitive and/or personal data they have to do it according to the laws of the country and any prescribed rules or regulation of the jurisdiction and/or
combined jurisdictions they are being operated in. (This is a given, but an important public accountability issue.) The invention seeks to make accountable these technical developments by addressing science, technology and society as the invention's full scope and nature, as well as, deliver invented and innovative devices that can achieve this automation responsibly and accountably for humanity and be equally responsible to the earth's environment that supports humanity.

These on-board recordings and redundant reporting start in the vehicle along with the devices to communicate the data, whether they are in the vehicle as a transceiving device or transmitter and/or part of a physical or close in scanning tool invented especially for this purpose to recover the record, e.g., the invention seeks to construct with other C.O.T.S. technologies already commercially available in this field a hand held device for the police that combines radar, a close range vehicle remote control communication device, and a record scan device, that will send its data back to the vehicle cruiser computer via com port or protected transmission. These could be infrared com ports for quick transfer and all these system options are detailed in PCT/US97/21516 and PCT/US99/00919. Also, the information could be gathered as described initially when a vehicle has an activated record ready to be reported and/or retrieved it would energize the record trip light and flag the trouble code mentioned above. This record along with the video recording will also have audio recordings inside and outside the cabin on separate tracks that are dated and give the time as well as the geographic location of their tripped state in a statement message. There will be many convenient data retrieval devices as part of the invention ability to develop new commercial enterprises and services. One such new enterprise will be certified retrieval and data transfer stations or receptacles that will be able to transfer the data to law enforcement, whereever law enforcement is unable to retrieve it or adequately store it. This will also be wirelessly reported to authorized service providers through TRAC and FACT, to be stored in mass data facilities.

1100-1200 Spider Eyes and Green Eyes programs are to be responsible and respectable public safety programs that will have great data collection capability and remote control in most all life situations. So it will be governed with the strictest rules and regulations that respect individual's right to privacy. (The highest standards of professionalism a necessity at the very least). In fact, this technology will work very
diligently to help insure that the strictest penalties are in place and readily applied for those who abuse these systems and the personal rights of the individual. This is an absolute necessity for this great data collection technology to serve humanity in a democratic fashion and to maintain the most important elements of life in America, which is maximum human freedom, liberty and dignity, while providing the greatest individual public safety ever known to man. This can be done with respect, responsibility and a mature understanding of real freedom. Then this technology and all the other great data collecting technologies could truly serve humanity and possibly reduce the chance for misuse for selfish reasons. So much time is given here not only to how the technology can be built but also how it can be responsibly used.

Now, to return to the retrieval of Traffic Data or Incident crime recorded data as determined by application specific PFN software detailed in all the other related applications. To make the recovery of this data convenient for the public there will be responsibly licensed persons or commercial business, i.e., notary of the public. Most dealerships, banks, or law offices have such people in there employ. And these devices should be in there charge for this purpose or under their direction and responsibility as they have to take an oath to perform their functions in a legal manner as prescribed and licensed by the state. Other such professions that are charged by the public such as the judicial system also take oaths and could offer this commercial service, i.e., law offices can set up retrieval scan devices and forward them on to the proper law enforcement data storage centers through standard telephone data nodes in their area. Licensed insurance agents and companies could also review them. This could be done to serve a dual purpose for the insurance companies. One for adjusting rates for driver performance all within the scope of commercial accountability for the invention. And two to help lower government cost in reviewing these records for other criminal activities. So it can be earmarked for further consideration by law enforcement. These records could be filed in the same manner that the electronic tax filing is done today, where they are stored on mass data cassette like Sony Peta Systems which are described in PCT/US99/00919, and further detailed as Incident base reporting for the Justice Department.

More ways to achieve easy retrieval of such information including automated retrieval scanning machines at service stations that are connected to standard
telephone land lines which transfer it to law enforcement nodes (local police, state, or the UCR, FBI and/or any instantaneous retrieval of the record reporting through cellular phone systems and all similar technologies directly from the vehicle as has been continually referenced and completely described in all of the applications. Also commercial server industries like, i.e., banks and credit card companies that want to offer these services. When remotely transmitted by wire or wireless RF equipment or telephony technology TRAC software, FACT will encryp the data.

In direct retrieval modalities, the data would be prioritized by a screening process in the TRAC vehicle software as to if it required an emergency response or if it was to be transferred over the non emergency telephone node for law enforcement review where the off-board TRAC system would process it through its automated comparing soft ware which will look for, three significant components, location, time, and the numerical characters that will comprise earth coordinates from any onboard locating device, i.e., GPS System. These latitude and longitude and date and time coordinates will be easy to run in a quick mathematical compare list algorithm software program in a gateway, or central computer or from any network data running or stored for computer access. Computers sharing this specific police report data base and/or DMV data base will be able to readily respond with warrants not only on tags and vin numbers but also give a registry of electrical serial numbers of equipment operating on-board any piece of equipment listing its command path. This will provide greater indentity information and less chance for undetected unauthorized use of vehicle and equipment. These other alpha-numeric number will be the electronic SN's and/or vehicle Fed VIN ID number of the recording vehicle. Ultimately the computers on-board a piece of equipment will synchronize its on-board clock to the time zone it is in geographically if this proves advantageous in a legal setting where a vehicle has recorded an incident in question and it has crossed a time zone in that process. The Clock updates are easily provided by any of the GPS systems on-board as well as any of the other cell phone and locating programs. Another option is the Zulu time system for all around the world. However, at this time it is important to point out that this new system HAS TO BE 2000 YEAR COMPLIANT -MILLENNIUM AT LEAST.

In summary, this application specific software would search for a recorded location that coincides with a reported crime and/or traffic altercations under investigation. The second search would be to match the date and time to the first location match from the stored law enforcement reports in the database. All this matching data would be stored somewhere in a law enforcement file or buffer or readily available mass data phone node connection which is automatically dialed if there is a high correlation flag on these factors for a prescribed period of time or forever if it witnessed or evidenced any place that was considered significant to any reported unsolved crime or capital offense. Or till the responsibly charged law enforcement individuals deemed there is no further need to preserve a record.

Once again, the recovery of this information for the law enforcement officer could be immediate and ultimately would be combined in one set of devices, i.e, the short range transmitters, remote control device combined with a radar system. Then this innovation could stop and detain a suspect vehicle while retrieving any tripped records on that vehicle and with the speed of electricity send all this data to the officers cruiser computer screen and communicate the same data back to law enforcement's data base monitoring the stop. The officer could also store this data in the cruiser's computer recording storage file system to aid in filing reports taken from the cruiser's RAM or hard drive when the shift was over. By downloading on a daily event disk along with the officers comments, this data would be downloaded at the end of the vehicles daily use or as its daily fluid checks and safety equipment checks were being performed. The officer can also bring up the file on the law enforcement's data base as it was sent instantaneously. However, to do any of these transfers or processing or to even view any record on file in any stage and/or location of this system a badge number or special ID number must be given and software approved which will be recorded as to who processed it or accessed it or simply viewed the file and from what organization along with when and at what terminal during any move or copy transfer process. This will be logged as part of its electronic paths and held in a header or footer statement. This TRAC and FACT software technology is a necessity for these records. This will be done in part to secure data in as pristine and accountable state for legal use and also for accountability for individual privacy. The goal is total accountability and quick authorized access with individual privacy
maximally respected and protected. This system could either be a part of the ever growing computer system that already exists in many computerized cruisers. And this will be the first deliberate commercialization of the invention to marry these law enforcement innovative tools to the commercial companies offering technology in the law enforcement area presently.

The 1100 and 1200 series systems are not dealt with in this application because they involve the processing of data with off-board systems, and are covered in PCT/US99/00919. However, the invention has as a goal throughout all these technology applications and innovations to look for companies like Lojack, OnStar and any of the cellular phone and land based telecommunication companies, e.g., security monitoring companies, as well as, any computer companies that can work well in these areas to develop this technology in the most efficient manner to limit any needless duplication for the 1100 and 1200 systems while fulfilling and creating an integrated machine messaging set of networks with varied levels of data. The law enforcement system coupled locally and nationally will have access to the highest levels of gathered data to evaluate. They will include the UCR, IBRS, FBI, Justice Dept., etc., and local police agencies. Then this same data will be minimally screened and disseminated to provide public safety information in the public media and web pages on the WWW. The crime event databases will be interfaced with the emergency 911 phone system along with all the police band RF systems, i.e., Lojack OnStar and any others. TRAC and FACT software encryptions, protocols and interfaces will be determined by all of the above in a standard effort.

These innovative law enforcement tools provide real-time data through secure accountable devices, termed PFNs, to better organize the physical electrical components and specific technology to accomplish these specific and appropriate tasks, i.e, communication systems, or special RF frequencies needed, and all other necessary equipment onboard to provide the services for all the commercial markets available and detailed in these applications for this level of communication, monitoring and aggressive remote and automated control. The inventions focus in the vehicle is to create PFN, an individual consolidated data gathering and primary processing center as a mobile platform with the added ability to receive short range transmitted data and serve as a repeater station to report through the
telecommunications systems on-board in real time, managed by TRAC software. This will be part the interactive highway and the 1200 spider eyes web. The individual driver with this primary communication and data processing system on-board their vehicle will be unencumbered and if deemed desirable even unaware of any particular automated social functions being performed by the SPIDER EYES program. This capability will be easily provided because all the devices will be utilized to create a workable and operate the interactive highways planned for, and the accountable PFN with its sensors and cameras is ideal to complete the "Spider Eyes program". This recovered PFN data at the highest levels is to be considered high and medium security protocols, when it is recovered by governing agencies, etc., through FACT, for discrimination and dissemination. But when the data is sanctioned for public use and/or when it is sold for presentation on public media devices such as, TV, Cable, the WEB, etc., then it is considered regular everyday security and management data and information and a functions of public news, gathering, which can conceivably be individually negotiated by the owner of the vehicle \backslash machine with the PFN and the a news agency ,etc., with any and all the profits and liabilities thereby contained. However, due to the real time coverage capability the driver will be able to provide for TV news coverage, editing protocols will have to be in place for high and medium security reasons, either a time delay system or stop and divert software program and/or editing staff for any data for immediate public presentation will have to be provided prior too utilizing this technology's PFN data. This technology recognizes the need for F.C.C. and other federal regulations on these practices to develop guidelines and FACT, as well as the citizen's right to free speech and their free access to information, along, with the driving forces of free enterprise to fuel this technology and economy as the latest Milieu for humanity.

There also will be a logged access path and time records for this use by the public and government on each individual vehicle and thereby there can be an accounting to the private owners when their unit and/or vehicle is serviced or sold by prorating sale tax for example for government use, etc.. This way the invention can run software in the vehicle that will prioritize the data and save needless transmission time and storage space. Also recently the 911 system land based lines are being used to notify local residents of a crime incident in their locality by automated dialing to
their homes and giving public information as to specific criminal activities in their area or neighborhood, i.e., Fairfax, VA. The invention will seek to create a public service system with cell phone servers and police agencies as detailed through out the related applications. Part of this technology will be to provide reception for these same bulletins through cellular geographic announcements as part of the roam announcement functions in most cellular phones systems today. This will allow the citizen driving to be alert while triggering a preprogrammed response for the camera system to be searching for specific characteristics like an erratic speeding car in the area color and identity characteristics and the receiver section of the PFN to pick up a specific distress radio signal transmissions, etc. And with the most sophisticated equipment, in the PFN computer center to spot a suspect on foot from electronic data received from law enforcement on the individuals physical characteristics (digital snap shot picture by zoom focus with high probability and compare soft ware down loaded and sent to the PFN computer). This will be especially effective through the onboard in the cabin cameras for stolen or unauthorized vehicles, or an electronic signature either artificially sent by RF broadcast attached to the individual as in the case of an escaped or guarded or person, e.g., criminal, child or mentally disoriented individual, etc. Alternatively, the use of sophisticated sensors like the nose that can transduce odors to electrical signal and sense these odors 2000 times greater than that of the human nose may be used. The nose sensor will be on-board all vehicles through this technology at some time in the future for environmental sensing anyway, so it is conceivable that with the proper download software specific odor markers the PFN would be able to add this data to increase the correlation that the correct individual is being identified through all the other PFN sensors and cameras, etc.

All of this data will be sent back in real-time, accompanied with the spotting vehicle location and time so the monitoring system can activate other PFN units in the geographic area to maintain surveillance till the appropriate officials advised and arrive on location if so needed. Also, the system could do the standard function of tracking a vehicle that is jeopardizing public safety so that the automated 911 could alert a geographic area while shutting it down.

Another device innovation, involves the microchip used in Europe to track vehicles that have had their frame or serial numbers removed physically. These chips
could be installed by the manufacturer in a number of places on the vehicle and the police scanning tool or device for records would have the proper circuitry to ID the vehicle through these electronic VIN s/n number chips that are factory installed to be confirm by computer stored data as to the identity of the vehicle in an instant. These chips are used to track stolen items in Europe already. This rapid integrity check of VIN numbers can be run through a comparing encrypted software local program to see if the tags, electronic serial number and Vin numbers all match the ones displayed. This would be a guide to further investigate a suspect vehicle. However readily available would be the last known owner as all states record by the vehicle VIN number and tag, and/or assign a chip and VIN for specific circumstances (custom vehicles or off the road equipment) as this is something the states could charge to install for tax, automated tolls, or vehicle and equipment verification and tracking purposes, and check while they monitor the road worthiness of the vehicles they are registering, especially if any contact has been detected and/or any accident safety equipment has been deployed which might have tripped a trouble code to retrieve PFN data as evidence of authorized information.

SPIDER EYES crime watch will be described with another modality of onboard video systems in the experimental state but spider eyes can be used with the earlier described camera system. This function involves using the vehicle as a viewing station, and a repeater device for monitoring. When in a parked state, the vehicle sensors responsible for tampering if they are triggered by an accident contact and/or from any anti theft sensor set off; the cameras will pass through a surveillance mode and record any object and/or activate motion detected by the sensors. The computer will fix the cameras to the moving object first and second the closest objects. Most all the devices exist today as C.O.T.S. including the digital recording devices that will work in the laptop. The 1000 series devices will describe the software and hardware to combine these devices and the varied computers, i.e, 945 series and 950 series that will be on-board and interfaced, and how these easy to connect C.O.T.S. systems will in a very short time be at a level that much of the monitoring and control devices today have taken years to get to. 956 is a global positioning device, there are many different types with scores of different capabilities and in the detailing of theses C.O.T.S. products the 956-957 series of numbers will be
assigned as to whether they have accompanying OEM soft ware that can be run through any of the onboard computers 945 and up or any personal computers, or future OEM consolidated equipment. Alternatively, they require report back transmission and off-board computers and software to process there satellite received coordinates and provide information back to the vehicle and/or to track the vehicle. Once again the connections and interfacing for these completed operations will be fully described and detailed in the 1000 series section.

Software comparison priority system. This is a simple basic verbal outlined description of the logic that the system would operate off of for a law enforcement retrieval and comparison investigation tool. This is covered in greater detail in PCT/US99/00919.

The first flag = a high correlation rating geographically for an incident area under investigation. Go to list $\mathrm{I}=$ unlawful incidents locator block of coordinates -then check $t=$ the software would compare the time factor the vehicle record triggered at. Go to list tip $=$ tip would first check time to the time frame of the location flag and, then flag in sequence other known time and location coordinates that might have investigation importance. If the appropriate conditions to review a record were met regarding an ongoing investigation, the file would be downloaded and reviewed. All files would be stored for a reasonable time to allow review for missing persons and/or crimes that are not always reported in a timely fashion. Also for the benefit of insurance companies all impact triggered recordings would be reviewable to lower and/or increase rates as to obvious driver handling. This process could allow for closer review of the recordings to report any other criminal activity that has been recorded and gone unreported to the proper authorities. This will help from overtaxing the law enforcement agencies. However, for this to happen the reviewers should be sworn in prior to taking this job not to relate any information at anytime unless in the proper legal setting and done through the advisement of their legal department. Big insurance companies should have a legal staff to oversee this process and the stiffest of penalties should be in place for any unlawful invasion of privacy, with all unrelated and inconsequential activities erased and/or destroyed immediately.

The above-mentioned software could be run in the insurance companies as they are already linked with most DMV departments in most states and with the
municipalities that are sharing data bases between departments. This data exchange with law enforcement would be relatively easy to arrange.

This has been a good law enforcement practice the sharing of information so long as it is done in an accountable manner by responsible and socially mature individuals. This is all considered part of the 1200 spider eyes innovation and will develop servers and providers in a commercial business that serve with accountability for all of societies actions and interactions with its machines vehicles and equipment. This invention develops telecommunication services, insurance services, law enforcement communications and computers into an accountable network database that can report and control events in real time to better protect and serve the public.

This has only been a brief description of the 1200 series network for recording and reporting and accounting for the use of equipment, machines, and vehicles and that impact on humanity and the environment. The 1200 network systems: Green eyes, Spider Eyes, Helping Hand, and Fair Play are all described in PCT/US99/00919 and related applications.

The other camera modality that can be used with the 1200 spider eyes system and requires a little more description. There is a special mobile mount system that allows the 909 camera and sensor array system to roam to different locations to view the side wall of the wheel and wheel well areas and also to wide focus out at road surfaces and edge. This is controlled through monitoring application specific guidance software for this system. Along with all of the video or visual camera systems running on-board to pick up and record physical data (which is transduced to an analog and/or digital signal for software comparisons and/or algorithms) with other additional guidance information. Also, the off-board transmissions or data links to alert the PFN or control center computer of specific upcoming environmental and/or road conditions or hazards so that the vehicle's performance may be altered to make the appropriate guidance and speed option adjustment for the interactive highway. These will include GPS, travel advisories automated bulletins and warning systems. The control center in the PFN might be OEM computer circuits or they may be run by the inventions own preprogrammed guidance software, PAGSSS and MASMP, and hardware. GM, Lockheed Martin, other large corporations and Department of Defense (D.O.D.) in San Diego were working on a seven mile stretch
of interactive highway. It is another goal of this technology to join this effort, by providing social accountability, through the TRAC software programs, to this automated personal travel as well as, physical tramming or training of vehicles (later described) to failsafe some of the existing systems and also offer many other automated enhancements to achieve responsible and aggressive remote and automated control. This is a major reason for the development of these systems.

The 909 roaming system has two modalities. The first is a pre-formed track system with a flat slotted flexible tape and motorized gear inside it that drives a trolley or truck mounted 909 through the reversing of polarity of the electric motor in either direction. As the camera sensor array is in motion the camera is angled in a protected cleaning wiper strip that accompanies the guide track so that the camera will always be deployed with a clean clear view and in the proper position. This flat belt drive system is the same as the C.O.T.S. automatic seat belt application used in some Japanese cars and domestic cars like the 93 ford Tempo today, when the door is closed and the belt is drawn up the door frame to be in the appropriate shoulder restraint position. For example, Toyota cars of the late 80's have employed such a system. Of course, there are many ways this mobility can be achieve for the roaming of the camera, e.g., another such modality for this will also be described. Still using a track system, a truck or trolley has its own motor and is energized through the flex tension wire input that will either be a part of, or impregnated in, the plastic guided flat flex tape drive thus timing the two to travel without having wire and drive entanglements jamming up their mobility. Also, the pre-formed track could be outfitted with segregated contact strips that a brush paw system could make contact with, or the electrical wires needed to service would be pre-tensed in the form of a molded coiled much like a flexible phone cord which would expand and contract with the movement of the 909 truck on the tape drive. Another service line modality will be timed reels on the drive motor side of the flex tape and guide fasteners on the tape drive will also work. Returning to the focus of this application to deal only with the automated personal, public, and commercial vehicle and machine devices, but keeping in mind in doing so it has proven necessary to describe their responsible use and potential goals.

908 in Figure 1 is a transmission speed sensor and already mentioned 903 the Ignition control module and an important OEM component that the PCM circuitry will be interfaced with to either secure the ignition system when the automobile is stopped or to augment the timing to effect the smoothest shutdown to reduce any improper detonation of the cylinders of the traditional internal combustion power plant. This may be necessary in some engines to balance the fuel to air mixture in some of these innovative systems to slow stop and secure the vehicle as well as to ultimately kill any ignition. Also, the ignition module can alternatively be controlled though any of the engine timing sensors and/or pickups, i.e., $905,906,907,904$ and/or the PCM power train control module 920 as is described in these applications. All of this is accomplished through the 1000 series trickster circuits or by one of PFN computers and software programs designed to deceive the OEM circuits if so desired and as is detailed. 915 is the door switch. 14A is a seat switch that can tell if it is occupied. 914 is the seat belt switch that will indicate electrically the belt is home in the secured coupled position.

All or some of these in a series circuit this invention will use to create a dead man seat switch system first simply to determine if a driver is present in a seat behind the wheel. This is done, because, carjackers try to leave an unmanned running vehicle to make an escape. This unmanned state will be a software condition or the simple series safety switch signal for the emergency stop and secure function for the vehicle. It will set the emergency brake when a driver leaves the car and kill the cars ability to crank or run in a number of ways. This will help remedy the accidents from the unsecured vehicle of today where children can release a brake and/or shift a gear lever when the vehicle is left unattended and/or in an idling state. The inventions secured state for a no driver situation. And ultimately this system will be combined with diagnostic driver sensors and software to determine the capability of a driver.

The 1000 series circuits purpose is to create the most inexpensive universal linking of unrelated processor units and microprocessors, IC circuits and computer circuits and/or any logic circuits and not only with one another, but also with traditional electrical circuitry. And/or any and all analog circuits along with any confining soft ware and/or digital considerations even for any support circuitry to allow for the quick combining, cohabitation, and interfacing of all these C.O.T.S.
systems and/or any manufactured systems and devices that have been specifically designed and/or by accident of incidence made to be and/or deliberately designed to be. The universal combining of machine technology and communication technology in an accountable way is another major goal of this innovative technology. To be a standard and a cohesive link in this automated robotics development is the prime reason for the creation of the 1000 series interface systems and circuits.

To complete this purpose the 1000 series parts and devices will comprise, e.g., connectors of all types as detailed in PCTUS99/00919, and all of the other applications innovatively configured interfaces and different devices. Communication links and/or comports not requiring hardwiring like infrared technology, simple electric circuits that can be instructed to send a specific signal to another software controlled device to allow for a quick interfacing where there is a software incompatibility and/or none commercially available, i.e., the trickster circuits 1001-1002-1002A-1003. Also in the 1000 series circuits is the many innovative sensing circuit devices, like the one used in the first embodiment and prototype for the first application to sense the vibrators activation in the pager.

Figure 2

The 940 "CHAT BOX" (COMPUTER HARDWARE AND TELECOMMUNICATIONS)

This system is disclosed in PCT/US97/21516's prototype control circuit system to activate a vehicle's peripheral control devices through one-way remote control paging. This circuit displays the 940 single Stamp II computer to accompany drawing three software commands and that is why it is the second drawing and not back in the other 900 series drawings. This technology is the first control circuits from the first patent application and is still part of the one-way remote and combined automated preprogrammed systems that can perform inexpensive remote control commands.

Presently displayed and described as Figure 2 is a complete illustration of a one-way communication and control system with prerecorded voice announcement and recording capability showing the non invasive current sensing of the vibrator circuit of the standard pager as described in PCT/US97/21516 and an accompanying
description for the prototype and/or demo unit. Also, in dotted lines are shown for the optical sensing and non-invasive system detailed as the second option and embodiment to read the alpha numeric message data displayed by the pager. The parts to read the LCD displays are produced by Texas instruments and they are liner pixel sensing arrays, that transduce the specific application messaging into an electrical signal (some analog but mostly digital). Then this data signal is routed by hardwire to an input pin on a mini computer of the PFN where a compare command is accomplished by a preprogrammed software list compiled of application specific signals that will determine if a signal match is appropriate and correct enough and then perform the preprogrammed task assigned to the specific signal. There has been a great deal of improvement in the pixel sensing arrays and even better reading devices for bar code reading. Many of these devices are and will be suitable with the only limiting requirements being space and some power support circuits. The 125 pixel array sensor by Texas Instrument has been the one being experimented with presently.

Because the numbering of the drawing is so difficult to do with all the lines in the schematic, only the initial devices will be described and referenced as to their commercial part numbers and description. The schematic lines and electronic symbols are already self explanatory to anyone skilled in the art and has already been referenced and described thoroughly in the related applications. At the top of the page the 12 little squares labeled B with a + and - at either end are 1.20 volt AA Nicad batteries with 8 in series for a total of 9.6 volts and the remaining 4 to the left are 2 sets of 2 AA Nicads in series of 2.40 volts that are in a parallel circuit which in turn has the first 8 batteries added to its 2.40 volts to make 12 volts for standard automobile voltage functions. This is an emergency power for the PFN or the secure stop box prototypes if the vehicle power source is compromised on the host piece of equipment. This emergency power source would be different but appropriate for whatever piece of equipment the PFN was placed on as well as be able to support any internal PFN current requirements. So it could even provide AC current and in this case the circuit might well contain an inverter for the power source to energize AC peripherals and/or any necessary transformers as needed and/or a rectifying bridge for charging of any DC emergency storage batteries.

However, the 2 sets of 2 in parallel equaling 2.4 volts have a diode that reduces their voltage when it is tapped off the battery packs to $1.6-1.9 \mathrm{vdc}$, which goes to a standard current sensing 8 pin chip made by Analog Devices PN/ AD626 and is illustrated as CS in figure 2. From here power is served to the battery peg system to allow for the non-invasive immediate coupling of the standard pager to the chat box control circuitry for sensing pager activation, as well as, supply continual power to the pager from this emergency power supply that is continually recharged as has been described in the first application. Also, there are 3 voltage regulators one is employed to stabilize power to the computer and protect it from vehicle power surges. The other two are used to convert the 12 volts of the system down to 5 volts to support TTL logic functions and to interface with the computer. The 12 vdc regulator Radio Shack number is $276-1771 \mathrm{~A}$ and the two 5 vdc regulator \# is Radio Shack 276-1770A.

The following will be a verbal description of the software command string in Figure 3, as well as how the electronic parts that work in the program. For this reason only, the software command string will be displayed for figure three with this verbal description serving both figures. So when the current sensing chip detects the pagers activated vibrator motor (by current draw) for the first time it sends a logic high signal to, for example, the 14th pin on the Parallax Stamp II computer that reads this pin to see if it stays high for at least 3.5 seconds, for example. 3.5 seconds constitutes a page received and not just a reminder activation which is only 2 seconds. If pin 14 is energized for 3.5 seconds one of two preprogrammed sets of responses will takes place. If the car is on it goes into shutdown mode. It detects the car on condition by the presence of the ignition voltage of 12 volts on input pin 12 on the stamp computer. If there is no power on pin 12 it will first remotely start the car and apply all stop and secure devices.

On the second vibration (new incoming call) the motor is turned off, and the doors are unlocked. At this point in this preprogrammed response the proper pin code or other such security check must be completed or the vehicle will not start run or release any of its stop secure lock down devices.(this would logic high input pin 15) Now if pin 12 is hot with ignition current the preprogram run sequence will be: First vibration (incoming call) will initiate all slow down functions, e.g., to disengage all acceleration capacity through any of the modalities described through out these related
applications, turn on hazard lights and parking lights with any special flasher, e.g. white strobe, and information bar, as well as, any alarms buzzers and sirens. A cabin recorder is started to record the voices in the car and a prerecorded audio chip device message is given to the driver, notifying them that: "The car is in an emergency shutdown mode and that they are to pull to the side of the road immediately." They are also informed that this event is being recorded. Any number and/or types of recording devices with any predetermined function or purpose, e.g., audio video, vehicle data, i.e. speed, throttle position, etc. can be activated at this point. If an authorized driver has had this activated through some error they can punch in their correct pin code and the invention will reset to stay to the ready run state and monitor for an incoming signal (first call in this scenario). For accountability purposes in these simple prototypes a Sony Memory stick or flash memory will record any pertinent vehicle and snapshot video and when used will also record audio incident input.

At the first vibration or page, a countdown is started that lasts for 37 seconds and the braking system is applied in a gradual manner (there are also other parallel systems described with in these applications that would and/or could be activated at this point and are detailed in their separate descriptions. The last phase of turning off the ignition or deactivating the power plant in any of the numerous modalities described in the applications could be another timed deactivation from preprogrammed software in the computer or it could wait for a second page to complete the stop and secure detainment. Once again the program would leave the car in this detained and deactivated state till the proper secrete signal was given either on location or remotely as is described in other embodiments and modalities. The modality chosen for the prototypes and demos thus far involve the emergency brake application controlled and powered by the seat control devices, e.g., motors, direct square key shaft and/or cable drives and strip gear channel and horizontal gear drives. And for the acceleration eliminator the same motor and cable drive system with a gear nut seat elevator adjuster as an accelerator pedal stop. It should be noted that it is very easy to motorize the emergency brake pedal ratchet system itself and this modality of applying the emergency brake is the chosen present modality.

The parallax Stamp II computer was chosen and not merely a micro controller and EPROM because of its mathematical capability and easy to adjust p-basic programming which can support a multitude of applications. While this is not going to be the ultimate computer performing onboard vehicle functions in the sophisticated

PFNs for one and two-way communication capabilities, it is a worthy C.O.T.S. product to support the first and second embodiments through this type of development, for the first application and all but the steering programs and complex video devices and preprogrammed functions in this application. The stamp II can support the keypad functions, as well as, generate telephone dial out tones to more easy interface with some less capable cellular and land based phone technologies for stationary machinery by only having to turn on, and initiate the transmit and/or send function to be externally commanded through the preprogrammed software placed into the Stamp II. This allows this simple one-way PFN's to generate the dial tone command strings for remote reporting, while inexpensively and simultaneously controlling simple relays to send preprogrammed digital and/or any data signals back to a remote location through the regular existing phone technology that is on-board the host piece of equipment ideally protected, secured and interfaced in the PFN or stop and secure box system. This would support an interface with a cellular or regular phone system and/or data modem to activate their send command. This is essential and the first chosen modality to report back in real time to support any locating function performed by, i.e., either hand held GPS like Magellan, etc.- and/or any locating devices, or GPS chips set systems like Phillips, and Motorola and/or a whole device and software systems like Delorme's Street Atlas. Some of these systems have their own software to attach and interface them with computers. These GPS systems that will be interfaced with the inventions second embodiment can also read the GPS display in the same manner as described for optically retrieving data from the pager display in the first application and subsequent filings and/or interfaced through already existing C.O.T.S. software that work with and through any personal computer (laptop, organizer, etc.) and either hook up to a mobile modem and/or hookup through any of the inventions modem interfaces to transmit this interfaced data to provide the geographic coordinates through predetermined electronic data stream, to an already established remote location or gateway, i.e., as have been already described in the first
application and further detailed in the related applications. The GPS systems are described and detailed in PCT/US99/00919.

In Figure 2, when the software runs it will send a logic high to the 2-4 channel Toshiba Darlington drivers PN/TD62064P/AP from the stamps out put pins 1, 2, 3, 4, 5,9 . The first 4 pins go to the driver chip lettered DR to the left of the stamp computer which activate the relays 1 through 4 by delivering a 12 v ground to the relays that are already energized and wired to the 12 volt + bus lead. When the computer sends a logic high to the DR chip. All these relays are standard C.O.T.S. off the shelf automotive relays SPST either 20 Amp Siemen's PN/A1001-a 303 and/or 30 Amp Radio Shack PN/275-226 and in some cases other 12vdc computer double pole double throw mini relays sold by Radio Shack Pn\275-249 and/or machine control relays 12 volt DC manufactured by Potter Brumfield Radio Shack PN/275-206 and 275-218. The relay employed is considered for the load it must carry and its physical size as to this purpose. Space is always a second consideration when interfacing
C.O.T.S. products as is the electrical capability of each part. The other 2 output pins 5 and 9 that activate relays 5 and 6 go through the DR chip to the right of the stamp II computer and function the same way. Pin 8 output supplies a ground through the right DR chip to the voice chip which activates the in cabin message for this prototype. This can be done directly to the voice chip as shown in the drawing. The voice chip is another standard C.O.T.S. device. These all have all been experimented within the Prototype: Radio shack PN1276-1325 and 276-1324 but the one presently being used to deliver the cabin announcement is the circuit from a Voice Memo Key Chain Cat. \#63-945 which is amplified by a Mark II portable toy music Amplifier \#M.A.-55 that also supplies the speaker and the speaker enclosure. The Radio Shack voice activated pocket recorder is Cat \#14-1061 and this constitutes the simple RAP box system of the present prototype and proves feasibility of function. All of these voice ICs and amplifier parts are either sold as components at Radio Shack in a number of formats or are already incorporated as the mini memory key ring recorder and the toy Amplifier. Experimentation with all these devices have been used effectively in the prototypes. The Voice Chip Recording chip, also, receives output pin 10 signal from the stamp computer, which recycles the message by giving a momentary ground for this purpose as has been described for \#10.

Connection 1, shown to the extreme right center of Figure 2, is the output connections for relays 5 and 4 and a negative ground. The activation of relay 5 gives one set of 12 volt lines positive and negative and the deactivation of relay 5 gives another set of positive and negative line, e.g., for different door lock systems and the option to operate a host of automotive ground switch braking circuits, e.g., horn relay and many others. Number 4 relay is a 12 volt line that supplies current to the starter motor solenoid circuit for nine tenths of a second that can crank the motor till the vacuum switch signals the engine is running and opens this circuit. There are many different vacuum switches that are C.O.T.S. that have been employed to do this function but for the prototype, i.e., EGR valve, MAF sensor, etc. This is accomplished by the stamps software merely timing the activation of relay 4 for the nine tenths of a second till the engine is running in the prototype. This is altered to get the proper cranking time in different vehicles in the software program. Also any number of other engine sensors, i.e., oil pressure, i.e., ignition firing etc., can supply data to the invention's control circuits to signify a running engine. All of these systems and/or parts have been described as to how the invention interfaces with them and it is clear and easy for anyone skilled in the art to see that sensing a running engine in all the ways possible are already with in the scope of the invention and to recount all those possibilities would be redundant and unnecessary. Connection 1 also has a ground lead.

Connection 2, represented in Figure 1, shows relays 1, 2, 3, and a ground. These have already been described and referred to in the program that runs in the computer and will be referred to through out the innovative device circuitry to follow and the program software to follow on the following drawing figure 3. However, in short these are the slow down, stop, and secure the vehicle relays, responsible for controlling the automated devices and systems detailed in this application. There is also a ground in this connector and in most cases these connectors have been outfitted with a ground for three reasons, one to bond all device to the same ground and two to cut the noise and or interference. In some cases the ground will be a coaxial configuration for this purpose and thirdly, because, many of the vehicles today are made of non conducting materials. The prototype or first demo unit has used standard phone connectors with 6 contact wires as they were small and readily available
C.O.T.S. products. However, many different multi pin connectors would work effectively. Any of these connections along with there wiring should be completely protected and will be when manufactured as detailed in all the related patent applications.

The third connector would normally only have 2 speaker wires, an input battery positive wire, a ground and that's it for the simple prototypes. These protected wires would service a hidden speaker to give the emergency advisement to the cabin, the run tape system to record the audio video equipment functions and actions along with all the external recorded data which would be stored in either the secured secluded and protected confinement of the control center of the black box, secure box, and/or accountability box or billing box, (PFN), i.e., as referenced from the first related application because as mentioned earlier the protection is one of the most important claims of this invention. However, it has always been pointed out that this is the ultimate optimal goal for the invention and more easily achievable through the obvious consolidation of hardware and software systems interfaced for the invention protective encasements (PFN's). However, but for this prototype, the cabin recording as already described is a C.O.T.S. standard pocket recorder that can be voice activated ,which saves recording space and has been placed in a child's toy guitar amplifier and speaker box to more easy display the varied functions, of the innovations, and devices to create this present C.O.T.S. version of the invention. Also, to make it easy for those investors not skilled in the arts to see its commercial reality in their every day used devices. This will help to commercialize and market the invention, because instead of a lot of up front designing cost it allows manufactures to be brought together through combining their technologies to assemble the invention's new innovative technology which opens more developmental cooperation in these new markets for everyone quickly.

Finally, because the prototype was divided this way for demonstration purposes, there is also a $2.40+$ voltage that is optionally supplied through connection \#3 which is activated when relay 6 a mini 12 volt double pole double throw mini P.C. relay is activated (Radio Shack \#275-249A) which turns on this standard pocket recorder to tape all the conversations and sounds during the incident including the activation of the warning message given from the voice chip. The consolidation of
these 2 recording devices is an obvious evolution of the invention. Also, a 12 volt service is activated simultaneously when the number 6 relay is activated which amplifies the waning message in the cabin. And once again a ground service accompanies these other wires to the speaker and/or recording box, which has been given the name RAP box for Record And Play System, which is also a popular word as in rapping for commercialization. However the 940 s 950 s computer controller series rap systems will be evolved into a complete record storage system as has already been stated and consolidated in a protected containment either in the PFN location or in another secluded area. The sole protection of the recording system and/or data storage system even as the only secured and/or secluded and/or protected device on-board is still considered within the nature and scope claim of this invention and technology. Even if it is only a special access area inside the PFN.

HARDWARE AND TELECOMMUNICATION

System prototype 1st embodiment is adequately described to explain all the circuits connections, innovation and interfaces involved in this application and the one preceding it and to leave no question as to the intent or the capability of the inventions total technology to remotely control peripheral devices and accessories o vehicles or any other piece of equipment. Also, any variation of the basic design of these C.O.T.S. innovation to do the same things is still considered within the nature and scope of the invention especially if it provides accountable memory storage and/or protected encasements. In addition to the circuitry in figure 2 is the software program designed for this first prototype of the CHAT box or PFN System. CHAT is a name for control hardware and telecommunication equipment but all PFNs don't utilize telecommunication technology.

The software has been written in this prototype and demo configurations and designed to make quick and easy changes and/or augmentations for the optimal deployment and safe performance of the invention as ongoing continual adjustment have to be made for testing to determine the optimal protocols. All of the functions performed by the PFN stamp II for these embodiments could easily be accomplished by simple truth table switching or transistor to transistor logic or IC processor's and/or electromechanical switching for the most part and just as inexpensively. However,
the stamp II was chosen for other reasons that addressed the smooth evolution to the PFN's to more sophisticated control systems. With the PFN incorporating more sophisticated computers systems detailed in PCT/US99/00919 that can and will be more easily interfaced with host machines electrical and/or electronic systems, as well as, any and all already mentioned devices it can interface with first as hardware C.O.T.S. components, e.g., personal computers organizers palmtops minicomputer and of course any and all of the electronic storage devices hard drives, disk drives and flash memory devices, that can be utilized to manage and store application specific data and/or perform versatile computing functions that can network and give more state of the art capability to the vehicle and its occupant in universal plug and play modalities, as well as, support more environmental, commercial and public functions as it is operated Ultimately as OEMs seek for special commercial value savings to serve the public. The OEM manufacturers will want to consolidate hardware and reduce the unnecessary duplication of circuits, components and/or mechanical devices when ever possible and it is the claim of this invention that this is the desired goal of the PFN invention and to be an active part in creating a protected electrical universal interface to support a wide variety of electrical components and devices with simple plug and play interfacing while supporting accountable automated and remote control of vehicles and machines.

Figure 2.1

This figure displays the two main types of PFN's. This drawing has been added in at this point because it gives a better understanding to the reader how the remote control capabilities of this technology are achieved for its automated devices, and how they have been specifically planned for, designed for and how the PFN systems are structured to include any and all other remote control devices by this technology.

Figure 2.1 shows the two basic PFN communication categories which are being developed as prototype. There will be one-way transmission devices and there will be two way transceiver devices with varied peripheral capabilities and protective containment's. The drawing also illustrates the monitoring and remote control system and network from the local level to the global level. The figure also shows all the
management of peripherals as well as moderate security systems for conditionalizing any two way transmissions.

11-1200 is the monitoring and remote control system network that can be part of any interactive highway or government gateway land line node, commercial server to phone node for a private system or for web access, and any number of servers or providers could be contacted by the PFN to transfer data for remote control, management OD data and the reporting of data for memory storage in at least one remote location. Number 108 representing the off-board PFN data storage. Directly below that is the two dotted lines representing wireless transmissions. The two directional dotted line on the right has the letters ASS on the left side which is an acronym for application specific security and PGP on the right which is an acronym for Pretty Good Protection. PGP is the C.O.T.S. products out today to encrypt a signal so that only the one with the appropriate key would be able to decipher the data. This technology recognizes that for its billing box function to be able to card swipe credit cards special banking encryption systems and verification protocols might well be required and that is the meaning of the ASS application specific security. It is possible that other high security encryption might be required as well (e.g. government and military which might well require hard ware as well as software change). These systems are not detailed in this application, but are considered.

Security system protocols would basically be reserved for the two way transmissions capable PFNs, and any of their remote computer terminals or gateways, including any and all network data storage and access to that data storage. Programs like this technology's spider eyes and green eyes or green watch would utilize protected data protocols to preserve individual privacy, track access and provide data to the public as prescribed by societies laws and via its institutions media, and the inter net and the (WWW). So standards will be set for the handling of sensitive PFN data transfers whether it was removed physically in the one-way capable PFN or the two way communication system that can transmit sensitive data streams in real time.

PGP is the commercial versions of encrypted data. And as explained earlier there is a great number of such systems that can afford reasonably good protection for many security programs. Some of these are just software down loads and can be part of the software in a PFN capable of running a encryption program as well as the
software to delineate restricted data from unrestricted data if so desired. Chip sets with imbedded software are another possibility. With both ASS and PGP both ends of the transmission must be equipped to cipher and decipher the encryption key no mater which technology is used and in what form of hardware, hardware embedded transmission PFNs is because they can be broadcasting personal and/or private owned information video and other sensitive telemetry data. It may not be as necessary to protect one-way directional remote control communications with additional security applications, because, there will be less signals transmitted to them and no return signal so it will be more difficult to figure out their purpose. However, in the higher security applications this encryption may be required as well for one-way command level remote control.
$940+2$ is the two way communication device with the ASS and the PGP systems on each side showing the options of encryption and the small arrow to the right of PGP points to the right block is the 2 stage memory on-board the two way PFN which are parts numbered 951-956 in Figure 1. Number 2-100-900 is a line list of possible accountable functions for full remote control and remote monitored robotics. At least one variation of this two way PFN will completely support all of these functions including any special sensors, identification systems environmental sensors, audio video systems, all machine controls and will monitor all machine sensors.
$940+1$ points to the simple one-way receiver PFN. The dotted line coming down from the top depicts the one-way communication for one-way remote control of
equipment. However, $940+1$ also can support a 2 stage memory storage and can also, support and be constructed with any of the processor's capacity to do all the same functions as the more sophisticated two way PFN with one important exception; it by itself can not report back its data to the remote control and/or monitoring system by its own transmission. The $940+1$ one-way system must have its data recovered physically through a secure download communication port. This interface communication port can also be in place on the two way PFNs if so desired. However, remote control functions can be specific preprogrammed responses and/or guided or warranted through other two way PFNs on location that are videoing a one-way PFN or reporting other telemetry data about the one-way PFN that warrants specific remote commands be sent to the one-way PFN thereby providing complete remote control of the one-way PFN. Total accountability is still provided in two levels in the one-way PFN (rewritable and permanent memory). Also, this technology provides a piston extendablełretractable connector either hydraulic, air and/or electrically activated and controlled which will connect the one-way PFN to any of the communication ports on same equipped two way PFN to report back any pertinent data that needs near real time consideration. In fact in a confined local setting only one two way PFN mobile device could recover data from all the inexpensive one-way PFNs and report it back to the remote monitoring and remote control system. This mobile two way PFN could also accompany any one-way PFN to give report back data for real-time remote control of the one-way PFN equipped machine whether it was a stationary or mobile one-way PFN.

However, any accountable aggressive remote control with one-way PFN's for the automotive applications will have specific preprogramming , protocols laws and standards for their shut down procedures and most always will involve law enforcement and accountable TRAC software.

1-100-900 illustrates all the same functions that are listed for the two way PFN and states that it has only a physical retrieval accountability for any data stored. 900 ss is a block at the bottom of the page and its functions can be performed by both the one and two-way PFNs. 900 s is the special sensors section that will be gathering application specific data for any application specific requirement, e.g., hazardous materials, or anything that can be detected qualified and quanitized and transduced
into an electronic signal for the processor software to evaluate through compare lists programming in any application specific software running in a PFN or as burned in firmware on simple device where simple PFNs are set up as environmental specific sensors and are powered by solar cells and backed with batteries. 900 s special sensors will be many different application specific sensors that send an electrical signal to applications specific software programs in the PFNs (e.g., like hydraulic weight sensors). Many of these peripheral devices and sensors exist as C.O.T.S. products and there are flexible software products that can be easily adapted to support these applications. Another 900^{*} s special sensor is the nose, which is a sensor that can identify odors 2000 times more accurately than the human nose and is capable of discriminating substances at a molecular and even atomic level. This sensor is already designed to deliver unique electronic signals for its application specific software compare list library of known substances will serve well in many applications to identify biological and chemical toxins explosives, e.g., potassium nitrates etc., and leaks in regular chemical containers in any commercial or governmental installations when coupled to a mobile PFN preferably a two way PFN. Also, the PFNs could be programmed to operate electrically controlled military devices in unmanned equipment that was damaged or unmanned either due to the loss of life or to prevent the loss of life by using the machinery and equipment through remote control and/or full robotics (based on the level of PFN computers and on-board programming). The options are vast and varied to improve security and safety for all facets to include high security protocols, more adequately covered in U.S. Provisional application No. 60/122,108.

The PFN and TRAC software systems could help world order and nation building by monitoring equipment and material movement while robotically controlling terrain and police it for aggression without risking personnel any more than is absolutely necessary. To help enforce treaties so that the assignees and their constituents are on the same dotted line with the non-emotional objective cold hard reality of equipment that stands fast to the terms that have been agreed upon. Of course, this technology's audio recordings in the native language would be remotely activated or sent as an automated message to precursor any automated physical intervention. First, more of a persuasive nature actions would be used (e.g., water
cannon, safe but annoying gases, rubber bullets and as a final option lethal weapons activation) only as a last resort and to save lives. These PFN armored machines and/or equipment would be all terrain like tanks track vehicles, humVs wheeled vehicles, hover crafts. Even drone aircraft, etc. and basically the PFNs would be added to all equipment And of course the peripheral accessories could be all of the same and more military weapons could either be automated or their automated controls could be interfaced with the PFN systems. Eventually, special peacekeeping PFN controlled equipment would be created to help maintain order in an unstable area, but first the PFNs should be a part of every piece of equipment networked and remotely controlled and made accountable to the public the individual and government and commerce.

This alternative with the PFNs would allow the United Nations and NATO to take its nose and face out of troubled areas and those malcontents faces while restricting the amount of harm they can inflict on one another. To insure better tranquillity while reverberating there own commitments and better insuring fair play. The use of this device by the military that is trained for nation building might better keep respect for the military as a fair intermediary rather than just a brute face to face hand to hand combat force as has been the previous option for the military. In tremendously hostile areas where there is no agreement the automated weaponry can be deployed as part of any military maneuver and in place for any rocky social reconstruction time period. The 1200 Spider Eyes program is designed to be used in policing a normal at peace society with respect for individual privacy. The laws and standards and punishments for violating an individual's privacy have to be addressed by the public and its government before its implementation and any protocol of use, but ultimately it will improve life and the management of machinery, society its economy and the environment.

Recently, another new device has been developed, the "car plane" designed by Moller for future three dimensional transportation for the individual. The technology exists today to set up a guidance systems with the three coordinates delivered by the current GPS systems. There is latitude, longitude and elevation and when used with the military's accuracy achieved with an additional correction signal for the ionosphere distortion of satellite signals the GPS accuracy is within centimeters and
instantaneous on a hot reading. So most probably this invention will see government use for a while before it is a general public individual transportation tool. In any case the FAA could more readily organize and develop the car-plane technology with this invention. And the PFN will be invaluable in consolidating the accountable black box, communication systems and locating equipment all in one concise system that is easily tailored for monitoring and controlling an ever increasing numbers of these car planes in the future.

Appendix 1 lists some of the present prototype C.O.T.S. components used in the one and two way PFN's. These components are more extensively covered in the related patents. However these prototypes parts also demonstrate the feasibility and capability of all the systems interfaced through a PFN. Items $1,2,3,5,7,8$, all camera systems and are being experimented with for the different industries to see what application they are best suited for.

When these cameras are utilized for automated guidance in the mobile management patent a system using a laser light beam will be targeted on a lane marker or the road edge. Once the laser light is locked on the line or road target a software algorithm will compare the electrical signal from any camera(s) viewing the roadway to detect the cars position by the relationship of the laser dot on the road and how far away from the lines the dot is as well as the direction the dot has moved from the line during movement. This is determined through the electrical signals digital pixel representation identifying the road target and the laser dot an activating the automated steering stepper motors to turn the steering linkage to maintain the correct lane position for the vehicle through an algorithm in the TRAC software program, PAGSSS and MASMP. This might require two camera angles and two reference laser spots. Of course the PFN will be receiving distance data as another electrical signal transduced from sound echoes and/or infrared systems to be compared in software protocols for proper travel spacing between vehicles which will adjust the speed of the vehicle through the many modalities detailed in this application for automated acceleration and braking processed through the PFN. 4, and 6 in this figure are a video card and converter for laptops to be used in a plug and play modality with personal laptops for sending images via the web and for any personal or business
reasons. Web functions can also be performed by the PFN computers through TRAC software.

Figure 2.2

The PFN is a Protect primary focal node ideally housing communication technology with control circuitry and memory storage devices that can accurately locate and remotely control a piece of machinery in an accountable manner through TRAC software that authorizes and authenticates remote activities with local and remote memory storage. This is an important quality to make any STANDARD for any automated and remote control and robotics for any piece of equipment.

Figure 2.2 , taken from another related patent application, depicts a double wall structure with an insulated center to protect from heat, moisture, impact, etc. The outer wall $940+5$ will most probably be constructed out of a difficult to penetrate metal AR plate at least with its $940+7$ thickness being application specific and detailed greater in the individual related patent applications for industry markets and products, but they will all confirm to any industry standard. The $940+6$ inner wall will also be application specific and be determined by the standard set for the PFN device as well as the components that must have these protected encasements and the persons that will be permitted access and at what level of access persons will be permitted. The specific encasements are detailed greater in the specific industries and other related patents, however, this technology claims all protective encasements for the stated purposes as part of this technology. Of course military applications and hazardous materials will demand special enclosures. As will curtail areas that will have laws written to protect their access from the general public even if it is a privately owned piece of equipment. For example, this technology calls for at least permanent memory storage for accident related records which will be inaccessible to the general public and a crime to willing tamper with the compartment and the data stored as a standard and as law for its accountable automated and remote control and robotics protocols.

While it is a necessity for the PFN protective structure to provide a protected memory, these same protective enclosures could be found to have application specific importance for any and all electronic parts and components including peripheral
devices. In no way should it be limited in structure(s), size, composition, and/or components. $940+4$ is in most cases a product called solid smoke which was developed for NASA the space tiles. As a solid vacuum they do not transfer thermal heat. There are many good non-volatile insulators and a suitable replacement that meets any standard will be acceptable. The general description of the PFN structure at this point is only done to be inclusive. For example, in related patent application PCT/US99/0919, an entire dash mount PFN structure is detailed to accommodate all the necessary components and other personal electrical components that are interfaced with the vehicle and also afforded protection. These PFN structures would be scaled back because they enjoy a protected cabin in regular automotive applications.

Figure 2.3

Figure 2.3 explains further the remote control relationship between the
PFN/TRAC software and its off-board monitoring computer network possibilities through TRAC. The local 1208 box is a remote monitoring gateway computer capable of receiving data managing it and storing it either locally and/or transferring it to other locations the local or other parts of the net work are reached either through wire or wireless communication components housed in the protected PFN. PE is to indicate its double wall structure. The comlinks $\mathrm{a}, \mathrm{b}, \mathrm{c}$, represents cellular phones one and two way pager systems and any long and short range radio signal equipment one and two way of any frequency. They are all responsively connected to the different computer systems detailed in PCT/US99/0919. The communication devices and technology including land line hookups for stationary equipment, all the varied computers 940 thru 950 series and all the euro board mini computers, and the rewritable hard drives writeable CD's flash memories and MO drives for on-board memory storage 951-956. Of course, these memory devices are likewise responsively connected to the 940-950 computers. Also the Mass storage is detailed for 1208 the off-board storage, as well as feasible protocols for government and industry to refine into standards. The networks linked to create the machine messaging network interfaced to the worldwide web though gateway phone node servers and providers makes this technology's MMNWWW monitoring system for accountable remote
control, and web access through TRAC's CEW and FACT encryption 128/64 bit software. The communication links in all systems, but most especially in the two-way systems, allows for the real time commands to the video and data received in the remote location virtually anywhere and everywhere around the globe. This makes a real need for protected memory and control and communication circuits and encrypted signals. All of which is part of this technology.

At the bottom of the page, the PFN connector provides signals on-board to the PCMs in cars or directly to peripheral devices and receive signals from microphones video and/or digital camera devices, and other sensor devices that send their data as an electrical signal, and/or the PFN will be connected to a stationary piece of equipment that has a programmable controller HPC host machine programmable controller or computer. Once again, the PFN can be connected directly to electric motor starts variable motor speed controls any solenoids, etc. through relays mechanical or silicon relays for any automated machine control with compatible control currents. The PFNs are application specific in their components and their interfaces and their connections, but are the basis for any accountable standard for remote control and automated functions. And this technology is dedicated to standardize and universalize its PFNs for easy to provide easy to understand inexpensive machine messaging systems and automated controllers that are compietely accountable for every facet of machine use in the world. However, this technology will first seek to utilize all commercial software and hardware available for its 1200 onboard and off-board software requirements for the 1100 spider eyes program and interfaced computer network systems as detailed in other related patent applications. This use to combine C.O.T.S. and incorporate already existing commercial interest is traditional for this technology to make available as quickly and easily as possible for the mutual interest and benefit of the public and the commercial entities involved these needed accountable automated and remote control products. However, this record and report back system of audio and visual information, machine and operator data streams are considered the nature and scope of the invention, as well as any use to assign accountability for obligation and liability, legally and/or financially for any use or abuse incurred from any machine.

Although all of the following automated and remote controls have always been claimed to be done in a unique manner, they are only a part of the present technology's total system. The invention was not designed merely and/or only as a personally owned anti theft system, vehicles that can activate remote door locks or auto start a car or as a diagnostic tool, or as a tracking device to locate a vehicle by geographic position; it has been designed to be a responsible remote control management system, securely protected, legally approved and accountable to society and for any pay for use claim, with even varying degrees and levels of improper use by monetary fee, which is to be controlled monitored and assessed such as levels of environmental impact, conditional drivers use, etc. governed through the proper authorities and authorization with respect to any laws that govern any standard pay for use commercial enterprises. Rental companies, insurance companies leasing companies, loan companies, banks, regulating government agencies, automobile companies, equipment manufacturers, etc. any fee for use or operational time of any piece of equipment, machinery, and/or vehicle where remote control is employed to insure payment and make accountable. The PFN/TRAC system software Financial Transaction Program (FTP) will be web capable with 168/64 bit encryption for secure bank card transactions. Society lives by the laws and rules of government so if legal commercial contracts are violated and these innovative remote control devices are used to enforce financial obligation they fall with in this nature and scope claim of this technology and its PFNs. Also, if legal but unfair commercial, governmental or individual contracts are a practice they will be reported and recorded in the servers. Network and people will be made aware of these unfair practices.

Robotics in many other machine and equipment applications is anything but new, i.e., automated warehouses and/order picking devices police bomb squad robots and automated hospital delivery carts. The list could go on and on. However, when they are linked or interfaced, for control and accountability either through these innovative devices and systems or in any other fashion they fall within the nature and scope of this invention as described in any of these related applications and the series 1000 through the 1200 devices and net system and/or any other systems that perform these functions with or for any accountability purpose.

Appendix 2

Is a set of three pages numbered A,B, C out of Grangers catalog 1996 No. 387 listing some typical programmable controllers that are available for preprogramming control functions on factory machinery or stationary equipment, etc., they are by no means the only ones and this technology can interface and protect any controllers on the market. These are examples of HPC's Host programmable controllers. The PFN will interface with these controllers like it would with the power train control module in automobiles or it would control all the machine functions from this technology's many varied processors and/or controllers, or the PFN could utilize one of these programmable controllers as its primary processor. Whatever is the case ultimately these processors should be afforded the protection of the PFN if possible. And of course application specific software programs would be written to process the data to and from the input out put pins for remote control and automated functions as well as activate any memory storage devices to trach the machine messaging or audio or video data.

Appendix 3

Is set of pages numbered lettered A,B,C,D,E,F,G,H,I, J,K, L,M,N,O straight out of the Grainger Catalog 1996 No.387. These pages are used to provide all the varied gearmotors available to activate any machine and/or equipment controls and/or their functions with electrical energy. These pages provide to anyone skilled in the art all the specification and data to determine which gearmotr best meets the physical and mechanical requirements to perform any application specific control function on a host piece of equipment along with the operation currents they operate on for, e.g., automotive voltage, house current, industrial and/or commercial currents. Along with gear motors controlled by relays mechanical and electrical the PFN invention can be configured to operate any electrically energized devices, solenoids, electromagnets to control valves for hydraulics oil, water or fluid and/or gases, air, water, fuel flows, etc. and control other electrical device motor controllers. Pages I and J are only two DC motor pages for variable speed. These are some of the ones being experimented with for the automotive industry for steering. Page K is some of the straight DC motors for 12 - and 24 VDC without gear reduction to drive fans, pumps and compressors. Page L
and page M are DC variable speed controls that can be interfaced with the PFN processor or in many cases is already connected to a OEM programable controller.

Appendix 4

The first one hundred eighty six pages in the Grainger catalog 1996 No. 387 of ac motor selection information with all the motors and their specifications are included here. This data is for Dayton motors, however, there are other manufactures, GE, Baldwin, Westinghouse and many of the configurations are standardized (frames, shaft sizes, HP, and mounts, etc.,) This list is being provided so that anyone skilled in the art can determine the correct motor to use in any automated or remote control function as well as the necessary components to interface it with this technology's PFN systems whether it run's on house hold current, or if has to run on industrial and/or commercial currents. The mere fact that some countries have to have motors configured for different current (e.g., 50 hz .) that may not mentioned in this document does not exclude their being controlled by a PFN. This technology is meant to be utilized on a global level. The following 20 pages display more gear reductions and gear transfer cases these motors can be attached to slow the motors rotational speed and increase their torque for power.

The effort in providing as much data here is to prove the feasibility, reduce the cost for research and development by providing C.O.T.S. products and to create an organizational tool to automate and remotely control any and all machinery through the PFN by readily providing the products to fabricate an application specific actuator or automate a function for anything. Of course, the electrical interfaces will require the correct relay and hard wire component for the PFN control currents and the host machines electrical system.

Appendix 5

Is thirty five pages out of the Grainger catalog 1996 No.387. These relay pages detail out a versatile group of electrical control relays that can be utilized to interface this technology's PFN control circuits with the motors detailed in Appendix 4186 pages and also a way to control current to solenoid valves and other electrically controlled devices on a host piece of equipment. Also in this section are some push
pull solenoids box type and other solenoids that can be configured to activate a control levers on a piece of equipment or control latch mechanism or to interrupt a function, so that anyone skilled in the art can readily pick the electrical components to activate and either fabricated a basic automated device function or to develop an isolated command function processed by a PFN to a pre-existing OEM accessory.

Appendix 6

Is another 25 pages out of the same Grainger catalog lettered A through Y because, of the different areas of hydraulics devices covered in this section which are used so diversely to work and control functions through out all the industries. A, B, and C are electrically controlled solenoid valves and only a sampling of many that control valve mechanisms to direct hydraulic flow and pressure to do work, either by pushing or pulling in piston applications, rotational functions as does a hydrostatic motor and/or hydraulic motors used in track machines like skid steers and some robots and/or automatic product feed applications, saws grinders vehicles etc. D and F are dc motors for hydraulic pumps F, G are AC power pack for hydraulic pumping. There, of course, are much larger systems, however, most hydraulic control functions can easily be achieved with the components detailed here.

There electric hydraulic pump systems can also be controlled by the PFN utilizing the appropriate and previously listed relays, and the hydraulic pressures these systems develop will be diverted by the electrically activated sandwich valves. Figure 28 depicts a DC application but the same can be achieved for an AC application. Parker and Vickers are two major manufactures of hydraulic control devices and Gates is a major hose supplier, however, there are many and the fact that all are not named should in no way exclude them from the use of the PFN or when these components provide automated and remote controls in any accountable process.

Appendix 7

Is another group of pages taken from the same Grainger catalog and put together so that anyone skilled in the art could utilize air or compressed gas to activate automated and remote control actuating devices electrically through the PFN
processors. These same functions can be achieved for water, fuel flow and/or steam as has been stated, however, there would be application specific parts and sealing surfaces to handle the product's properties being governed, to energize a work function. The first twelve pages deal with the electrical solenoid diverting valves A through L. The next nine pages M through U give all the possible cylinders that can be used to physically activate functions for automated and remote control functions for more push pull applications. Pages V, and W shows the air motor devices that can perform rotational activities by air.

An effort has been made from Appendix 2-7 to provide all the different actuating devices by the medium and/or force that energizes them either to push and/or pull and with or without spring returns and also into rotational devices from a $1 / 2$ a RPM to $3000+$ RPM to be utilized in any basic mechanism to automate controls by electrical signals processed in this technology's PFN. These electrical signals will be recorded in the system's memory devices and marked with a time, date, geographic location if need be and the command string record. While these descriptions and information is sufficient to produce any automated device needed to slow stop and/or secure any type of equipment, machinery, and/or vehicle through remote control for any reason ,more devices will be detailed in the application specific patent applications. However this technology has provided more than enough detail for anyone skilled in the art to produce any necessary controls to automate any operator controls or to complete any interface with any onboard power control systems and devices to perform PFN functions in any automated and accountable manner. The primary goal here is to restrict equipment for any unlawful or unauthorized use and to provide accountability and the physical means to develop full remote control and robotics for every vehicle, machine and piece of equipment worldwide. This is to be done commercially to collect and receive any fee for use and to control equipment's use, while assessing risk and helping to establish fair insurance rates in every industry, provide evidence for legal settings and analyze the impact on the environment and the worlds infrastructures.

Appendix 8

Appendix 8 is another section out of the Grainger Catalog No. 387. This section has more DC motors Pulse generators, motor controllers, gear motors, modular drives AC and DC actuators, electric clutches and brakes, speed reducers, inline speed reducer, and more gear drives.

Appendix 9

Another section from the Grainger Catalog with wash down drive components, sprockets, chain and rollers, pulley and sheaves, belt drives, belts, gear belt pulleys, multi grooved pulleys or sheaves, roll pins and key ways.

Figure 3

Is the software program for the first prototype chat box and demo unit and has already been described verbally earlier in Figure 2. This is the program Command string in P-basic for the slow, stop and secure in a stationary position functions (PASSS program), plus the activating commands to give the appropriate warning messages and start the recording devices which are controlled by the Parallax Stamp II computer. Then this mini computer drives through peripheral circuits the appropriate actuating devices on an automobile to perform the physical remote control functions with onboard monitoring and local data storage. This is not the only variation or software for this protected stop and control box invention or the only remote control purposes or functions performed by this simple one-way PFN prototype. Even this system can be configured to control most all machinery and equipment with the appropriate support circuits and peripheral actuating devices, that are detailed in this application and the related applications as innovative devices. So this software program is merely to display a first aggressive, but, responsible step in remote control. This prototype is a first example of what this technology is designed for; which is to perform protected and accountable remote control at every level of system in size, variation and sophistication.

This one-way system and all the systems (one and two way variations) are designed and have been chosen to inexpensively meet software needs generally and
specifically so that they can be changed easily. The application specific software in most of the C.O.T.S. products will rely on commercial software programs and operating systems, e.g., basic, MS windows, etc., however, be individually application specific written. And the greatest detail and software components for this technology will be to provide accountability logs and systems to show access and entries to secure data files and use of the files. So even when the one and two way PFN's are outfitted and used in higher security applications, they will have special encrypted hardware and software command capability so that only the authorized contacts will be a possibility.

The specific command strings, like the one written for Figure 3, will be verbally described and the specific command string software will be detailed. The software will vary in large degree by the different types of systems and devices used, how they are employed and interfaced together to create the present needs of this diverse network; and the tasks or functions they will perform. Whereever possible and when ever a working prototype software is in place it will be fully detailed in all the related pending patent applications. There will always be a maximal effort by this technology to universalize and standardize all the systems, simplify them, and consolidate them, while, expanding this technology commercially, technically, socially and environmentally to help create a sound economic market for accountable remote control.

Any software that is written to provide the accountability and signal protection for remote control along with the devices and systems detailed in the first three applications even if it includes worldwide use, application and impact and especially if they are operated within a secure encasement fall within the nature and scope claim for this technology. This is, and has always been, a major claim of this technology, protected memory storage of operator and vehicle temetry.

Figure 4

900 - Is the electrical circuit that is used for the $100 / 200$ series seat control drive mechanisms and actuators employed for the deactivation of the accelerator in a car which slows the vehicle initially, and continues the slow down to a stop of the vehicle in its final stationary state with the emergency brake system. This circuit is
either attached, concealed and/or secured right to the protected device either the sliding channel device depicted in Figure 5 as the brake tensing system or the vertical adjusting seat nut drive as illustrated in Figure 6. The line going from the letter I in the upper left hand side of Figure 4 to the little number 8 on part 161 a Potter Brumfeld double throw double pole relay K1OP-110512 12VDC is the input voltage from the invention that activates the brake in Figure 5 by contracting of the channels and tensing the cable system through energizing the horizontal strip gear system in one direction by the polarity of the motor energized until a limit switch is forced open by the fully contracted channel to appropriately apply the emergency brake. This is the resting or stop and secure mode of the vehicle that can be activated through remote control directives preprogrammed directives, and/or a dead man safety seat or door switches to secure the vehicle if there is no one behind the wheel or if a door is open by activating the brakes for any or all of those 900 switches or sensors, i.e., 915-914916 already discussed in Figure one.

Little number 7 in 161 is ground and one through six wired to the relay 161 complete a polarity switching function for the motor part 150. The parts 160 are the limit switches (for the brake system Radio shack PN275-017A). Ls1 is adjusted to stop the motor when the proper position to tense the cable with the proper force without over taxing it has been achieved. And Ls 2 is the limit stop in the drive mode direction when the shut down system has been deactivated and the invention is set to monitor. Different limit switches are used for the nut drive in Figure 6, but the circuit is essentially the same. This switching circuit could have been performed in side of the control box or PFN, but this is the system that was chosen to best display the mechanical and electrical functions clearly to help influence the commercial interest and understanding and to demonstrate the ease at which the invention can be put into production.

The basic assembly, with the self contained relay system coupled with the braking system can easily be a safety mechanism with no more necessary control circuits than to be connected in series to the above-mentioned driver seat or door closed conformation sensors, i.e, $914,914 \mathrm{~A}, 915$, etc., and would be able to apply the brakes automatically to insure emergency brake deployment every time the vehicle was without a driver and would require the driver to consciously release the brake
before driving if connected to the pedal assembly or hand lever as is the modality used in the first prototype and demo. This also works for all the doors as well. Not quite as important, but, as part of any safety mode that is also using the accelerator pedal stop as described in Figure 6, the pedal would be kept in the highest position to make sure acceleration can't take place till the person driving first puts his foot on the brake and then shift the car into drive. And when the car is in drive, the elevated nut drive is retracted to its lowest point on the floor board so that the engine can be accelerated. However, the present demo or prototype retracts the accelerator pedal block on a legitimate keyed ignition with all the doors closed. It is important to remember that any number of different circuit configurations and components can be designed to complete this task of motor control for these functions and any such variations all fall with in the nature and scope of this invention when so used for these stated purposes.

Figure 5

152 displays a gear reduction drive that is a right angle transfer worm gear transmission for rotational force as is used through out many industries to day. It does not have to be 90 degrees and it can be configured to meet any angle and gearing specifications, i.e., pitch and ratio as well as be perfectly in line and/or directly attached, however 152 and 150 -- DIRECTLY REPRESENT THE EARLIER REFERRED TO C.O.T.S. SEAT CONTROL DRIVE MOTOR ASSEMBLIES AND -- are used in the prototype. This is the already existing and previously described C.O.T.S. product made for GM DELCO as their product and/or part \#20489380 motor drive part number and utilized in at least GM cars for seat control drive motors to power cable driven ball gear nuts and/or perpendicular, worm gear drive parts for horizontal seat motion of the car seat. Their specific part number identification will be listed and completely described with in this application as is all this inventions uses of these C.O.T.S. parts employed for theses unique purposes.

151 displays a quick connect cable that has a quick coupling mechanism to hold a square drive or any interlocking set of mating surfaces from one cable end to mate with the internal rotating receiving surface of part 152 and do likewise with part 257. This coupling and transfer of power can be accomplished either by direct shaft drive of compatible mating surfaces and housed in a sleeve that can easily be attached
in a fixed manner to parts 152 and 250 the receiving worm or screw input surface in part 257 with compatible mating surface. 151 can also be a cable drive of any length necessary to position all these parts for their most favorable deployment in regards to the nature and scope of the invention, which will have and can employ any and all secure coupling technologies, e.g., screw sleeving mating, set screw points, detent ball interlock, any clamping system and the system used in the seat controls to quickly grasp and lock in on a double beveled receiving male surface on both parts 152,150 assembly and 257 which when forced inside of 151 cable ends holds the cable in place by a pre-formed nylon or polyethylene plastic fitting that flattens and drops its outer rim created by slotted sections to secure and create an interlock holding system instantaneously, because the receiving bevels protruding through the slotted sections designed to receive them which sends home the square male drive and/or compatible male drive securely into the compatible receiving female rotating surface of part 152. 250 is a worm gear 251 mating perpendicular drive change to mating gear on the strip gear part 256. Part 250, 251, 253 bushing blocks and 256 are all included in part 257 the horizontal adjuster drive in the seat controls and is the part \#16776157 in the prototype to apply the foot pedal for the emergency brake system. 252 is the outer rail or channel 258 is the inner channel that in the prototype is attached around the brake pedal arm, which allows the arm to slide freely in this part 255 as shown in part as a solid line and doted line as one variation for a mere cable tensing application. 254 is a reconfigured $3 / 8$'s turn buckle that has had the left hand threaded bolt removed and the slotted travel section which has a bolt passed through it to attach it to 252 with part 259 the bolt and washer assembly the other end of the bolt is used to adjust the different throws necessary to achieve the effective pedal application range illustrated as part location 205 in figure 1, also shown as 206 is another adjusting screw and jam nut to further finely adjust the throw of the device for any specific vehicle if need be. This adjustment bolt not shown in figure 5 would be in part 255 and go through 255 from left to right. And this same device can be used for cable tensing if it is used in other earlier described locations such as under the car as is the case for part 200 in Figure 1.

255 referencing solid and short dotted line are indicative of the type configuration that would be used for this purpose in Figure 5. 262 is a jam nut for the
turn buckle and 252 is a cross section of the floorboard or wheel well wall that the adjusting bolt passes through to meet the turn buckle part 254. For the 200 location attachment the bolt would pass through an accessory bracket attach under the car a frame or floor pan component or have a bolt pass through the slotted turnbuckle area and attached underneath the car to allow movement to adjust the throw and then be tightened to create a fixed anchor mount for the part 252 and allow the necessary travel for part 258 to carry attached part 255 with it and tighten the two rear cables as referenced in the 200 part location and modality in figure 1 . Optimally all these bolt and jam nut systems would either incorporate a special tool or have to be accessed through some protected covering to restrict any unauthorized adjustment in any easy manner. 261 is slide buck bushings that ride on 258 and keep true and provide smooth travel for part 258 inside of part 252. 160 is the limit switches Radio Shack 275-017A that have been described electrically in figure 4 that are mounted on brackets on 252 and are struck by 258 to open the circuit energized through the relay 161 in Figure 4.

This innovated device has been chosen for many other automated applications where pulling and pushing by finely controlled but high torque applications are a real consideration. Most are detailed completely in the these related applications. Also, there are 3 isometric drawings showing the different applications and one I-200 with the tensing device under the car and the motor in the car cabin and the cable passing through the floor. I-205 which is the prototype configuration where the foot brake lever is depressed from the tensing channels- and another tensing device in the I- 201 position which is a piston application for the pulling or pushing of the cables powered either by air, brake fluid, or hydraulic oil, i.e., power steering fluid, transmission fluid (pressure sides). Here the PFN control circuit would open and control solenoid valves to regulate cable tension pressure in the system in relation to sensors in the system that transduce a specific pressure to a recognizable electrical signal for the PFN compare software. Instead of activating a motor direction relay. The relay will open and close the valves and energize the piston or dump the pressure back to the reserve in what ever system is being utilized or allow the pressurizing agent to escape and/or be wasted if it is a one time application system such as a compressed air canister.

Figure 5.1

This is a drawing showing the emergency brake pedal assembly being motorized to combine the automated application of the emergency brake with the OEM's typical circumferential ratchet strip lock gear assembly or system. A similar system is designed for the center mount hand pull emergency brake system found in a number of cars to consolidate mechanisms and functions which are integral to the invention's nature and purpose.

150 is the motor in a simplistic side view of the assembly. It will be a gear reduction motor to slow its speed down and better control the application of the emergency brake system and its release. The release will be accomplished by a momentary push button after the doors have been closed and the car's motor is running or accomplished with the foot on the service brake and the transmission shifted into drive. The circuit will be basically the same as the one described in figure 4 for the motor reversing function or a solenoid activated raising of the drive gear assembly 171 to disengage it from the circular or arched strip gear 170 attached to or part of the pedal arm assembly used to place even tension on the cables to the rear brakes in most cases.

Another release modality will be a free wheel capability of the drive gear to just rotate with the arched strip gear when electrically (energized) or (de-energized application specific) (solenoid locking pin or magnetic interlocking meshing surfaces as detailed for the through shaft on the butterfly valve for the air control throttle in figure 9-A of this patent application), and/or mechanically disengaged as is the standard presently, but in many vehicle specific cases accomplished by releasing the above mentioned parts electrically controlled parts in a manual manner with spring returns to reset them for automated applications.

Of course, in an automated authorities controlled shutdown these manual functions would be locked out of the operator's control. 171 is the drive gear on the gear reduction that meshes on the beefed up arched strip gear. 170 is the arched strip gear that replaces the saw tooth catch surface of the ratchet catch system for the standard emergency brake pedal system in use today by many automotive and equipment manufactures. Similar arched ratchet and locking paw catch systems are also used to hold the emergency brake for the hand pull brake systems as well. So the
motorizing of the hand pull will be in many vehicles accomplished similar and considered detailed here in an adequate manner so that any one skilled in the art would have no problem in constructing electrically controlled and driven hand pull brake system for automated and remote control. However, space in this application will most probably will require the use of the cable component of the seat drive systems as has already been described for a more convenient motor placement.

172 is the articulating bolt or point for the brake application bar. The cables would be attached to this lever in the traditional OEM manner employed by the individual vehicle manufactures for their ratchet devices, and/or, a generic or universal system which are product designs of this technology will be standardized by application specific vehicle type needs (e.g, minivans, regular sedans, pickups, etc.) and utilized to insure a vast amount of alternatives to deploy this safety enhancement and important automated and/or remote control device (slow, secure and stop component). And any OEM systems used in the manner and for the purposes described herein to accomplish responsible automated and/or remote control to slow stop and/or secure a vehicle in a stationary position fall within the nature and scope of this invention and technology. 173 which in this case is a pedal rather than a handle for a hand pull brake device. Because of the varied cable attachment and adjustments differ so from manufacture to manufacture they are not shown here. And the picture depicts the motor in a fixed location, however, the prototype designs are planned to lift the motor from the 170 gear as a quick release mechanism of the emergency brake. This will be accomplished in the same manner detailed for disengaging the motor drive for the steering and guidance 700 series systems. The motorized geared brake assembly will also be built with this solid motor mount configuration as depicted in this figure for a lot of experimental systems where this release time is rapid enough, because it is the least expensive, easiest to manufacture and efficient, and unless the release time is a real issue in any real life situations this system will be the one of choice. Any devices that are designed to automatically apply the emergency brake systems or any of these systems for remote control and/or for any standard safety concerns as described in these applications are all within the nature and scope claim of this invention.

Figure 6

150 is the motor and the same kind of seat motor as described in figure 5 , this is true for the cable 151 and 152 the drive transfer. 154 is the accelerator pedal and 158 illustrates the carpet covering up the nut drive and helping the aesthetic appearance while concealing its presence. 157 is a worm screw shaft with a broad flat washer or plate that is attached to the floor carpet and then blocks the pedal from being depressed when it is totally elevated. 155 is the nut drive section for this shaft and is powered by 156 which is perpendicular across the part 155 and both have geared surfaces to mesh with one another and transfer their rotational force which is supplied by a cable snapped into 156 in the manner described for Figure 5. 252 is the floor board of the vehicle. Once again, this is the modality chosen for the prototype for its readily available C.O.T.S. However, the placement of these systems for the pedal stop when configured for installation at the time of manufacture would be more securely combined and concealed as part of the vehicle structure as is understood by anyone skilled in the art. However, these are the parts and quick commercial adaptation into this present market place that these experimental systems use to slow, stop, and secure the standard vehicles on today's highways. This has been the primary focus. So these systems are detailed here to provide understanding, real feasibility technically and collaborative commercial opportunities through this responsible remote and automated technology.

All part numbers are as follows for drawings 5 and 6. Also, the motors and cables and some drives are the same for Figures 18-21 the automated steering section. However, they will be configured slightly different for all the versatile uses as displayed in Figure 1 and described for the individual drawings.

These GM part numbers are for the ' 97 Chevrolet Lumina, Monte Carlo and Cutlass Supreme, so the cables given may be specific for that year. Most of these motors, the gear nut drives and the horizontal drives are the same from the late 80 's however, any use of these types of seat controls or any other C.O.T.S. motors and servo motors, cables and drives that can perform these same automated functions should all be considered within the nature and scope of the invention. The rails are the standard aluminum rails from the seat adjustment assembly for this automated seat. They are, however, cut and configured differently and have all their OEM
brackets and mounts removed and/or replaced with innovative parts to do their stated functions. The strip gear is the same, but cut shorter for a some of the brake tensing applications. Essentially all parts are from the GM seat adjuster assembly for the experimental prototypes, but other manufacture servo motors will be named and identified in all the related applications for the industries they provide equipment in. However, the mere use of another motor or drive part (different part numbers, or supply line manufactures etc.) or any minimally reconfigured designs are not unique if they perform the same physical tasks.
C.O.T.S. PART NAME
GM NUMBER
Front gear-nut drive 16607860
Rear gear-nut drive 16607861
Horizontal adjuster drive 16776151
Horizontal adjuster Motor 22138353
GM DELCO \#20489380 product. From late 80s. 29685
Front vertical gear-nut motor 16607859
Rear vertical gear-nut motor 22138358
Front vertical drive cable 20651072
Front vertical gear nut cable 20489051Rear vertical drive cable20651135
Horizontal drive cable 20651135

Controlled Speed Limit Function for Accelerator Stop Modality

Before leaving this modality and even though the most effective shut down is the complete elimination of the accelerator function this technology has always recognized a limited driver acceleration capability might prove of value in certain situations where supervised shut downs are not immediately possible to provide visual control by responsible persons or automated video equipment.

For these situations, the invention can achieve a limited operational speed of say 40 mph (this speed could be any speed, and this is probably best left to DOT, law enforcement input, industry test organizations, governmental agencies and insurance testing for real life situations to determine any controlled speed levels for any specific protocols to set standards). The objective here is to limit the speed of a vehicle on the first page, phone of RF signal received by the invention's PFN to allow for law enforcement to locate the suspect vehicle and complete a controlled shut down with
law enforcement present. However, initially remove any high speed capabilities as a first step to making a carjacking safer for the general public.

Until the police are in the appropriate position the suspect vehicle will be drivable at a reduce speed level. This would be the minimal speed for highway driving or a little less (probable about 40 to 35 mph max). This has already been claimed in earlier applications as an optimum way to control a slowdown until the ideal personnel and authorities were on location for the final deactivation of the vehicle. However, this procedure is achieved and described through many different modalities but is also possible through the adjustable pedal stop (Seat control systems being used in the prototype presently) to raise and lower the stop in accordance with vehicle speed sensor input provided via coyote 100 series circuits diverted to the PFN or direct connection to the sensor or the PCM of the vehicle, or wheel sensors. And responsively connectable to the pedal stop motor via PFN relays (electro mechanical and/or silicon).

There are three separate electronic ways this is being accomplished and all three are equally as good. First, the stamp computer and/or any (PFN) with one designated input pin will count the digital pulses form the PCM of the car and in the cars of GM cars will cut power to the relay for the pedal stop which energizes the pedal stop and eliminates the accelerator when the car goes over 40 miles per hour which $=160,000$ pulses (there are 4000 pulses per mile per hour with most of the new GM sedan cars. Of course, if this was found to vary from manufactures the pulse count would have to be changed accordingly in the Stamp II software or PFN computer configuration. Once again, if the count fell below 160,000 pulses the relay would once again be energized and the pedal stop lowered to allow for acceleration this maximum preprogrammed speed level can of course be changed remotely with additional remote or on-board authorized commands and it can be employed for many other speed control modalities and it is considered another modality to this technology.

The second way this is accomplished is by using any speed sensors analog AC voltage at a matched desired speedometer reading and when this voltage exceeds the desired speed level the PFN will open a silicon relay or relay circuit removing power to the relay which will energize the pedal stop motor to restrict acceleration. This
program will energize this circuit on the first call through the inventions \#1 relay. This adjusted speed level can also be achieved by a trickster circuit adjusted to accept a certain current level through a variable resister connected to the input pin of a darlinton Toshiba driver. The resister would be adjusted by elevating the cars drive wheels and accelerating the vehicle while watching the voltmeter connected to the driver out put and watching for when power was present to energize the pedal stop relay or any other accessory. This can be controlled through the PFN or used as an automated speed control. A silicon relay will function the same way with a resister to set gate voltage.

These first two ways employ the Trans axle or the transmission sensor to determine vehicle speed. The third way of determining vehicle speed data and cutting the accelerator capability of a vehicle is through the wheel sensors and their AC signal to the EBCM in the same way that is used in the second way for the transmission or to retrieve the digital signal as it is converted in the EBCM brake module and/or sent to the PCM.

As for the deployment of the in cabin warning and/or a dashboard signal to allow the driver to know that the vehicle is in a restricted mode, this will be left up to the manufactures and all the above commercial groups, and governmental agencies. However, flashers and outside info bar will be deployed to notify the surrounding vehicles as part of any phase one shut down and any outside megaphone or speaker system could be activated. It may prove beneficial to deploy the directional in cabin message with law enforcement present with a second signal pager or Rf signal, or this second final slow stop and secure in a stationary position will be a timed deployment ideally with law enforcement present. In any event, this presents no problem for the inventions technology just responsible decisions made by the proper people in the commercialization of the invention and the use of it to set up standards and apply law rules and regulations.

Figure 7

CABLE JUNCTION BOX

Basically this figure shows two ways to interrupt the accelerator cable from activating the throttle assembly. It is understood there are many other obvious ways to achieve the deactivation of the throttle assembly by a great many mechanisms that can disengage the cables and linkages as well as different stops locks and latches that could be employed to defeat these standard mechanical physically controlled acceleration parts on a vehicle. However, presently the experimental plans and prototypes will be totally described and explained. Most likely the automotive OEMs and their supply line manufactures will try to develop their own specific cables having catches and releases and electrical actuators to achieve an interruption of the mechanical controls to the throttle for deceleration purposes. However, any such alterations to deactivate the accelerator for these same purposes would still be the same innovation and fall within the nature and scope of this invention.

101 is the throttle cable to the cable junction box 102 which major purpose is to create a cable release and reattachment system to interrupt any mechanical acceleration that accelerates the vehicle from depressing the accelerator pedal. This is achieved through the activation of solenoid 126 or 109 . These two other entirely different systems that interrupt the accelerator cable to deactivate any acceleration are an alternative first step for a controlled slow down to detain like, i.e., the gas pedal stop already described in complete detail and illustrated in figure 6. The reason for this complete description is that this is another proven system and has been experimentally used effectively.

104 is the cable that goes to the cruise control from the throttle cam while this to could be interrupted through a mechanical means involving the cable. It will be easier to deactivate the cruise either through the continual activation of the service brake switch and/or circuit or the electrical de energizing for the whole cruise system or in some cases cut the vacuum through a solenoid for some old cruise control systems. The modality chosen will be determined by all the variables such as vintage and types with regard to all the vehicle applications. This deactivation of the cruise control for the purpose to detain and/or control a vehicle is very simplistic, but a necessary and unique way to limit this accelerating device. There are a number ways
to deactivate the auto increase speed function of the cruise control. One is disrupting the power supply to the cruise control with a relay another by deactivating it through the Service Brake safety switch by representing a brake depression with simple relay that gives an appropriate signal or current when activated through the inventions automated slow down phase from the onboard computer (PFN) With this completed the throttling up of the power plant has been completely nullified. Cable interruption is another mechanical option and the deactivation of the cruise control is done in a similar manner for the pedal stop variation described for Figure 6 modality as well. There is and will be a large list of modalities and it can go on and on. However, any such augmentation to the cruise control for remote or robotics control are within the scope of these applications.

105 is the accelerator in-feed cable to the junction box. If this system is a OEM construction the many varied pictorials to the left will illustrate several cable interruption control systems, to clearly show that any cable interruption and control system, when used for these stated purposes are obviously a part of this same invention. And if any OEM and/or any supply line source and/or any after market manufacture wishes to use cable releases and linkage disengagement's for these stated purposes then Figure 8 will show the already standard conceived interruptions for these mechanisms to restrict and/or reduce a power source and/or plant's out put to propel a vehicle. These same systems can reinstate the mechanical means to increase power from the power plant in a standard application and also, if desired in automated degrees. 101 is the cable that goes from the junction box to the throttle butterfly valve120 lever or cam in Figure 9. And under a normal uninterrupted mode will transfer the exact one for one movement of the throttle as to the depressing on the accelerator pedal, however, in 102 a box , the lever system is released from its articulating point (a spring loaded shaft from perpendicular solenoid part 126) is energized which lifts the metal plunger shaft up inside the solenoid and the levers 118 fulcrum is removed to the second circle where there is a second solenoid to allow for some tensioning of the cables but not enough to accelerate very much. The pedal goes almost to the floor and when the second solenoid indicated by another circle is energized the lever moves with 105 cable; but has no effect on the 101 cable to the throttle to in crease acceleration. There is a return spring 107 that pulls the lever all
the way back so that when the solenoids are deactivated and releases the articulating shaft the original one to one articulating position is re-instituted for normal acceleration, which, when the accelerator pedal is released one time, will allow the lever to return to this highest articulation position. So when the invention is reset the pins will drop in to reinstate cable function.

This system can completely, in one activation, merely eliminate totally all ability to accelerate a vehicle or merely reduce pedal throw by having set articulation positions which are controlled by the PFN's software commands. However, prototype experimentation has proven for the unauthorized shut down, specifically, the slow down is best accomplished with the total elimination of the suspect driver to accelerate, while under police observation and radio contact with the remote control, or totally controlled by the police on location with a report back and redundant data stored on-board as a record to insure authentic and proper authorized shutdowns. These records as stated through out the related applications are to be prepared and processed to be of evidence level quality for use in legal and judicial proceedings. This technology also, provides for remote reactivation of the acceleration capacity in real time of the suspect vehicle to avert traffic problems when a this is a wise decision, which can be accomplished either through distant remote control authorized commands or in short range (local command from the trailing police cruiser), while both vehicles are in real time movement. Many modalities for this short range remote control communication are detailed in the related patent applications; especially, for the special law enforcement (traffic control hand gun tool). All of these systems are capable to be responsive to legitimate law enforcement remote commands in real-time through this technology's PFN system of responsible and accountable remote control.

102b illustrates the interlocked cams system with one on top of the other fix mounted on shaft 111. 109 is a solenoid with a drop pin that passes through the top cam disc to an interlocked position in the bottom cam disc and 100 is a spring that returns both top and bottom cams to the best alignment for the solenoid pin to drop in. In 102B the discs are not interlocked as signified by the dotted circle to the right of the 109 solenoid position. This action will allow the 105 cable to pull and rotate the bottom cam without pulling the upper cam or disc thus leaving 101 not effected and keeping the throttle in the at-home position and/or idle. Of course the electrical
service is on a flex wire to absorb movement or alternatively accomplished with a double semi-circle set of contact strips directly connect to the motor that is supported on the top cam. The contact strips have mating paws mounted in the top of the box with electrical energy directed from the PFN computer. Both of these variations are designed to provided current without interruption from their movement). These systems will vary greatly from these experimental designs and are presented here to establish the basic versatile technical pathways to aid all manufactures to complete these simple first steps to provide responsible remote control functions for the unauthorized vehicle in the most inexpensive manner as standard equipment functions for legal and appropriate highway safety, and insurability in aggressive remote and automated control situations. These have just been presented as experimental devices for the prototype in this modality, however, any alteration to the manual mechanical cable especially to achieve a slow down is considered a natural evolution of this innovation and a primary element of this slow down.

Figure 8

Figure 8 displays cable end anchor releases. The above figure 8 A shows either a hinge drop plate 106 that when solenoid 117 is energized the secured cable end is allowed to fall towards the throttle cam so the inner cable has no fixed point outer casing to be pulled through. However, the actuator system could be configured in the reverse where there is not enough distance for the device to function properly. Also plate 106 could be mounted on a slide bar not using a hinge at all so that when a solenoid catch release the entire plate would slide the cable anchor plate forward not allowing the throttle to be effected, because the fix mount for the cable casing would be to close to the throttle and the slack in the cable would be to great to activate the throttle. It is held fast by a solenoid and allowed to slide forward, when de energized in slow down mode. The return to home position is accomplished with return springs either part of the solenoid or as in the case for the slide bar system in front of the sliding plate and mounted on the slide bars with a stop on the other end, or just a mounted piston with a spring around the ram and before the anchor plate that holds the fixed cable end at an actuating distance will return the anchor plate to a locked position.

These springs are never strong enough to defeat the throttle return spring only able to return the anchor plate and cable to its fixed position for normal acceleration when the pedal is released. Any obvious cable constructions to allow for any detachment or deactivation of throttle cables and linkage for any of these stated purposes fall within the nature and scope of the invention.

In figure 8B the accelerator pedal mount has been chosen as a good location to illustrate a linkage disengagement system. Here, 105 goes directly to the throttle cam from linkage 116 which mates with 115 the other end of the pedal linkage which in the normal state travels with each other as one bar and allows the accelerator to pull 105 cable and open the throttle 120 in figure 9.114 is a out line of a box or encasement where 116 inter locks with 115 . This can be accomplished in a number of ways, but for the first prototype a mini solenoid with a retractable latch pin on 116 that is electrically serviced by a small flex wire to the fire wall section of the 114 box mount and when energized will release 116 from 115 as the pedal is depressed both 115 and 116 will have return springs to return them to their natural position at an idle state so that when the automated release solenoid is de-energized the parts 116 and 115 will interlock to function in the normal state once again. The solenoid and flex wire is only minimally shown here sacrificially to show the separation of the pedal linkage once again these detailed drawings showing parts and locations will be in the formal application but the nature and scope of this device and its function are clearly explained presently so that anyone skilled in the arts can read easily construct and/or locate C.O.T.S. parts to complete this device in many different configurations, but essentially create the same device.

In Figure 8C, Cable 105 is where the cable is interrupted and this also has a multitude of different configurations, however, the one illustrated for figure 8 will be described presently so that any one skilled in the art could easily make these devices. 105 connects to part 116-115 which is one part in the uninterrupted standard pedal linkage and it passes into 119 which houses a flat contact disc that has the cable 105 attached to its center, also in 119 which is a cylinder there is a electromagnet plug piston that has two contact strips that are guided to make contact with brushes to energize the electromagnet when the cable is to provide the flat contact plate a firm connection thus allowing the pedal to activate the throttle through cable 101. 119 is
anchored to the firewall and spring returns allow for the coupling when 112 is energized. 113 is the contact brush paws. It is important to remember that these different cable anchor releases and disconnects can be placed on either end of the cable or anywhere in between as is determined by application specific needs of an individual vehicles engineering.

Figure 9

Figure 9A shows a throttle body that has been modified for the same purpose to primarily disengage any acceleration capacity and/or control that capability through these automated device innovations for the purpose of controlling a vehicle though electrical service and components. 130 shows an augmented cam that has an small electric clutch attached to it and is mounted on a shaft that slides inside the throttle through shaft and when energized slaps against the throttle cam flat surface 125 and rotates the entire assembly to open the butterfly plate 120 in the throat of the throttle body. 123 is an electrical service that snakes around the throttle body with a flex loop to energize 125 electromagnetic clutch. When de-energized, the electromagnetic clutch disc 125 releases from 124 throttle cam receiving plate ever so slightly only to allow for the free rotation of 130 and flex wire 125 for as slow down function. This is more exaggerated here to best display the separation and because all these isometric drawing are from actual automotive C.O.T.S. parts on the latest of GM vehicles and have been altered to show the experimental prototypes and keep all the configurations as close to the commercial parts available today, but automate their mechanical functions for these purposes to quickly allow for their adaptation and use in commercial markets.

While many of the illustrations involve GM parts, any automobile manufacture as well as many other equipment manufacturers, who employ accelerator pedals and cables and/or internal combustion engines will have parts like these that can be easily modified and reconfigured by those skilled in the art. 121 in this drawing is the throttle position sensor and it is responsible for sending a signal to the powertrain control module shown in figure 20. It is being mentioned at this time as to where its physical location is because it is referred to later in the 900 series "Trickster" innovative device circuits and later drawings. While the throttle position sensor is
displayed here as having a fixed mount in the housing earlier and other manufactures have them on the exterior of the throttle body housing but they all perform similar function and the 900 series description will completely describe these different electrical signal from voltage levels to digital pulses generated to supply different electrical data to the power train control module for engine performance and drive train controls. Most older ones were simple variably resisted currents to signify the throttle position from a potentiometer. This entire throttle release mechanism will also have a molded encasement that will prevent accessibility without damage when tampered with if deemed desirable as a commercial and safety enhancement to insure its use. This will also be a consideration for all these safety controls as has been previously stated.

122 is the air volume solenoid mixture valve and will be detailed as to the invention innovative activation and deactivation of this part in controlling a smooth slow down. 9B part 122 shows how the throttle body mechanism is attached to the engine. This drawing is being used to show a servo motor attached to the throttle through shaft 131 and controlled electrically from either a potentiometer speed pot mechanism or digital sensor attached to the accelerator pedal which inputs a signal to a silicon circuit relay system that will be a motor controller in direction and speed for the motor on the throttle shaft. It will change the polarity for the direction of the motor (to accelerate and de accelerate) and the amount of current to control the speed of acceleration. The speed control will be a one to one response for the throttle butterfly valve, which will require no physical linkage or cables. This is this technology's form of drive by wire either with these (SCR) circuits, which will be in the PFN or in many cases embedded as part of the solid state computer in the PFN or as a euro board 100 motor control circuit for the PC computers detailed in the related patent applications. This will become an electrically controlled motor through the invention's PFN computer or car computer to throttle the car either for a safer operation and/or road handling (through its automated onboard software program or as a device to deactivate the cars ability to accelerate to complete the first slowdown modality for the unauthorized use function.

If done to deactivate the vehicle to detain it through any drive by wire system falls with in the same nature and scope claim made for this invention. As to help
drive-ability in high performance vehicles for the, i.e., the new Corvettes for inexperienced drivers of muscle type vehicles this device has already been experimented with by GM for this purpose and the invention makes no claim here. However, the invention has been in experimental stages incorporating speed pot technology and digital AC signal positions circuits some from the forklift industry to develop an electric signal as to pedal depression position and activate the 135 throttle servo motor to a specific position instead of using the above mentioned mechanical cables. Another drive by wire modality that incorporates a gear reducing C.O.T.S. product for 135-137 throttle motor drive actuator is the prototype for this application employing a 1989 Chevrolet pickup heater vent servo motor and gear drive. This motor gear drive is not required to turn 360 degrees In fact, it will only rotate 90 degrees to close the butterfly valve.

Because this technology foresees the use of other energy sources that will create an inevitable and commercial turn towards the electric vehicle development in the near future, the need for a mechanical accelerator pedal transducer to convert physical pedal position into an electrical signal will have increased value. It will be the most ideal way to send a signal through a module or circuit to control drive motors or an Electric Wheel Configuration or electric flywheel transferring final drive system etc. to control motor RPMs and/or a power-train's RPM output in vehicles and/or any other so configured piece of equipment. This technology is presently stating and making the claim here that these new electrical vehicles controls for propulsion can be accomplished through these above described systems and the PFN computers in the most ideal setting, which should be the protected, accountable, automated and remotecontrols for regular acceleration, de-acceleration, the cruise control functions and all the controls needed to slow stop and secure a vehicle or piece of equipment in the most optimum manner for any reason. All of this will also be controlled through TRAC's programmable and modular software in the PFN.

The PFN technology should be used with these new vehicles from the inception as it can be inexpensively combined and designed directly in and with these electric car systems. As detailed earlier the slowing or stopping process will be accomplished through motors, that can be generators in the braking function (in some cases) to convert the vehicles inertia into electrical energy as well. This technology
has already been detailed at some length earlier and in the other related patents as well as, how to accomplish these innovations with C.O.T.S. products and many of the solid state motor controller circuit board arrangements contained either within and/or outside of the PFN. So the speed potentiometer or digital signal circuit for electric cars, e.g., regular DC motors and these new Electric Wheel systems will have the silicon circuit relay system with a field weakening capacity and/or a power engagement controller circuit for the inertia transfer systems, or for the electrically controlled transmissions, etc. that will be responsive to a pulse generated signal from the accelerator position, which will energize proportionately to this generated signal and the present speed of the vehicle (wheel sensors) the appropriate current to a electric motor, if present; or in the case of the transfer controlled drives the proper rotational force needed to rotate the wheels by either controlling the magnetic fields to engage whatever inertia force transfer system is present; or any electro-magnetic clutches or solenoids for the more traditional vehicle power-train transmissions, e.g., manual and hydraulic, etc. attached in this case to these above-detailed electric power plants.

Figure 10
Figure 10A shows another throttle body adaptation, where 120 a point of origin is the butterfly valve. 133 is a mini push/pull plunger type solenoid mounted in a drilling in a HUB that is fixed to the throttle through shaft 131 so that when it is extended it passes through a hole in 130 which when the cable 101 is pulled down in the de energized state rotates the shaft and opens the throttle in a normal function to increase the engine rpm's. When energized the pin is retracted into the solenoid allowing the 130 part to free wheel on shaft 131 not opening the throttle thereby deactivating any acceleration. 131 the throttle shaft that has a electro- magnetic hub or solenoid winding attached to it. 133 pin retracts into a slide bushing hole that is off center from the 131 through shaft. The hub and shaft assembly has a return spring that encircles it or is parallel to it on the shaft and the spring is attached on one end to the hub and the other end is anchored into a hole or drilling in the throttle housing. This always returns the hub and throttle shaft assembly to an idle position and/or home position or un-accelerated state. An accelerator pedal and/or cable return spring
returns part 130 to an idle state stop to align its hole with the plunger pin 133 for the purpose to re-engage it to the through shaft hub and provide normal acceleration form the foot pedal and cable. This can be reversed and have the solenoid on part 130 and just a hole in the hub for some carburetors throttle body injection systems and throttle to how they are augmented in function from their standard operational use.

Figure 11

Shows the entire air horn and air cleaner assembly and 3 different air butterfly valves $136 \mathrm{~A}, \mathrm{~B}$, and C locations that can be used to reduce air flow as either add-on devices for older vehicles and/or new specific devices for OEM's. 140 is the hose that connects to the already talked about throttle body, but it could be connected to a carburetor or TBI system. 142 is the MAF or mass air flow sensor and it gives an electronic sign back to the PCM power train control module to tell the system what the flow of air is into the engine. This signal in some fuel shutdown applications might require the trickster circuit to the PCM as have already been described for the earlier fuel valve shut off part 403 in figure 1 and detailed in earlier related filings. There also is in many cases a need for physically regulate the air to the popper level; which the trickster circuits are asking the PCM and IM ignition module to control ignition firing and injection firing in some cases through the injector module ICM part 404 in Figure one. For the physical control of the air not done through any OEM throttles and carburetors as previously described. Parts 136 A, B, and C are additional butterfly valves that can be placed any where in the air intake system and connected to
a solenoid or servo motor 137 that when activated are adjusted to a pre-determined dampening positions to only support minimal acceleration and/or only enough air to sustain an idle. 136 C is shown in front of the air cleaner, as a piece before the MAF sensor 142 , but could just as easily be made part of the MAF sensor assembly like 136A for easy electrical supply service with 142 and/or even part of part 140. 136 shows 136B location in a coupler in front of the MAF 142. The experimental prototype was constructed out of 3 " PVC 136 Cp with a $3 / 16$ th rod through the diameter of the pipe to hold a mounted round disc to make a butterfly plate, gate or valve and mounted on the front of the air cleaner with a flex rubber plumbing coupler in a 1987 Olds 98 and also the earlier detailed fuel valve was used in some of these successful modalities and not needed in others. Only timing and air augmentation through interrupting sensor input, i.e., 904, 905, 906, 907 in Fig. 1 to the PCM, the ignition module and/or the injector module.

There are many different combinations that may alternatively be used to create an even slow down by adjusting the air, fuel and timing through these totally detailed modalities within the inventions, e.g., with the trickster circuits on the TPS throttle position sensor and MAF sensors with the fuel valve and a 136 Cp air throttle, another by interrupting the crank shaft sensor with an intermittent relay (trickster) with the fuel shut down and/or air throttling (fuel and air devices) or the OEM software tricked by the inventions Coyote trickster circuits, 1,000 series, or just air throttling, or just fuel throttling. Alternatively, more universal and simplistic mechanical interruption devices for the accelerator as earlier described could be used in the first prototype and for its ease of installation and repairs for most technicians. Some more detail will be given to the fuel shutdown systems in the 400 series.

11.1 Cruise control for acceleration and speed control

The obvious modality to control a vehicle speed is through the present and past C.O.T.S. OEM cruise control systems. They are electrically controlled throttle systems that are particularly easy to control through the PFN interfaced with the vehicles electrical system in any number of ways. However, thus far the only augmentation to these systems needed to create the most ideal slow down scenario has been to de-activate the cruise control by using a trickster circuit to simulate the brake
switch depression for the cruise control module and/or interrupt main power to the cruise control or send a disengage signal from the PCM to eliminate the drivers ability to increase acceleration of the vehicle during an authorized shutdown, while mechanically eliminating the unauthorized driver's ability to accelerate the vehicle.

During prototype experimentation the complete absence of acceleration by a suspect driver proved to be the single most important element in creating a safer way to slow down present vehicles by remote-control. It is essential to be able to completely eliminate the physical motion of the throttle body by any driver activity as the easiest way to accomplish this smooth controlled slow down. Because, all these modalities leave the power plant idling to provide power steering and braking, etc. through the slow to stop phase while they eliminate the more dangerous vehicle acceleration time the high impact inertia which is the major cause for the massive amount of death, injury and destruction presently can be significantly reduced. In this scenario the present and past OEM cruise control C.O.T.S. products were not capable of this function without having the other augmentations like those detailed in this technology to eliminate the standard throttling modalities. These are all PASSS software programs with different device modalities.

This technology has focused strongly on developing accountable remotecontrol for the present varied automobile industry to play a major part in universalizing all these electrically performed automated functions into a standard at least for the automotive industry; and hopefully for all remote and automated operations and equipment worldwide. Also, another goal of this technology is to provide backward engineering for all of the already existing vehicles and equipment in all the other related industries, so that they too can immediately partake in these newly emerging remote control automated functions and services in a accountable manner, socially, environmentally and commercially.

Returning to the present and past OEM cruise controls with a few minimal augmentations provided by this technology will help them function well in speed control for the remote and automated control scenarios. As a lead into the changes of these systems one last way to disengage these cruise controls during the slow down functions is provided via a trickster circuit responsive to the PFN or similar system. (In the case of the present GM solid state digital Cruise control units with a stepper
motor a 4000 pulse per mile digital signal is sent to the PCM from an interrupted vehicle speed sensor PCM input). This normally OEM preprogrammed signal for inhibiting the cruise function prevents the operator from increasing the speed through the cruise control as well. It is not the most ideal system, solo for this function but does work. The reason it was not mentioned until now is that it has another purpose in more sophisticated remote and automated controls for the present automotive technologies. This same signal sent to reduce speed by the PFN along with a sustained resume current or signal sent to the Cruise control module for accelerating the vehicle will initially supply the two necessary electrically controlled pathways to accomplish variable vehicle speed controlled by the PFN and its application specific software for this purpose, or this cruise control adaptation could function in this manner with any number of comparable onboard controller systems that are accountable through TRAC software MASMP. However, in addressing the use of present C.O.T.S. cruise control systems for sophisticated remote and/or automated control of vehicle speed, e.g.,
replace the need for a separate cruise control module and stepper motor. Because this function will be performed by the motorized throttle system, as well as the elimination of any throttle in the emergency shutdown system detailed throughout this application. And of course this will be an ideal system for the cruise control, over the regular motor controller operational control for the electric vehicles, and to complete emergency shutdown scenarios for electric vehicles.

Throughout this application much of the drawings and descriptions are of the prototypes and experimental units. And for the most part these have been GM modified systems. However, a great deal of effort has been taken to design these innovative enhancements to address basic mechanical principles and systems found on every vehicle no matter, who is the manufacturer and from any country. Also, a great deal of time has been spent to cover all the varied vehicle propulsion systems, power transfer devices, braking systems, vehicle accessories and vehicle controls to establish clearly to anyone skilled in the art that this technology can provide automation for any remote control vehicle function. And finally, this technology has been expressly developed to do it all if need be or to enhance any existing technology in any collaborative effort to provide secure and/or accountable remote control for any and/or all of these functions detailed this application, as well as all machine messaging services detailed in the related applications.

Figure 12

This is another simple and clear drawing that GM has put out for their electrical components on their antilock brake system and it shows a new device they are using to control brake pressure so the wheels do not lock up in a skid mode with the loss of traction. This GM ABS VI system is designed to work off the existing pressure developed through the master cylinder (pedal application); and GM itself states that the ABS VI modulator motorized ball screw piston system can not increase brake system pressure on its own and/or apply the brakes. However, this is exactly what this technology is going to detail to automate this type of braking system for PFN remote control scenarios. First Figure 12 will show more accurately, where all the GM C.O.T.S. devices are located (part location and use for similar systems by different manufactures may vary). And the subsequent drawings that will completely
describe the augmentations will be detailed here in a general manner; so that anyone skilled in the art can create these same unique changes in comparable systems through the application of obvious and basic mechanical and electrical knowledge, principles and technical skill. This technology as always will continue to provide additional unique detailed descriptions for the individual manufactures, where ever possible and also maintain an open door policy for collaboration, whenever feasible.

In the drawing 916, 917, 918 and 919 are the wheel sensors for the antilock braking system $921,922,923$, and 924 are the harness connections for these individual sensors. 391 is the brake solenoid valves. OEM 301 is the brake modulator. 330 is the vacuum brake booster. 901 is the EBCM the electronic brake control module. 931 is the instrument panel cluster and 930 is the body harness to the instrument panel. The reason for mentioning these electrical connections, sensors and components and using this illustration is to provide an easy means to locate these devices. They will be utilized and referred to in the many different automated service brake modalities described presently and through out these unique innovative augmentations of C.O.T.S. products and systems. 900 series numbers have been given to most of these OEM parts because they are part of C.O.T.S. electronic control systems already existing on vehicles. 397-398 shows the electrical connectors for the solenoids on the modulator valve and 394 shows the electrical connector for the motor pack that drives the pistons in the modulator valve.

Figure 13

Figure 13 is another ideal GM drawing showing the modulator valve in a 3D isometric with the master cylinder and motor pack assembly positions exploded for parts detailing. This view gives a clear look at the changes this technology provides this application to apply the regular brakes through an electrical signal. 300 is the master cylinder, 301 the ball screw piston modulator also shown on the very bottom of the picture with the bottom of the modulator valve and gear drive exposed. This is where the rotational force of part 390 the motor pack drives the three lower meshing gears and attached ball screw driven pistons in two opposite directions by changing the polarity in the motors which in turn creates the pressures of the brake fluid in the above triple cylinder block assembly. 394 is the electrical connector to energize the
motors from the Electronic Brake Control Module EBCM module which is primarily energized through the electronic brake control relay and circuits. 388 are two anchor bolts that would be extended as necessary with bushing sleeves to allow for enough distance for a electric micro lock or electric solenoid valve to be outfitted with the same insert flare and seal fitting ends to replace the connecting fluid transfer tubes between the master cylinder and the modulator piston block assembly as 395 displays in figure 13. These tubes are the supply for hydraulic pressure to the modulator, as well as, returns to the reserve passages in the master cylinder. They supply diagonal front wheel and a rear wheel circuits, which are energized from the master cylinder's double piston shaft. A double throw master cylinder with two circuits (usually front and back circuits with an equalizing shuttle valve system) has been a fail safe since he late sixties.

At part 395 that the modulator function of the anti-lock system functions as an automated pressuring system to slow stop and detain the vehicle. And to accomplish future automated braking through electrical control if this is so desired and/or needed for any vehicle so equipped for any automated driving on any interactive highway system, or for remote control scenarios and/or robotics system needs.

Figure 14

Figure 14 shows different cross sectional views of the ball screw piston modulator valve listed as (14A) representing the figure to the top left, (14B) figure in the center of the page, and 14 C upper right corner figure on the page. 14A shows one front wheel ball screw piston all the way down to hold a higher volume of brake fluid. And in 14B in the center of the page shows another front wheel piston all the way up in its home position.

These two front pistons also have solenoid valves part 391A-391B which function in the antilock system to control and create more brake fluid pressure until the cylinder pressure exceeds the master cylinder normally with the check balls 316 lifting it off its seat at a higher cylinder pressure to equalize. It would be possible for the OEM to re program their micro controller, or EPROM, to deploy these valves altering their seating and blocking the check ball galley with an inner electronic
poppet device and re-machine the housing slightly to have 391 and 391B do the same as the invention's innovative implementation of C.O.T.S. add-on parts 397A and 397B. The invention has also outfitted all these cylinders with 2 micro lock offs as the drawing shows 2 transfer tube in-puts so all pistons can be pressurized in the same fashion as is done for the antilock. However, the brake fluid would not by pass back to the master cylinder which would make the brake application from the EBCM or the electronic control relay possible; controlled from the invention (PFN and/or automated through the OEM electronics). However, accountability and cost will figure into some of this decision and that will be ultimately resolved by a standard for this automated function. The point here is, that this technology has innovated this system so that it can provide electrically controlled hydraulic braking. The software will tract and store data with date and time markers, as well as special sensed data from the system and the vehicles operation (e.g., brake systems pressures, vehicle speed, wheel sensor speeds, etc.) in its running record and will permanently store application specific data as required by any standards set for this accountable automated brake application with accountable protected memory storage managed by PFN/TRAC software M-ASMP.

The software functions of this automated braking system and any parts activated electrically through this technology's PFN will be part of this technology's electronic brake control system (EBCS), part of Mobile Application Specific Program and Pass (M-ASMP), even if an OEM's ECBM, computer or controller is desired, and ideally housed and interfaced in part or entirely with this technology's protected accountable enclosures.

Presently the complete C.O.T.S. modality description for this system will be given and all parts, plus more automated systems, for more specific manufactures will be in all the related patent applications. The first function for the (EBCS) is to provide commands to any existing EBCM 901 module which is done through the (PFN/TRAC) software to energize the 4 modulator pistons. When the EBCM receives this technology's preprogrammed instruction from the multi-tasking EBCS or is responding to some other on-board control system ideally housed in a (PFN). The four pistons drop off from the all the way up or raised position or whereever they are; and they will be motored down to their lowest position drawing as much brake fluid
as their cylinders will accommodate. Then 901 will energize both 397 series electronic valves (i.e., micro lock there are many of these devices on the market to day in the forklift industry and racing) once all 397 valves are activated by the EBCM and/or presently planed for the invention's EBCS the master cylinder is out of the hydraulic brake circuit and the electrical activation of the 390 motor pack's three individual motors are directed by the EBCM and/or the PFN's computer/EBCS software system with data synthesized from vehicle and brake system sensors. The vehicles brakes at this point are completely controlled through the electrical activation of these motors by changing their polarity which reverses motor direction and either compresses the fluid in the cylinders to pressurize the brake system and applies the brakes or retracts the cylinders reducing brake pressure to release the brakes. Rotation of the wheels are sensed as well as the vehicle speed along with distance data, vehicle inertia, road edge, and any special command data provided by any interactive highway communication equipment as to special road conditions which are received via a common RF band/or radio station designated as a standard for the purpose of making remote control adjustments and providing driver warnings.

Ideally the EBCM 901 should call the shots here, it just needs to be reprogrammed and connected and interfaced to the control signals and a communication system like the inventions or the preprogrammed software program can be run from the invention or any other comparable control device. Here if the EBCM is to be bypassed the PFN will supply the operational current directly to the brake control relay system or strail to the motors with standard 20-30 amp VOC relays, (Siemens or Potter Brunfeld, if needed) while the invention monitors the OEM wheel sensors for speed and lock up, or the invention can also control todays EBCM and/or PCM software with its trickster circuits sending the correct electronic signal to either of the them (with the most appropriate by application specific choice) to activate the pistons in this closed hydraulic brake circuit. And once again monitoring wheel speed, vehicle speed and any other application specific data to determine the appropriate braking pressure as additionally monitored data. In the deactivated state 397 will allow all the braking systems to run normally. This lock out will still allow for master cylinder application. In this limited slow down and/or stop function, there would not be any need for more brake fluid. However, if the vehicle was operated on
this system a one-way valve with a regulated bypass mechanism to the reserve would be needed to insure proper fluid pressure if there were minor leaks so as to give adequate warning to a brake problem while the system was still able to supply brake pressure. The parts still numbered and need to be named here are 317 expansion spring brake, 315 ball screw modulation piston, 311 ball screw nut, 312 ball screw spindle, 310 piston, 320 for the rear brakes yoke on ball screw drives both rear circuits. 300 is from the master cylinder and the out arrows go in 14A and 14 B to the front wheels and in 14C to both rear wheels 14D shows a front wheel sensor 917 and Figure 14 E shows a rear wheel sensor 919. As has been already explained in the earlier section the use of a secondary master cylinder and/or a pedal activated system as is used for the emergency brake and even an automated plunger and/or pistons are all within the nature and scope of this invention. Some of the experimental microlocks are: "MICRO-LOC" company electro solenoid type 12 volt, "Hurst"-Roll control Jegs Cat. \# 530-174-5000, "TCI's" roll stop Jegs. Cat. \#890-861700) and Jegs Cat. \#021-LC, Line lock solenoid, master cylinder. Experiments are using the "Tilton 1 " Cat. \#454-74-1000U to plunger activate, for add-on brake pressure systems.

Figure 14A

In Figure 14A, for ships and boats, the final slow down and stopping for part of phase two and part of phase three is accomplished by reversing engines and/or changing the rotation of the propeller(s) through any transmission. This may already be an electrically controlled system and in this case the controls would be interfaced and coupled direct to the PFN and supported with the compatible components and connectors. Or it may be a mechanical system with linkage and/or cables and any of the already detailed devices for the automobile could also be employed for these applications and managed and/or controlled by the PFN. However, in the large truck and buses, this technology will automate the application of air to the rear brakes in the PASSS shutdown through electric solenoid valves, fuel valve with an additional pinde valve to give an nice smooth and gradual application of the service brake side. Once the vehicle is stationary, determined by wheel or transmission sensors, the PFN TRAC system will release air pressure for the maxi can and apply the maxi brakes to hold the truck in a stationary position. There are, of course, many slow down modalities
already detailed by this technology to slow vehicles down including the entire power train and braking systems, however these are the prototype systems, so therefore, they are detailed a little more.

Truck guidance will be accomplished through the same modalities detailed for cars with servo motors and stepper motors, ect. and/or the direct application of hydraulic fluid in the appropriate systems. PAGSSS will provide a great service as a backup systems for compromised drivers, fatigue, ect.

For the trucking industry PFNs of varying levels will be on every vehicle section. They will be on the truck and the trailer eventually and the accountable TRAC software will provide service readiness data to the tractor pulling on its systems, and any number of trailers attached to it . These checks will be able to determine the throw in the slack adjusters to apply a brake sense wheel seal leaks, report malfunctioning lights and/or wiring through current sensing algorithms in the firmware, adjust tandem positions while sensing the load for ride and handling, report tire pressures and report on location through the PFN/ TRAC system, if so desired. This will allow for the tracking of loads by trucking firm's customers through the trucking company's web page or the PFN can be sent a command to notify the customer automatically as it approaches their destination. Of course, all is maintained in a protected environment and also capable of supplying trusted accountable data.

When PASSS or PAGSSS is activated in a truck or bus, the diesel power plant has its acceleration eliminated most probably at the injection pump levers, or by solenoid valves that restrict fuel flow, either OEM or this technology's priority valve, or through the air horn and/or duct. Then the PFN applies the air to the service side of the brakes in the rear most axle as determined by the PFNs establishing the presence of any trailers. These PFNs can be configured to communicate through their wireless systems if they are two-way but most generally they will be coupled with their light connections.

Trains and rail systems already are well set with monitoring and control systems, however, the PFN/TRAC system will ultimately couple all machinery equipment and vehicles and keep track of their movements if they are mobile. This is primarily done for managing traffic patterns and avoiding altercations in conflicting paths. Better movement of vehicles trucks and ships can be achieved on the surface of
the earth through this technology's "Trip Controllers" as part of any interactive highway and/or emerging automated traffic control systems and/or interfaced with this technology's "Spider Eyes and "Green Eye" protocols. These management and control systems with their mass data and data storage automated and manned will provide many more jobs for not just managing traffic but also for giving health care, policing the community , ect. However, the Trip Controller will keep track of vehicles, trucks, trains and shipping and ultimately provide three dimensional car plane travel and air craft coordination.

And finally for the trains' solenoid valves are planned for the braking of the rail cars and the coordinated PFNs can be interfaced physically or by wireless. Most trains are built by companies like General Electric and are diesel over electric powered so the diesel motor controls are triplicated here however the PFN/TRAC system will interface with the processors and current controls for the electric drive motors and the same for the trams and trains applying brakes electrically whether they be shoes or disks.

Figure 15
This the fuel injection system and some of the fuel system shut downs have been detailed in earlier related patent applications, but because of all the experimental work done in this area for these applications it is important to state for the record, what this invention has been employing and experimenting with in these areas. Figure 15 shows another standard GM set of parts to get fuel physically from the tank to the injectors and presently described here is where 403 the inventions fuel valve has been used on the newer GM cars. 401 is the tank. 400 the electric fuel pump and the wires to energize the pump come out of the tank with the 2 fuel lines one a supply 402 to the fuel rail 407 and the other 405 is a return of fuel from the fuel rail regulator 408. 410 is the injectors, and 406 is the test port and where 1110 emergency fuel caddie attaches (detailed later). The dotted box 403 is a unique fuel valve that has many different places, applications and other industrial uses. However, the quick disconnects on the shutoff adapters for the diagnosing of fuel problems on this vehicle were chosen as the best deployment for the prototypes of this valve system on these
vehicles. The automated shutoff valve system of the invention can be configured to perform these tests and if desired and report back data from the electronic transducer to provide pressure readings, either to become part of the control circuitry PCM or to perform the test in a service environment; or also as another automated diagnostic device for remote servicing and/or control. Another reason this location was chosen is because a standard manual valve already exists on the invention's prototype and test unit for variable adjustment requirements to control fuel supply and dump functions as previously described. The bottom section on figure 15 is a picture showing the hard metal connections for 405 and 402 coming and going to the power plant. These are being displayed only to show where the quick connects are and have been first connected to maintain a balance with the standard fuel regulator 408 pressure as fuel is rerouted and dumped back to the tank. However, Figure 16 will show another fuel rail system presently being used and this forces the invention to supply one rail and return on another, so configurations will vary by make, model and year of manufacture.

Figure 16

16A Fuel Rail 405 is an injector, 407 the rail, 408 regulator, down below on B is 405 injector which has its electrical connection marked 491 which receives current from the 404 which is the injector control module and can activate the injectors either directly by the crank or cam sensors input or by the PCM which determines how to augment firing of the injectors through its preprogrammed software with respect to the electrical signals sent by the cam sensor and the crank sensors as well as other sensors in Figure 22 and 23. This has been explained this way to describe a number of fuel changes and modalities to control speed. As has been mentioned earlier and will be described later in the 900 series along with the first of two 1000 series trickster circuits. Either fooling the OEM electronics or interfacing with it becomes easy and apparent to anyone skilled how this technology can provide the smooth shut down for any gasoline or diesel power plant by limiting fuel and/or controlling the ignition spark all of which is detailed in numerous ways. From the beginning of the invention this automated and remote control function can be achieved with a lot of versatility to accommodate all makes and manufacturers. And it has been the intention here to
show all of the innovations and automated devices and systems utilized by this technology to first control a slow down, stop, and securing of a vehicle in a stationary position, and/or to do the same for any other piece of equipment and/or machinery by providing the real products to make good commercial steps in the development of responsible and accountable remote control and robotics for these electronic fuel and spark control functions for internal combustion engines.

These are the ways presently being done to slow a car by this invention that involves the fuel system. The invention's fuel valve system has been coupled with the add on air horn valve 136 Cp and 137 (various car starter solenoids) and a mini relay from Radio Shack 275-249A and resistor 279-343 that sends the right electrical current or signal by interrupting the electrical line from the throttle position sensor TPS to the power train control module PCM to signify an idle state. The mass air flow sensor MAF, controlled physically through the 136Cp air throttle did not require a trickster in the limited experimental vehicles tested but if necessary this signal can also quite easily be mimicked to deceive the PCM as can any electric signal sent to the PCM and/or any other OEM electronic module, including the anti-theft resister chip key signal.

Of course, for this to happen it is activated from the inventions PFN control box computer once the box receives its first communication. At this point the car cannot be accelerated over idle and the mass air flow is already reading the properly reduced air flow from part 136's effect on available incoming air from the air cleaner, (this was achieved by the solenoid 137 on 136 setting 136 butterfly valve to an idle position for the air intake system all by the computer sending 12 volts to the relay and solenoid on the first page or remote control signal received). The MAF sensor only reads the air flow across it and does not know where it is being restricted from, which further substantiates the electronic data and/or conditions for the idle state in any PCM and OEM electronics.

The most effective modality for a smooth slow down with partial fuel system restriction or redirection is accompanied with one small relay switch on the cam sensor pickups and/or crank sensor signal leads with just a set air horn throttle like 136Cp in Figure 11. This combination has worked fairly well as it governs the electrical and fuel timing simultaneously by controlling the ignition control module

ICM and the PCM simultaneously. The air horn can be set at two different predetermined positions however one position set from the first signal has been proven more than adequate to slow the vehicle smoothly. However, the sensor relays are controlled and closed at idle RPM as reference by the alternator signal in some vehicles and/or any other rpm sensor signal sent to the PCM. This simultaneous killing of the spark and fuel injector removes any back firing or excess fuel that may be improperly ignited and the air horn restriction has eliminated the coughing and chugging so that a smooth slow down can be achieved.

Many vehicles will not require all three of the combustion components controlled (air, spark and fuel) for a smooth deceleration of their gasoline models. And most certainly only air and probably just fuel control for diesel motors will be all that is necessary to slow and kill the motor. In fact just controlling the fuel throttle position on a diesel motor to an idle position by interrupting the mechanical linkage levers cables or driver controls or any electronic solenoid or servo motor controls, valves and/or governors either existing OEM equipped, C.O.T.S. parts or innovations of this technology. The mechanical devices will be automated as has been already detailed with electric over mechanical actuator modalities, to provide this smooth slow down. These will be the automated diesel modalities of choice to control engine RPMs and/or vehicle speed (with application specific consideration) for most all large trucks buses, heavy equipment, construction equipment, material handling equipment agricultural equipment, diesel powered rail vehicles, military equipment and government diesel equipment and/or any industrial large stationary diesel applications, or commercial diesel use of any kind, e.g., emergency power, hospitals, land line phone systems and/or for any electric generation even in the home or private use. A drawing is not provided for these simple diesel fuel injection pump control levers with idle stops because the actuator devices for the injection pump's levers, cables, and linkages will be operated by pistons solenoids, steeper motors and/or gear reduction systems with the very same modalities detailed earlier for any of the throttle body assemblies and components. The attachments and mounts will be different and the system will first be adjusted to perform a controlled slow down by returning the accelerator fuel throttle lever on the injection pump to idle position to perform the first phase slow down. For those diesels that provide a static fuel pressure and
accelerate on air availability with mechanically camed injectors on a fuel rail the air throttle will be controlled in the same manner as earlier detailed for the gas throttle controls in drawings 10 and 11 with the control of any air horn gate valve, etc.

Returning to gasoline automotive Figure 16B shows a standard GM injector with connector point 491 is where the electrical connection is made for an individual injector to provide 12 volts to energize the solenoid valve with current sent by the injector control module ICM 927. Simplistically a solenoid relay switch 492 can be placed before this connection to interrupt the injector current in each injector by making the relay switch 492 open when the relay is energized by the ICM 927 , or if the invention's controller or computer or any other control device is responsively connected to the relays 492 it can either totally interrupt injector current to kill the motor for another $3^{\text {rd }}$ phase modality of this technology's three phase shut down or as its first phase slow down is preferred through a preprogrammed software and/or firmware sequence that stages the injector functions either through the PCM 920 the ICM 927 or directly. And, for some already existing systems the theft detection relay can be tripped and it will signal the PCM to run a preprogrammed vehicle compromise program. Part of which can be reconfigured to retime injector firing as well as ignition or spark if necessary. The PCM coupled with other signals that the OEM software would be written for and sensing, would control a slowdown by controlling the firing of the injectors and if done through the PCM it could also adjust the electrical timing as well or it could be initiated and controlled from the inventions software which in one modality ignores the spark and adjust the air and fuel as described above in a balanced mixture or in some vehicles if necessary control the spark through interrupting the crank and/or cam and/or fly wheel sensors, as is also thoroughly described in this application but being repeated to show the combinations and modalities clearly. However, rarely does all of these sensors require trickster circuits to achieve a smooth slow down and shut down of the power plant for any one vehicle. The reason for addressing all of the OEM possible changes and all the modalities is for this technology to demonstrate a willingness to couple its automated slow down, stop guidance, control, communication and recording technologies with any and all of the OEMs pieces of equipment machinery and vehicles in every industry to provide simple but reliable and responsible automated and remote control
options to be interfaced with any accountable remote control system and/or network of any size through secure protected and accountable focal nodes PFNs on every piece of equipment, and to provide the flexible TRAC software that has PASSS, PAGSSS, MASMP for total accountable vehicle control and CASMP, HASMP, CST for accountable control with all other applications.

Figure 16C shows a modified fuel regulator 480 (a 408 replacement) which illustrates 3 different fuel control mechanisms that should prove to be a good set of modalities for OEMs to further automate and change their fuel pressures, i.e., for future needs to meet any fuel chemistry to run a power plant more universally or on more diverse fuel products. And presently to combine the regulator with the inventions fuel valve to decrease fuel in the rail and dump the decreased volume more conveniently into the return to slow and/or control and/or deactivate the vehicle (phase two and three of the shut down).
$420 \mathrm{C} 1 \mathrm{~S}-\mathrm{M}$ in a dotted square represents either a small servo motor or a solenoid, which are 2 of the ways that 480 has its pressure transfer disc 431 raised to lower rail pressure and lowered to raise rail pressure. The third is through pressure port 430-C2P where either hydraulic or air pressure would be increased in the top chamber to press 431 down to raise pressure in the rail or 430's pressure would be reduced which will decrease the pressure in the fuel rail. 431 has a high pressure seal with an O ring to support a pressured power system in this C 2 P version. In the motor or solenoid version C 1 , the seal could be reduced in its physical structure to be merely a wiper and guide device for the motor or solenoid applications. The pressure power could be provided by any number of systems but the sealing surfaces would naturally have to chemically and physically comply to the system chosen to perform this operation, e.g., coolant, power steering, automated brake systems, shock absorbent compressed air systems, and/or any compressed and/or accumulating system that can provide a safe regulated pressurized energy source and can be electrically controlled to deliver the power source by a specific electrical signal and incrementally in both directions, i.e., spindle and solenoid valves, motorized valves So 431-- C2P will have attached to this port a electrically controlled valve (that is compatible with the pressure source), and that will deploy pressure to 480 's top pressure chamber in the
proper increments as prescribed by the appropriate sensor data processed by the PCM or the inventions processor circuits and electrically controlled and directed.

In Figure 16C, 421 is a fixed plate to the outer wall with a threaded center hole that accepts a screw drive or spindle that is rotated by a motor in the Cl servomotor or stepper motor application. In 430 C 2 P modality the plate does not exist and this is why it is displayed with dotted lines and is slightly shaded, in these pressure systems. This chamber is vacant with no 421 part. However, in the motorized system, the internal nut drive armature rotates the threaded screw or spindle down to increase pressure in the rail and then changes its polarity to rotate the nut armature up to lower pressure in the fuel rail.

431 is placed in the standard position by the control circuitry for 433 spring to tension the 432 spring receiving hub like in the standard diaphragm device in the standard regulator 408 to maintain a within tolerance seat on the fuel return valve surface to create the proper system pressures in the fuel rail, as activated from port 409 which is the standard vacuum used to adjust fuel regulated pressure with respect to manifold and barometric pressure.

Also in Figure 16C, the S configuration solenoid application 421 is not used and nothing is treaded but only a spring loaded shaft attached to 431 which has only 2 positions either down to allow 409 to adjust the vacuum draw on 432 diaphragm to regulate the fuel in the standard described above fashion or all the way up to remove most all the tension on the 432 part which once again allows for the fuel pressure to be dumped from the rail. Push/pull solenoids with internal springs exist for both to apply continuous current and for momentary activation in either direction may be used, such as solenoids found in Jameco catalog and many other electrical supply houses.

The fuel pump could be interrupted easily through its direct service and a relay controlled electrically through any of the four control systems constantly referred to throughout the invention or even its own fuel pump relay by tricking oil pressure switches or other engine protection devices on some equipment and vehicles and/or directly by controlling the fuel pump relay itself or de-energizing the power source directly with relay interrupt system. Alternatively, the invention could work with any and all such theft deterrent systems that have this capability already as a design by any

OEM already. Also, as discussed earlier the stopping of fuel flow through interrupting the injector module which has been done experimentally by eliminating and/or controlling its timing signals and/or cutting the power supply to the ICM. There will be more detail on these modalities in the discussion of the electrical components specifically the trickster circuits to allow for retrofitting older vehicles and other equipment and the linking of some modules software without having to change it to interface these innovation to automate a smooth slow down to a stop or kill of the power plant (phases one and three of the shutdown).

Of course, much more individual manufacture detail of all the C.O.T.S. innovations will be in the individual management and security applications for these automated vehicle, equipment and machinery systems. Hopefully the present discussion is adequate enough to familiarize those skilled in the art to refer back to this section in the electrical description section and reference all the parts by numbers and the above description of their mechanical innovative functions as they are controlled electrically to achieve the many successful means accomplished here in this automated systems application. Most all experimentation was done on the readily available GM products for all these systems but the innovative devices used can be fabricated for most all OEMS because most device innovations for all the systems in this applications were taken from supply line manufacturers that basically supply all the major manufacturers. Once again C.O.T.S. devices.

Figure 17

Figure 17 involves the 500 series parts and it displays the transaxle switch and the cable end. The first point to be made here is that any and most all the already cable interruption devices discussed for the throttle section can be augmented easily to control the cable action to shift the trans axle into neutral And there by eliminate vehicle acceleration but not power plant acceleration. The car would merely be sent into a coast state and would come to a rest at which time either the transmission speed sensor and/or wheel sensors would signal the slowed or stationary state and shift the transaxle into park.(this would accomplish phase one slow down and phase two with the securing the vehicle in a stationary position of the shut down) This can also be accomplished with shifter solenoid like Shiftnoid Jeg's Cat. \#254-SN 5000FC and/or
by air by utilizing Jeg.'s Cat. \#302-AS IK. This is a compressed gas bottle system, etc.

If a more controlled slow down and stop is desired through the transmission, the electric solenoids for first second and third along with the solenoid torque, the converter clutch lock can be deactivated either through software programs placed into the PCM that will shift down from any speed when the program is activated simultaneously disengaging of the torque converter clutch lock solenoid in progressive descending gear deactivation to slow down the vehicle by deactivating the above mentioned OEM shift spool solenoids in the transmission to dump their fluid flow into the reserve rather than energize their respective pressure plate packs or drums to drive the final drive and out to the axles and wheels. If the invention was to be employed to run a simple software program to count down and deactivate these solenoids it would utilize the same circuitry as described in figure 2 and software program in figure 3 with some augmentation time pauses for a smooth shift down, and it would access the electronic circuits by interrupting the contacts ABCD in the GM products for front wheel drive through connector 523 and the circuits and connectors entering the transmission from the PCM or onboard computer of any other vehicle for this purpose. To deactivate all at once the E terminal would be interrupted as this is the common side terminal for all of the above-mentioned Shift Solenoids. This last E terminal is the best modality for this transmission slow and stop sequence modality, from an experimental perspective for a smooth slow down to accomplish the phase one of the shut down.

For rear drive cars with electrically controlled shift transmissions the same interruption and electronics would be possible, however there are still a great deal of cable and linkage shift vehicles. For these vehicles the above-mentioned cable automated control innovations and linkage devices could be employed and fabricated application specific to shift the vehicle into a neutral position. All these modalities have been well covered and would vary in mounts and attachments per application, but their same push pull function would be adjusted to shift the transmission out of gear as a phase one PFN instruction to slow down a vehicle of this technology's unique shut down procedure. However, as was earlier detailed a solenoid's throw with a spring return and/or servo motor or stepper motor with appropriate attachment
guides and/or gear configurations can be attached to any mechanical control linkage and levers directly to create the electrical controls to automate shifting for most all mechanical control shifter transmissions, the automatics or hydromatic systems. But also, an easy configuration for manual transmission to solely shift the transmission into a neutral position to accomplish another slow down modality for this technology's emergency shut down protocols, which always includes a secure stop in a stationary position and at least an auto record of the event.

This application's primary goal is to detail all the possible ways to deactivate a vehicle and/or pieces of equipment or machinery with improved safety.

Figure 18

A second level to this technology's responsible and accountable three stage shut down adds automated and remote control guidance to most all land based vehicles. This is managed by TRAC program protocols (PAGSSS). Once again GM parts and systems are displayed in this application, but these components are typical generic driver controls systems and linkages for power steering in most all vehicles so that anyone skilled in the art can construct the application specific parts and/or reconfigure existing C.O.T.S. products presently being made for other uses by each of the manufacturers and/or supplied to them by their supply line manufacturers as is done in for these next four figures and their descriptions.

Figure 18 shows a traditional rack and pinion power steering piston assembly for the present day GM cars. This is the 700 series automated steering parts and devices to automate the power steering of today's automobiles and for the most part the present discussion will revolve around the GM rack and pinion system and the column shaft drive system. The column shaft displayed is also a GM Chevrolet and Oldsmobile type steer column with a exploded parts view in figure 21 and it shows a way to automate almost any vehicle with a steering column. This means that most all vehicles irrespective of make, model, or year can be provided at least one of the configurations displayed in these sections.

Part 710 is a motor with an in-line gear reduction to provide more normal driver steering movements in speed when the motor is activated. Any number of drive systems can be utilized and affixed to the stub shaft of the steering gear. Part 712
outfitted on the stub shaft which can be either a pulley, sprocket, gear or cogged hub to accept a cogged belt or any kind of belt, i.e., V and/or chain or even a direct gear mesh so long as these mechanism can be configured to slip when engaged to allow the driver to defeat there control if he so desires and there has been no legal enforcement reason for the automated steering to be activated. This is also true for the figure 21 where a gear is shown as part 713 on the steer shaft just after the swivel joint for the tilt steering as it passes through the steer column. On the outside of the column is shown a motor assembly which will be a gear reduced motor assembly part 710 again and/or some form of a stepper motor assembly. These functions can be performed by the cable drive system for the seat controls with various reconfigurations. This technology provides one such innovative modality with a jack shaft and belt tensing solenoid system to be described presently. In fact, these following drawings show a motor assembly which would be designed with a automated sliding adjustment, to disengage and reengage the automated steering by an electrical signal sent from the PFN to, i.e., a Solenoid or worm gear with some spring tension as part of a defeatable steering consideration, held directly against to the steering system parts in one modality.

The ASP700A diagram in figure 18 shows the motor placed away from the work area and provides more room to deploy a defeatable steering drive device that will steer the vehicle unless the operator overpowers the automated steering control system.

Three drawings are from the prototypes and designs being experimented with and are labeled ASP7000A, ASP700B on figure 18 and again ASP700B and ASP700C on figure 20. All three of these prototypes could be mounted any where that it is convenient on the steering linkage and drive shaft section, either on the column or on the steering gear box stub shaft. The following drawings will illustrate and describe how the system works. (ASP stands for automated steering prototype).

On drawing 18, in ASP700A, 151 is the seat control cable drive 257, which is the horizontal seat shifter gear. 724 is a pivot pin or bolt or clevis pin. 723 is an anchor strap that can go around either a section of the steering column tube or be attached to the pinion gear input shaft housing 730 or any other gear box for that matter. (There will be different anchor brackets and straps to be fabricated to make
this configuration as universal as possible which will enable this modality to be custom fitted to the many different vehicles.) 730 illustrates the center of the pinion gear housing or the steering column as viewed from the top end. 712 and 713 are meshing gear as shown in diagram ASP700A and also shown again in figure 21 on the steering shaft. However another variation of has 712 and 713 as pulleys and part of a belt drive system, but no matter which variations 722 a tensing or meshing solenoid would be present to control engagement of the automated steering form the PFN.

Still on Figure 18, and again shown for reference on figure 20 a pulley modality and belt system is displayed as ASP700B. This time the cable drive is not employed but the same 150 right angle geared seat motor assembly is used and the output drive is outfitted with a pulley 715APB in a direct hook up and motor mount system that holds the gear reduction bushings and support to furnish a rotation point for pulley 715APB which is driven by a square key drive as the male cable drive ends that normally are inserted in this motor transfer drive gear assembly. 723 is the anchor and mounting strap and the 722 part is a tensing solenoid used to apply the belt that can be defeated by the driver. 711 is the belt.

This is a right angle motor mount system, however the rest of its belt system will work the same as any belt system set up for a parallel motor mount or cable driven parallel jack shaft with belts and pulleys.

The rack and pinion illustrations 710 A and 710 B and the middle figure depict an inline stepper motor parallel mount on the pinion gear housing. This whole inline motor and gear reduction assembly would be mounted parallel to the piston input shaft on two equally spaced eccentric pivot points along the length of the motor that are held in place by adjustable constricting band(s) that have an actuating solenoid mounted perpendicular to the pivot points on a parallel pivot point attached to the band to provide tensing and the engaged position to apply the automated steering forces when the appropriate signal is sent by the PFN, instead of solenoid a piston or motorized worm or screw drive can perform the same tensing function with different mounts. The application of the automated steering is part of the second level of this technology's accountable shut down. The first steering and guidance functions are performed by an automated preprogram software protocol that determines the road surface only and just guides the car enough to stay on the road surface as the shut
down stops and secures the vehicle in a secured position. Audio warnings and hazard lights are all going as well as all recording equipment and data storage. This automated guidance as part of the shut down function will function with police and with out the police in the event of an unconscious or incapacitated driver. Even the first level automated shut down procedure will activate without this guidance feature if a driver is sensed to be unconscious or not in command of the driver controls with the warnings, hazard lights, and recording devices storing all data at the time of the event. This automated deployment of the shut down system can be reversed or abated by an alert authorized driver unless it is initiated and controlled by law enforcement. Even though the automated shut down is less than ideal without guidance, it is an improvement on a bad situation regarding the incapacitated driver. And as a general rule this procedure will lessen the time and distance that the vehicle will have to produce fatalities and damage in the out of control state while still moving. This is the first level above PASSS and the software for this TRAC program (PAGSSS).

Figure 19

Figure 19 illustrates the different planned locations for the prototypes and it shows them in a parallel gear reduced in line motor configuration. These positions however are going to be done with the right angle seat control motors as have been detailed through out this application. So just the locations and part makings for a better understanding of the entire system are relevant to see the versatility. These will be updated and illustrated with the entire prototype configurations.

Figure 20
Figure 20 shows another belt or chain drive configuration being used on the steering column inside the cabin. This system is showing the same inline gear reduction or stepper motor configurations, with the exception of the two latest prototype configurations being experimented with presently. They are shown as ASP700B a right angle motor mount on the column with a belt drive the illustration left of center; and ASP700C right of center which is a rubberized friction wheel drive used on the column. Once again, these modalities can be configured to attach with mating surfaces (splines, key ways, set screws and roll pins, etc.) their rotating
interface component (gears pulleys sprockets and wheels) can be placed any where along the steering linkage tilt wheel shafts parts 731 and 732 in figure 21 , where permissible. From right under the steering wheel all the way down and including the input shaft of any connectable steer gear box.

All of these prototypes might be best served if mounted in the interior of the cabin to best protect them from the elements, and to reduce cost for extra shielding to protect them against harsh service environments. But, because, these devices are used in aggressive remote control scenarios for the unauthorized use of a vehicle; this technology claims for any protected coverings that are designed strong enough to double as harsh environmental and tamper resistant shields for theft deterrents protocols. Because this all falls within the nature and scope of this technology's protection of peripheral devices, all the modalities described and detailed here in are being experimented with presently, both in the cabin locations and in the exterior locations with whatever protective measures they will require to insure their safe reliable and accountable operation.

ASP700C is another end view showing the rubberized friction wheel modality. This time the rubberized wheels, part 715 APC , mounted on a tube with bearings to raise the wheel up so it can spin freely without striking the motor gear reduction housing. This might have to be done for the pulley 715APB in ASP700B in fig 18. In this case the square drive would run up in side the tube and drive the friction wheel or pulley. However, a $3 / 8$ drive shaft has been outfitter with $5 / 32^{\text {nd }}$ squared extensions and made the appropriate length raise the wheel or pulley and drive it. 712 APC is mounted on the steer shaft linkage inside the column (or on the gearbox mount). This system is best on a thin diameter column application with a figure 8 design covering shielding or cowling with one circle area encasing the column and the other circle area encasing the motorized friction wheel motor drive assembly as viewed from the end looking down the column. The rubberized wheels are used in paper converting operations and printing as pick up or gripper wheels to deliver the paper to the machine to be processed. These are neoprene wheels that are being experimented with in the first prototypes for this modality. 150 is the seat drive motor and the parts are named and numbered in drawing 5. The changing of the motor polarity changes the steer direction from left to right as the motor rotates 712 APC off
of 715 APC .722 is a continual run push solenoid with an internal spring. This could be done in the reverse as well and experimentation with this part of the device is still in process, a small piston is another consideration as well a nut drive or worm gear or motorized screw device. However, the pressure applied to pivot motor and wheel assembly must be adjustable to allow for the driver to defeat its drive force if this is a desired condition.

The on-board driver will have priority in these earlier systems, but in the future coupled with law enforcement aggressive remote control will advance and help to use these innovations forcefully to guide a suspect vehicle to a safe location where it can be stopped and detained. However, this technology's PFN software will recognize, any attempt to guide even these earlier versions and will record the drivers attempt to control the vehicle over the PFN control. This happens when the vehicle is guided away from the computer controlled program which recognizes this by the sustained motor drives and steering wheel position sensor that are giving contrary data to the desired program through these sensor results. Trouble codes will be set in the cabin the PCM and on the public information bar (see PCT/US99/00919) another innovative device as well as give any preprogrammed messages inside and/or outside of the vehicle as to the state of the compromised vehicle program.

Figure 21
Figure 21shows an exploded view of a GM tilt steering column for a Lumina and the internal parts. It also shows where the prototype is going to be first tried in the cabin. This drawing will be either the same with the final prototype installation or it will change to show the exact location and best prototype combination of parts to complete this automated steering along with any other detailed system drawings if necessary.

In some of the other experimental prototypes with a remote cable drive, the cable 151 will couple to the motor on one end 150,152 from the earlier figures and on the other end to a thin jack shaft drive, part 716. This coupling has already been extensively described in figure 5 . The jack shaft's other end will have part 715 which is a pulley that has a $1 / 4$ inch V belt which also goes around 713 area, but is a pulley like 712. Depending on both the jack shaft mount and the steer shaft mount, they
could be could be a sprockets and chain or some cogged belt system with a slip center hub or the gear 713 with a mating gear on the jack shaft.

If a belt system is used either on the column or down on the steer gear box the belt is held in a guided but normally loose and disengaged state around these two pulleys by the shield or shrouding either as part of the column or attached as an assembly like the rack and pinion steering gear in figure 18 . The belt might work better if it is a composite. This is done through the same brackets on the steering gear that clasp either the entire motor assembly or any thin jack shaft and tensing solenoid modality. Of course the tension control solenoid engages the belt drive, either with any of the motor gear reduction systems to turn the steer linkage shaft directly or the stub shaft on the steer gear box or drive either one rotating shafts with the jack shaft drive, which is similar to the direct motor mount system described as part 710 in figure 18 in how it functions. The amount of steering control given to the automated system will rely on the presence of a conscious driver and law enforcement considerations. It will be possible to take complete control over the steering, but this will not be done until the correct safety equipment is onboard along with the appropriate software, all of which will be sanctioned by DOT, NTSB, ANY INDUSTRY STANDARDS LAW ENFORCEMENT AND THE INSURANCE INDUSTRY, so that the calculated risk to utilize automated steering to increase safety is weighed against the unavoidable dangers for any compromised driver scenario. These systems will be evaluated by the above organizations, government agencies and commercial industry to set guidelines and standards rules regulations and laws for the use of these aggressive automated remote controls to slow, guide, stop and secure a vehicle in order to create standards, and to achieve this goal it will be very necessary to use this technology's protected accountable box to interface the automated remote controls and memory storage to assess liability and accountability as well as to evaluate and improve the systems performance.

There is a set progressive order that this technology has foreseen as responsible commercial developments for aggressive remote control of a vehicle:

1. First; all automated and remote control deployments must be accountable and made through protected memory storage. (onboard optionally off-board)
2. All automated and remote control functions should be done and/or coordinated with law enforcement whenever possible.
3. First Level of this technology's vehicle shut is:

Level One
I II
II
III
TRAC Software
Warn Record Slow, Stop\Secure in a Stationary Position

Level Two

I	II	III	TRAC
Warn\RecordไGuide\Slow,		Stop\Secure in a Stationary Position,	Disable Power Plant

The level one protocol without any guidance will still be utilized without law enforcement in cases, where no driver is determined to be in control of the vehicle by on-board responsive TRAC software to specific sensor data from the operator and the vehicle (e.g., unconscious or ill or a driver panic button has been). The legitimate in control driver can abort the automated shut down with his/her pin code or retain control signal. Even this unmonitored accountable automated shut down is considered a better option to the out of control vehicle with no warnings or no controlled end in sight, as the first commercial step to improve this hazardous condition. This first modality granted is no panacea, but at least it will be slowing and reducing the most harmful impact of a head-on collisions, as well as, the amount of time and space the vehicle will have to do damage. In this sense this first shut down
modality can provide measurable improvements to an already inherently dangerous situation.

As this technology's more sophisticated, monitoring equipment and programs are deployed with these automated and remote control devices in more vehicles, much more driver identification and driver capability protocols will be employed. These level two commercial enhancements with accountable automated remote control will encompass simple dexterity checks or exams, breath evaluation through atomospheric sensors, for the eye, iris and pupillary response, measured for identification and the size and response time to compare this data to the automatically collected healthy normal state ones stored in the software compare files for the same person and for variable environmental light conditions. This preprogrammed function will be performed through the inside cabin cameras and atmospheric sensors and/or fingerprint and pulse sensors in a steering wheel assembly and cabin mount for cameras and sensors (this way data will be continually updated for current authorized and the capability of the drivers). Many of these vehicle and operator monitoring systems have been discussed in the related applications and will be further detailed in this application. They are being described here in the automated steering section to better detail this technology's automated shut downs in their commercial deployment levels One and Two for smarter car development, and level Three, which will be full robotics driving and interactive highways (TRAC's MASMP and RPV programs for Remotely Piloted Vehicle). When these levels are married with this technology's secure protected accountability functions in its PFN societies requirements for legal liability can be addressed for any shared control of a vehicle during automated remote control and/or robotics driving. This technology recognizes this necessity for the insurance industry needs and for the public's laws. These are the responsible remote control commercial devices, system developments and deployments considered by this technology as appropriate steps to develop standards, laws and law enforcement protocols to improve public safety presently and into the near future, as well as, distant future for the technically evolved use of the personal automobile.

For the level Two automated steering protocols the first priority will be to massively reduce and/or eliminate unconscious head-on accidents by maintaining motion in the same traffic flow direction and not leaving the road surface. Head light
sensors and distant sensors will provide reference data continually in which software algorithms will be able to detect a normal mean state, also any magnetic or road edge sender data will be utilized by the software program wherever available. Otherwise, the onboard distance sensors will be reporting side front and back relative to movement data which will also be processed through the onboard software algorithm(s), and the onboard cameras will have their image transposed to a digital data signal or specific signature that can be identified more specifically as objects, like the different surfaces of the road, lane and line markings, barriers, other vehicles and/or persons, or animals, etc. So all of these data streams are processed through specific algorithms in the PFN/TRAC software to synergistically guide the vehicle in the most optimum path initially for an improved level two shut down protocol (PAGSSS) and ultimately for robotics driving and a level three accountable automated and remote control. In the level three remote control and robotics guidance system the PFN software will also be synthesizing phone and/or communication systems, GPS or location equipment, and RF signal data input from long and short range transmitters and/or transceivers from warning highway transponders or radio beacons, or receiving instructions from special law enforcement traffic control guns and/or devices, all of which is detailed in the 1100 and 1200 series, detailed as the Green Eyes or Watch and Spider Eyes program, from the TRAC system.

However, in a level One to level Two intermediate control modality this technology's shut down provides another enhancement for limited automated guidance. The driver will be allowed to over power any of the automated steering controls, but the activation of the automated steering if unattended will result in the immediate shut down protocol warning all surrounding vehicles of the compromised vehicle and announce that the vehicle will be moving and shutting down to the right side of the paved surface sending out a distant sensor signal angled down out in the front and right side till it locates a space large enough to accommodate the car 2 times and the vehicle at a creep speed will remove itself from the traffic lanes and stop and secure the vehicle all the while sending out a distress signal to the proper authorities. Many such inexpensive distance sensors exist on the market as C.O.T.S. products. And a set of their electronic signals would flag the proper condition for the vehicle to nose off the highway, and stop.

Returning to the locations of the automated steering actuator components the above mentioned mounting locations are not the only ones that this motorized system could be used in. Along with mounts anywhere along the steer shaft, linkage including steer gear box configuration different steering modalities like an orbital valve type system used in heavy equipment and industrial trucks might require this same automation of the input shaft to control the directional vein pump.
Alternatively, it may prove easier just to interrupt and connect with electric water man and pindle valves any hydraulic lines to redirect and control the fluid control for any double throw center piston system depicted in figure 1 as part number 701, and/or to change direction and RPM for a hydraulic motor part 700 and rotating gear on a flat or strip gear in Figure1. 704 in Figure 1 is the electric control over hydraulic flow control valve. Special considerations would include any standard junctions like rag joints universals or collapsible sections for a impact or crumple zone along any steering linkage. The many modalities detailed within would be placed so as not to impair and/or defeat the normal use and purpose of these standard safety parts.

Presently the cars have a steering wheel speed sensor for their effortless steering. The prototypes will innovate this sensor that sends its signal to the EBCM. Presently this is utilized for effortless steering through the EBCM software program that adjusts electronically a pindle valve in the power steering pump to change the power assist for better road handling at higher speeds and increases pressure to ease the steering at slow creeping speeds. This resisted sensor system is first to be converted to give steering rotation and degree to correlate to an exact wheel position or wheel angle through electronic signals, i.e., digital or analog current (ideally digital). This data will be compared in a compare list software function (an algorithm) formulated from the degree of movement detected by the sensor array 904 , in Figure 1, which also sends its data as electronic signals to the onboard computer and/or controllers, thereby allowing the software in the computer/controller to compare and compute the effects of steering and/or stepper motor activation's on the true guidance of the vehicle.

The steering data recovered is compared to the distance and camera signals recovered through the movement compare list as to the real time progress and results in guiding the vehicle in its fully automated state. Distance sensors would sense
objects front back and side and slow the vehicle or speed it up for front and back and swerve left or right for side to side closeness, as well as, guide the vehicle to an unobstructed path and stop it unless it was being controlled in the fully automated state or level Three (Mobile Application Specific Management Program (MASMP) and/or RPV). At any time that any automated steering has to be done the car horn and all warning notices would be activated if it is a level one or two shut down. The cameras will first be used to recognize lane markers, road edge and surface (there are some experimental interactive highways planned with magnetic lane makers. If this system was chosen and used the invention would employ magnetic sensors to interface with this highway system along with the proper accompanying MASMP and RPV software) or as visual recognition systems hardware and software become more sophisticated and reliable it will be used to perform more discriminatory functions and be responsible for more automated vehicle guidance control, managed by the PFN/TRAC software. However as was stated earlier these systems will first see their use in remote control under the direct visual control of trained people like law enforcement as a evolution of the [warnlslow
(guide) \stop and detain and kill the power plant, shut down function] for the unlawful and immediately unsafe use of automobile scenarios, or to control equipment operated in a hostile environments to humans, these cold even involve more comprehensive robotics applications and are extensively detailed in U.S. Provisional application No. 60/122,108. However, even though the fully automated guidance controls will be forthcoming with the interactive highways and smart cars development in U.S. Provisional application No. 60/122,108, the PFN invention will develop a short preprogrammed guidance system using the distance sensors headlight detectors and the advent of driver monitoring devices as the second commercialization of the automated guidance system the level two protocol. This second level will warn slow with guidance, while preprogrammed software monitors the environment all the way to a creep speed (determined from wheel rotation sensors, hall effect, ect.) and nose the vehicle off the highway, then stop and secure the vehicle, when a driver is detected unfit to handle the vehicle or is unconscious. The TRAC software will provide accountability with the redundant memories for remote and automated activities as it authorizes activities and authenticates them.

While it will be possible for this system to still be involved in accidents it will be relatively easy to keep the vehicle on the road surface going the right direction and not be involved in any head-on collisions, generally, which is the most fatal drunken driver accident. Hopefully by keeping an out of control vehicle slowing down in the

Figures 22-23

These figures have been used to display the three major components to controlling engine timing for the spark and fuel in the GM cars. The top picture is the power train control module or PCM. The second is the ignition coil pack and the third harmonic or a crank shaft sensor. These standard parts are used to time fuel and provide spark for internal combustion gasoline engines and are the sensors that will be interrupted and electrical components most effected by this technology's 1000 series trickster circuits to augment injector timing and spark plug firing in the controlled
phase one slow downs and phase three power plant deactivations for TRAC software PASSS and PAGSSS.

900 series

This set of drawings shows the cam shaft sensor location and the lower figure shows another type of crankshaft sensor. These are also engine timing controls that are interrupted by the 1000 trickster circuits which send a pretuned voltage level or a generated digital pulse to fool the PCM or any control circuits that they are interfaced with. There is not much more needed to be stated presently for figures 22 and 23 because these drawings are being used to show the electrical senor locations, however, the system effects that the trickster circuits do will be detailed more. This electrical process has been described numerous times already, however in the specific applications there may be additional information that may alter and these illustration and descriptions are only used to show the technology not to limit its versatility. Most of the description has focused on the inventions automation of the OEM standard vehicle, equipment and machine systems. Therefore, it is important in this discussion of the 900 series devices to clearly describe the electrical OEM devices that will be a part of performing these unique functions, while still doing their OEM job.

Other 900 series vehicle electrical parts under PFN control

In Figure one 915 is the door switch. 914 A is a seat switch that can tell if it is occupied. 914 is the seat belt switch that will indicate electrically the belt is home in the secured coupled position. All of these devices and/or any of them will be incorporated to create a 900 series deadman seat switch system. First, simply only to tell if a driver is present in the car or the seat or behind the wheel (e.g., because the carjacker is trying to leave an unmanned running vehicle to make an escape). This unmanned state will initiate the inventions auto shut down sequence either level one, two or three, determined by TRIAGE, a TRAC program that surveys onboard devices and capabilities and employs the correct program to deploy the appropriate devices. This is also being used to set the emergency brake when a driver leaves the car or when any door opens and kill the cars ability to crank or run in a number of ways after the wheel sensor detects a stopped and stationary condition. This can also help stop
children from releasing a brake and/or shifting a gear lever when the vehicle is in an idle state. This is the invention's secured state for a no driver situation. Of course the legitimate driver can override the engine shut off. But the vehicle cannot be put into gear without a driver nor can the vehicle have any of its automated braking released unless override commands are given by the appropriate authorized personnel to the PFN and TRAC software that authorizes commands and authenticates and records them. Ultimately, this system will be combined with diagnostic driver sensors and software to determine driver capability prior and during any operation.

This technology believes that the privilege to operate anything is not violated along with the individuals rights when unbiased standardized performance protocols can determine a public danger in the operation of a piece of machinery, whether it be a vehicle a piece of equipment and/or a machine of any kind. This technology also recognizes a greater aging population that will require assistance in operating personal vehicular transports and is designing versatile assistance protocols that can insure the greatest individual freedom at the same time it improves public safety. This technology's PFN/TRAC system is the ideal accountable automated and remote control setting to accomplish primary private operator performance assessments and give auto-tutor advisement's to compromised drivers of their errors while respectfully performing any graduated automated and/or remote control necessary, where safe proper control is absent or improper for any moving vehicle and/or operating piece of equipment. These accountable management and control systems allow insurance to rate operators with real time data, help improve operator performance and resolve legal disputes.

The PFN's Billing Box function designed to bill for any equipment use, adjust insurance rates for proper and improper driver and equipment use, assess fuel utilization, provide a commercial work station to conduct secure financial transactions from, as well as, do most all kinds of automated transactions and data transfers and to evaluate the environmental impact is well detailed throughout all of the related patent applications. Here, however, in talking about the peripheral devices in the 900 series the environmental protection agency EPA systems on the vehicle devices include application specific environmental sensors at the end of any exhaust system as well as a monitor on all OEM sensors, already in existence, like O_{2}, hydrocarbons, H.C., Evap
systems, Nitrous Oxide $\left(\mathrm{NO}_{\mathrm{x}}\right)$ on-board devices, fluid level monitors for leak detection, battery compartment monitors for leaks and gassing. Basically, the system for environmental project will have levels of acceptability. First, when any power plant does not have a stoichiometric condition, which will be recorded from time to time as the vehicle is operated and monitored by application specific software (MASMP) in the PFN a trouble code flag is recognized and stored in the PCM and PFN/TRAC system. If deemed necessary, the trouble is reported immediately to an off-board monitoring phone node for a local or regional computer gateway either EPAIDOT \backslash monitoring state or federal hazmat program, etc. If the vehicle is emitting toxins at a severe enough level to concern public safety, immediate operator/owner notification compliance and enforcement measures are possible in real time. And the invention software, TRAC, will first notify operator/owner and determine when the vehicle receives the proper service for any bad fuel mixture operation or emissions and make sure it is reported if left unattended. The standards for the Stoichometric condition will be set by the Federal Government as per geographic location, population and environment. However, the TC will be triggered at the California Air Resources Board levels for the invention's initial "Green Eyes" Mobile Application Specific Management Program (MASMP) software settings in the prototypes.

Application specific standards will be set for the varied type of fueling and energy systems by all the involved government agencies, industry groups and involved public organizations and concerned individual citizens, provided in this technology's related patent applications PCT/US99/00919 and U.S. Provisional application No. 60/122,108. All the computer networking, including the use of the world wide web, is detailed. These patent applications detail how to use the existing government agency's gateways and computer networks with accountable TRAC software, for the PFN operation and the mass data management and storage systems (TRAC's interface) for these large agencies. This technology foresees the need to monitor at this individual equipment level to meet the needs of society, the economy, and the worlds environment; and also, sees the opportunity that these combining and merging technologies present to accomplish and create this PFN/TRAC device and system to meet these needs for humanity; i.e., to have a protected accountable remote control interface and memory systems for automated and remote control, which this
technology terms a the PFN. A protected primary focal node for all control, communication, tracking circuits and devices and (most especially if only to solely protect the memory storage circuits) to which standards, and law can be written and applied in every industry application and for every electrical component used, including their hard wiring, connections, interfaces, software programs, maintenance and operational use. The PFN in the automobile and trucking industry has been designed in the related patents to double as a protective interface and/or dash mount compartment for electrical necessities, expensive accessories, and an area of secure and secluded placement for personal items (a safe and fire box) as an improvement and replacement to the standard glove box. This multi-function protective capability or quality for the PFN is also claimed for any other types of equipment or applications, if so desired or deemed necessary by any standard.

Figure 24 - 1000 series

These mechanical and electrical protection components along with all the other sensors and reporting devices to the power train control module, ignition control module, injection control module, brake control module and any or all of the OEM 900 parts are the focus areas of these 1000 series coyote devices. They are also referred to as the trickster circuits. They are intended to interrupt and interface with C.O.T.S. and OEM control and processor products to augment normal operating data streams and provide specific electrical signals as a automated and/or remote control PFN response to initiate a desired OEM function without changing the OEM's software and/or system in general. This is an interface system of this technology and the PFN protocol to easily combine electrical processing components and their peripheral sensors and devices.

The next drawing is of 2 trickster circuits being used experimentally at the present time, but the whole concept of having an inexpensive electronic device designed to fool a controller or control module or computer and their software is unique to this technology, especially, when it is done to help interface other electronic system without reprogramming their software or re-burning firmware. There are many more of these circuits and devices that can be specifically set up to provide these false or pseudo signals for any number of standard performed functions by the

OEM processors and their peripheral components, so the mere fact that they are not specifically detailed at this point should not make them unique from this technology. These innovative devices will have a lot of use in the present changing automobile industry and especially for older vehicle retrofitting, as well as find great use in a lot of other industrial and heavy equipment areas where diverse software or changing it for limited use applications can be very expensive. These necessary coyote circuits will provide a great value in rerouting signals from C.O.T.S. devices for interfacing other processors controllers and/or computers to OEM peripherals and/or any onboard accessories.

Figure 24 depicts 2 inexpensive trickster circuits. The top left circuit, marked A, is the 1001 coyote and it is for changing analog current signals. It involves only 2 parts a relay and a resistor (fixed or variable). These parts will change for the different current demands of any particular piece of machinery or application but, because they are only working with lower control currents and signals from processors and computer circuitry to send and receive a particular data signal the parts will be in most cases the same and in expensive. However, if coyote circuits are supplying service power to an accessory or a peripheral function as is the case with some of the add on or OEM actuators then these relays (solid state or mechanical) parts would be composed of the suitable components to handle any current requirements, as well as, be compliant with any applicable electrical standards. These circuits are going to be changed and varied greatly to meet the application specific needs of other industries, as well as, the current demands in different parts of the world. This technology has always maintained a strong commitment to forward and backward, as well as, providing as much diverse engineering as possible to meet basic accountable automated and remote control requirements at a worldwide scale for all machinery to help provide organization and technology to universalize access to this vast MMN. These trickster circuits can help to complete those diverse controls needed inexpensively and rather rapidly for all industries to automate machine controls.

The parts used in the 1001 prototype are 12VDC PC relay DPDT Radio Shack 275-249A and the variable resistor is 15 -turn Cermet Potentiometer 10k Radio Shack 271-343. And in the drawing 24A they are parts 1010 for the relay and 1011 for the variable resister. This circuit is designed to send an adjusted but specific voltage level
to simulate an analog OEMS senders signal. The purpose in this applications is to have the electronic engine controls adjust the timing for fuel injection and ignition to a specific desired engine RPM level without having to interfere with the normal OEM Software, when the invention changes the physical air and/or fuel supply. This allows for one previously detailed modality to coordinate a smooth slow down with no improper cylinder detonations for improper mixtures, or to trick the security module to believe the ignition key is in the switch to allow for a remote start if the key has a resister chip in it like the ' 96 Lumina and most all GM cars. The reason that both these trickster circuits have a double pole and double throw relay is so that the OEM sending device signal can supply the normal running signal on one set of poles to the OEM control modules and when the invention PFN energizes the relay the signal is interrupted, and the pre adjusted potentiometers or fixed resistors in one of the trickster circuits send the appropriate signal or slow down signal to the OEM's PCM or control module or security module or any desired control circuit for that mater. The automobile is the focus of this discussion but the same procedure can be performed in any application or equipment with the specific requirements met to perform any automated or remote control deception of any processor circuit by meeting the onboard software and firmware requirements or criterion to perform responsively connectable tasks.

Drawing 24B 1002 digital coyote tricksters for digital signals also uses the same relay 12VDC PC DPDT Radio Shack 275-249A and same resistor 15-turn Cermet potentiometer 10k Radio Shack 271-343 along with the I C 555 timer Radio shack 276-1723 to create an automated switch pulse generator for a digital signal. For digital signal replacement to be sent in place of the OEM sending devices like, some e.g. MAF sensors, RPM signals, etc. When it is necessary to have different pulse widths another 555 in series is used to divide the frequency differently and further adjusted by another potentiometer. This is 10002 a trickster circuit.

In both drawings 24 A and 24 B INVIN is the inventions volts in signal that energizes 12 volts + to the Relays part 1010. On part 1010 the OEM SI terminal is the OEM sensor signal coming into one set of poles on the relay and on to the OEM control module in the normal state. When the signal is sent for slow down by the PFN invention the relay 1010 in both has its coil energized along with the circuit that goes
to the resistor in 24A and in illustration 24B which goes not only to the variable resistor, but also to the 555 timer in the illustration 24B. In illustration 24A it just continues on to the OEM controls with the adjusted voltage, from the resistor, i.e., the analog current systems. However, when the invention sends 12 volts in the 24B drawing (the digital application) it also energizes the 555 timer on pin $8+\mathrm{Vcc}$ and pin 4 reset as well as the potentiometer. The drawing is standard for a pulse generator and the pulse from terminal 3 goes to the control module with a ground lead. If this signal is sent to another 555 timer and input pin 2 with another potentiometer and just 2 capacitors the frequency coming out of \#3 pin on the second 555 will be divided to the preadjusted desired signal. This is accomplished with an oscilloscope and RPM tacho, meter or scanner for a signal reference for the slow or idle state, or a known signal desired can be adjusted with the scope. These circuits have many other uses in all kids of industries to link and net work, as well as, interface with software of a particular manufacture by providing any signal by varying the pulse width and frequency, etc., or employing other circuit components to mimic any desired signal. With a good study or reverse engineering of any functions, while observing the desired result to determine the proper signal that initiates a function is all that is required for anyone skilled in the art can create a false input signal to trigger the desired function and construct one of these coyote circuits to interface software systems. Many times where ever possible these same functions will be performed by integrated circuits and preprogrammed as limited software and/or firmware signals sent from either the PFN computers used by this technology and extensively detailed through out the related patents or any other mini controller computers and/or processors (e.g., Parallax Stamp I II computers). However, if these signals are sent to deceive another pre existing processor as a deliberate attempt to create a preprogrammed response from its pre existing software or firmware it falls with in the nature and scope claim for this technology's coyote and trickster circuitry.

Figure 2510003 circuit

This is a circuit that replaces the striker switch for the modern cars that have auto dim to off circuits for the over head dome light when the car door is opened and closed. For the older vehicles and any piece of equipment employing striker switches the striker switch circuit would be monitored on a processor's in put pin to detect the door open and closed position. This is done because, this technology foresees in many case a real necessity to know when the doors are in a closed or open position to apply the brakes in responsible remote or automated control scenarios. This is another function to its emergency shutdowns for brake deployment protocols when compartment doors are opened, as well as, sounding driver and surrounding car warnings. Standards and procedures will have to be set and written to by the same government agencies, industry groups and related insurance and public organizations as referred to earlier for the (e.g., a bail out done by the carjacker, etc., or on and off loading of slow passengers from rear doors).

This simple, easy to install circuit was designed to sense current draw in the dome light circuit and not to interfere with any OEM programming. However, for this automated brake and/or steering function OEM's could reprogram their processors to directly apply any automated onboard brakes, when the correct data warranted this activation of the automated braking or steering system (e.g., open doors with a running power plant, in gear out off gear with wheel sensor data, etc.). Of course this current sensing circuit can be configured to accomplish this same function for any other circuits as well. If an OEM vehicle manufacture reconfigures their processors to perform these automated and/or remote controls of any braking, steering or speed control it falls within the nature and scope of this technology's shutdown protocols PASSS and PAGSSS, as well as MASMP and TRAC (RPV). The deactivation of the accelerator function of a vehicle can be eliminated by this technology for this purpose simultaneously if so desired and mandated by any standard protocols.

Early experimentation of this has proven that given the proper early warning with loud enough sirens, bright enough lights and the information bar all three of these functions can be performed with reasonable safety. However, further testing refinement and education will all play a role in the use and acceptance of these protocols and for any aggressive automated and remote control. And this is another
reason that onboard accountability is so important to these developments. This technology plans to work closely with all the automobile manufactures, government agencies, and the insurance industry to develop the proper standards and protocols needed for government to write and approve specifications, standards and law.

Once again, this is another 1000 series coyote trickster circuit and is numbered 10003. Its function is to take any electrical signal minimal voltage, TTL, or digital and received it on its input pin and energize a ground side power up of a high current relay to effect any high current function. Like in the 1001 and 1002 tricksters, they can be switched on by a relay, as well as, activate one. And these circuits can energize other devices as well, i.e., motors, solenoids, lights, etc. These present circuits will incorporate the Toshiba TD62064/ap 4 channel high current Darlinton sink driver, however, there are other drivers on the market and application specific requirement might change any parts used. One uniqueness here is that with the OEMs all going to digital and solid state electronics with very low voltage so the automotive electrical accessory after market will find it hard to find the right control circuitry to activate their devices with these low current small wires to handle a load and/or off time digital signals. With the Darlington coupled to a relay or in the case of this 4 channel driver connected to 4 different relays to energized 4 different circuits if need be. This becomes another inexpensive way to interface digital and analog systems without a massive amount of combining software programs for add on devices to any particular circuit if this is all that is desired. These designs are also to help put the do-it-yourselfers and mechanics back into the repair business in the high tech world.

This technology is determined to provide more user friendly circuitry and plug and play modalities for all electrical accessories and peripheral devices to help in any standardization effort and/or provide more versatile options for interfacing electrical components for all industries, but especially for the automotive industry. So the first focus will be to provide help and support for any industry standards, for automotive electrical systems, combining their processing circuits with telecommunication systems, and other RF devices and electronics devices for GPS or locating modalities, data storage, and/or other computer, and processors, and to universalize interfaces and connections for multi component use installed by the skilled and average skilled individual. This invention will develop many of these types of circuits for this
purpose in the 1000 series electrical innovation and many will be a major part of interfacing automated and remote controls in all the various vehicles, machines and equipment throughout all of the varied equipment applications around the globe.

The drawing 25 is very simple to understand and all the components are well marked and labeled. Only one channel is being used to recognize the door is open in the new GM cars. It is the first channel on pin 3 of the four channel Darlinton driver in the center of the page for figure 25 . These new cars do not employ the traditional door strike switch as mentioned earlier to turn on the dome light. They have a security module that turns on the light with the door opening sensed through the lock mechanism and monitored through the module. When the door latches it sends a low current 12 vdc signal to the security module to start the dimming process in the dome and the courtesy light system. Most of these coyote circuits can access a circuit on a piece of equipment easily by standard connectors (e.g., crimp-ons, etc.) however, this technology holds as these interface circuits to also be constructed in application specific connectors for industries and specific manufactures as products to interface peripherals, accessories and processors to help standardize and universalize electrical components.

In this current sensing instance for Figure 25 the technology's objective was to apply the emergency brake, whenever a cabin door was opened so that the car could not be moved when people were entering or exiting the vehicle. This is all part of this technology's shut down and safety feature. This is one safety feature of the automatic emergency brake application, and provisions are provided for it to be defeated by an authorized driver override through the application of a panic button, or pin sequence, or finger print random light contact pad, in the event a driver feels compromised, which releases the brake and allows for fast free acceleration.

For the door switch open and close position the basic circuit in the GM vehicles ('96 Lumina) is the dark blue small wire to the door harness on the driver side as all doors are in series in this circuit. So the dark blue small wire is energized when any door was opened. This was the line used to made the trigger for the emergency brake deployment by energizing the 1003 trickster circuit. This signal on the dark blue line was only a control signal and not of a current sufficient to support any normal relay switching. This is the exact reasons these circuits were designed. To
help provide adaptive alternatives for the major manufacture's loyal customers and their favorite after market suppliers of products. The invention can perform this function through its PFN communication hardware and control box or CHAT box control systems of the first embodiment, however, it was decided to also have a simple control system for the automated brake so that this safety system could be put on any vehicle by itself and be coupled to any electronic system.

The circuit operates by supplying a high current ground to the 12 vdc Potter Brumfeld relay at the bottom of the picture 25 . The hot side of the relay is a fused battery positive that is deactivated by the limit switches in figure 4 when the brake is applied. The emergency brake circuit is always energized to be put on. So only the inventions control system (not used here) or the limit switch or the ground interruption through the 1003 circuit can release it. The battery positive is connected to the number 1 pin a common on the driver. Pins 4,5,12 and 13 are heat sinks or the ground. Output Pin 2 is connected to the ground side of Emergency brake relay. And pin 3 the input pin is connected to the dark blue 12 vdc low current signal from the door latch. Before the line is connected to the number 3 pin the current is resisted by a 180 ohm resistor and passed through a one-way diode 1 N 004 . This is done to fool the security module so it does not sense the draw of the activated ground in the Darlinton or received any back feed or sense an open circuit. If the security module senses this circuit it will not perform its auto dimming function.

The 1000 series trickster or Coyote circuits will continually create these possible commercial and technical merging and interfacing possibilities, as well as, increase the speed of new developments by individuals with the versatile linking of devices and circuits through relatively simple means. While 1000 series parts have been spawned for the interfacing of these C.O.T.S. devices to automate vehicles, machines and equipment they are a unique and a new innovation. And there are many different onboard parts, devices and software in the 1000 series; however, the only ones discussed presently pertain to these automated controls on a vehicle and in all the formal fillings for the first three applications of devices and control systems. There will be more circuits completely detailed for the application specific management systems and their respective pieces of equipment. The application specific
management areas are for mobile, commercial, home, management (MASMP, CASMP, HASMP, and CST, Control Security Technology).

Figure 26

1100 through 1200 is being reserved for devices that can be highway devices or gadgets that can help a troubled motorist on the highway, along with and as part of the "Green Eyes" and "Spider Eyes" programs of PFN/TRAC and its monitoring and control network software TRAC. However, this figure is of a device that has home and commercial value as well. The fuel link has been done as a useful little tool to accompany the fuel injection cars of today. Its purposes is to make available gasoline or fuel through the easy to connect fittings used for the test port on the fuel rail with a hose and valve long enough to fuel up a disabled car due to it running out of gas on the highway. It also has a home use, in that now there is no need to store flammable gas in the house garage or shed where its volatile dangers are obvious and the poisoning of pets and kids is an on going problem. Of course the connection for this innovation on the hot engine is also an obvious hazard. However, the invention will seek to get manufactures to reroute a connection fitting away from the engine and any electrical components under the hood, out by the fender with caution instructions and warnings for fire hazards and road side assist safety procedure placards and labels.

It is also possible to have better quick connect fittings with protective cover caps made to better achieve this connection. In this drawing the device is being illustrated as a fuel caddy reel.

1101 is the reel that holds a $2-5$ foot length of $3 / 8$ reinforced fuel line that has heat protective covering the first 4.5 feet to protect it from engine heat. 1102 is a swivel fitting standard for the test port on the fuel rail. However there may be different ones for different manufactures and if so the caddy would have these assorted fitting adapters snapped on to the carrying and hanging handle. 1108 is a self sealing vaive that closes when the hose is removed in the same manner as does the needle valve stem on 407 the fuel rail. 1103 is a site glass to see if fuel is passing through the hose, this will be made of plastic capable of handling petroleum products and capable of handling the fuel pressure as must the fuel line be, as well as, heat. 1107 is an end cap that will seal the hose when out of use and protect the fitting and
the valve from contamination and damage. 1105 serves the same purpose on the tank insertion tube end part 1106. This shows an external thread, however it will most probably be internal to allow the tank filler tube to slide by the unleaded flapper in the neck of the tank. 1111 is a shut off valve (ball cock type). 1109 is a snap in clasp for the filler tube section for consolidated transport. The 1102 end is knocked up in a jig fitting in the reel.

Figure 271100 series

The device is similar to part 201 the hydraulic cable tension piston in Figure 1, and has been chosen for the first modality to hook vehicles up on the road in a fast, efficient and safe manner to improve traffic patterns from the present and to be a part of the evolution of the robotic and computer interactive highways to come. The first purpose for linking automobiles is to give all motorist the capability to rapidly hook their vehicles with no real skill necessary on the part of the driver. And then to remove another disabled vehicle and its occupants from a travel lane without having to get out of the vehicle. This auto link also provides for the continual approval of both vehicle operators or there will be an immediate disengagement as a option (rules for moving and/or travel lane disengagement for public safety will be set by DOT and NTSB and standards and law will be written). The targeting of the helping hand piston for coupling is done through a magnetic sensor that will complete a coupled docking without any other out side guidance. And the electromagnetic surface plates with electric catches will find themselves and hook up directed by a electric servo motor that has a tracking disc on its final gear drive that only allows the piston a total of 14 degrees pivot for the front mounted piston. The rear is held almost completely stationary with the exception of very strong centering springs that are designed to absorb some side to side force to reduce damaging the piston rams. The front piston can pivot 7 degrees to the left and 7 degrees to the right. This front sensing plate sends turn angle data in the disabled car to its ESCM to set the wheel angle (in the same manner as for the cameras by an electric signal) and the battery in the disable car will activate the automated steering motors in the disable car to turn the wheels to keep the tow piston and cars in a popper line for trailing or towing. The key is turned on to free the steer wheel lock, but the engine need not operate if the disable car has a
low battery when the coupling is made the electrical service from the good towing vehicle can charge the disable car and/or supply power to the dedicated steering circuit and/or any that display no trouble codes through the helping hand accompanying electrical coupler, and if there is a severe electrical problem in the hook up; current sensing circuits and heat breakers in both vehicles will detect this condition protect both vehicle and give warnings in the instrument panel of both vehicles.

The second cylinder on the back in most cases will not turn to offer a fixed position for articulating the 2 cars to accommodate turning and trailing. This coupling with the pistons extended will reduce the need for a driver to get out of the car if they get as closely as they can to a direct alignment with the car they are going to be coupling to. The helping hand will have a hard wired comport on a flex cable which will allow the linking of all the electronic modules and the control of all the brakes and any automated systems functioning. The standard for years for the bumper height was 17 inches. It might be necessary to standardize vehicle classes by height and/or have a variable universal piston tongue mount and coupling surfaces And just because, the most ideal modality for this first prototypes is a hydraulic piston with magnetic interlock this technology considers any and all coupling designed to first expedite disabled vehicles in a simplified way for any and/or all of the above stated purpose to be within the nature and scope of this innovation.

Presently this first generation hook up for the universal coupling of vehicles to help stranded motorists and ease disrupted traffic patterns is a simplistic electromechanical device, called the "helping hand". This name will be used for a number of innovations that help the individual be a service to other individuals. This name is also listed in the 1200 series as there it will pertain to automated communication devices that will also help the individual and vehicle to be more of a part of the public's safety. There will be much more detail on this system and all that it will be able to do.

GM has a system to tram vehicles on an automated seven mile highway stretch in California in which they have experimented with a system that has no physical link ups and is done by distance sensing, however, at this point in the development of tram systems for vehicles on interactive highways this technology sees a double service performed by physical links. One to quickly remove disabled vehicles and also to
provide a more economical use of energy with combined power plants cycled for driving the train, and also improved communication and coordinated braking with all the PFN's interfaced through direct connections and all able to monitor off-board transmissions and accountable record all interface actions. However this technology is set up to work with any effort to automate personal transportation in a responsible and accountable manner. This direct connection or com and power port is important to point out at this point as a standard for automobile electrical systems is long overdue and any such standard cold easily provide for universal exterior connectors for this purpose and for the earlier detailed law enforcement connections, etc.

Figure 27

1130F is the front piston. 1131F is the piston pivot servo motor drive and position disc assembly. 1130 B is the back the sensor disk will be using the same technology as is used for the camera location, cylinder and 1131B is the centering spring assembly. This system can be configured to provide more of a radius in turning, but it is believed that this is all that is necessary with the trailing cars steering activated by the sensed turn on the position dick1 130B along with its limit points to give warnings as well as automated programs to help control the inexperienced driver in these scenarios.

Figure 28

2 cylinders and the hydraulic circuit along with the valve body and hydraulic sensors transduce pressure fluctuations into electrical signals when the cylinders have been extended for travel. This data will be used to apply brakes in unison for multiple link ups and trains. 1132 has the ram extended, 1133 is a pilot pin and when coupled to the other piston it creates a universal joint. These pistons will rotate naturally to create the piviton for side to side and up and down. 1134 is electro- mechanical catches energized by and with the energized fields in the contact and/or coupler plates. 1135 is the electromagnetic coupler 1136 is the hydraulic pressure transducers. The transducers are responsible for proving data back to any control circuits as to the acceleration inertia for each vehicle and automated the power plants and braked according to the desired rate of travel or circumstance as determined by the PFN
software running for the tram hook up either solely automated or remotely controlled. 1137 is the solenoids on the valve body 1138 is the valve body. The electric coupler, servo motor sensing plate and spring loaded alignment assembly.

Figure 27-28 uses for the car tram and tow systems
One whole section of the 1100 series will be devoted to the car tram system, where the vehicles communication and transmission center will be in contact with other vehicles and the interactive highway system and notify each vehicle that has logged into the interstate trip programmer a travel plan destination (like a flight plan). The Travel or trip controller will search out all other logged in destination coordinates per travel time periods each day and locate others with similar time and destination coefficients and match their present GPS coordinates retrieved periodically for the purpose of a link up.

The Travel or trip controller system searches for the presence of other vehicles in close proximity that are traveling the same roads for similar or close time frame specific destinations. It then notifies them of the economic long distance train approaching them and gives them a choice to hook-up. The system communication for the coordinated long distance trains are described in PCT/US99/00919 and in part more detailed in this application. However, presently this application is focusing on the specific devices on individual vehicles and their controls and communication systems. There will, however, be considerable description on the interaction of vehicle com links to the basic communication nodes of the interactive highways with TRAC software for MASMP and RPV..

In summary, if a driver decides they would rather rest and at the same time travel in a more economical less frustrating environment, they can notify the travel controller system that they will be linking up and they will receive directions as to speed to maintain and lanes to be in till the train passes them and they attach or are connected to from the rear or they increase speed as directed to attach from the rear all through radio or cell phone communications to finally physically link up though the "helping hand" link. This is an innovative physical device for the vehicle that will be marketed as a road service tool to aid disabled motorists and remove their disabled vehicle from the traffic lanes so that there is no waiting for tow trucks.

Later this same device of the invention will be used as earlier mentioned to make long distant car trains that will all interface with each other and energize their power plants to most economically run these car trains on the innermost left lane in right hand drive countries. They will be linked together with 2 communication systems. One, a direct hard wiring through a comport directly part of a hydraulic cylinder that is in the center mounted to the frame in the front and a second in the rear. It will swivel to allow on its frame anchor mount the most optimal angle for the ultimate automatic guidance through the on-board 905 sensor array and the first device magnetic sensor along with a servo motor to initially guide it out for hook up. Prior to the hook up the short range transmitter that will be responsible for interactive vehicle contact, as well as, local highway nodes will do a diagnostic on the vehicles to hook up to the train to see if there is any trouble codes. If so, the coupling is denied to the defective vehicle. (Single tows should optionally handle disabled vehicles with this invention running all the hazard lights and the unique info bar stating the car is in tow and any audio announcements that might prove useful and informative).

It is through the short range transceiver systems that the vehicles will time their in transit coupling either by radio, light and/or sound signals for distance data from the respective distance sensor modalities for separation and to provide another modality to coordinated team braking and turning as one of the cars in the train has decided to leave or break off and/or conversely join the train. Speed will be set by the interstate programmer or designated by the interfaced PFN's or vehicle computers that can in route be able to read the amount of fuel used through the individual vehicle as reports given with their specific electronic serial number which will aid to maintain uninterrupted travel and reduce the amount of radio separation transit for one vehicles. If a low fuel level is identified in a vehicle or is sending a trouble code or warning, the interfaced computers will recognize it and warn the whole train of a possible troubled vehicle. If it does not interfere with the ability of the vehicle to train it will be carried on with all its other functions maintained from the com link till the end of the destination day. As the com link will still be able to supply electrical power a support electric functions from the other vehicles, the troubled car could be carried on to a destination allowing the occupants to be on time to their appointments as their car
received its necessary repairs at the destination point. As the train travels some vehicles fuel will drop individually.

The interfaced PFN vehicle computers will be able to either idle or increase an individual vehicles engine rpm that will most economically and efficiently power the whole train with the best stability and traction in foul weather all the while tabulating road credits that are paid for at the end of travel days either by the highway system or fuel credit card transfers and paid for right in the vehicle by credit card and the swipe system that's part of the invention(the billing box function). The on-board computers will be capable of determining which vehicles power plant and brake activation will best control the trains stability and ride. The interstate programmer will constantly be informing the train of upcoming traffic situations and controlling it automatically through congested traffic patterns with the drivers able to relax as the system picks and decides the most efficient way for their entire destination for the total group to be achieved. While the train will interact with the highway system as much as possible, the parallel development of the invention's onboard vehicle and communication systems and environmental sensing systems, e.g., cameras and distance should be developed to run the trails on the vacant back roads as well. All the GPS systems and mapping programs and individual travel plans will become interactive and interfaced with the interstate programmer and readily available to the vehicle occupants computer displays and in the cabin displays all of which will be detailed from C.O.T.S. to the highly specialized state of the art OEM devices that will be fueled by the robotic capability of training as it will allow for a lot more time to do other things in the vehicle. The train through all the interfaced communication systems will inform the individual vehicle of a separation and car leaving or adding on and when massive destinations are reached in certain classic locations the train will pull over to a dispatch lane and the cars will dissipate on their own to their private destinations. There will also be a greater need for refrigeration and porta-potties alone with privacy sections that will alter some vehicle configurations. Trains will be comprised of similar height vehicles and sizes and types and improper weight and sizes will automatically describe a vehicle to train.

For this reason the first innovation is a device that can physically link vehicles in an automated fashion and is going to be commercialized to the car manufacturer
first to couple same make cars. However, the universalizing of the connecting heights with standards will be a priority to fulfill the real scope and nature of the invention and the helping hand innovation. This innovation has real value presently because of the new ride on flat tires. The only other leading disablement of vehicles other than true vehicle altercations is mechanical malfunctions. And in most cases the cars can still roll and need only to be pulled to a safe location rather than being left as a road block in a busy travel lane. Also, in very hot weather cars overheat because they are running slow and in this case can be hooked to the one in front that is running cool and/or teamed for slow travel and rested; this will be good for the atmospheric environment, good for the ambient heat, and most definitely good for the car. And if necessary because the vehicle has already been over taxed and is in need of repair the vehicle can be carted off for that repair with the flow of traffic uninterrupted keeping people from being out of their vehicles in travel lanes and harms way to remove a disabled vehicle. The tow situation or scenario should immediately have the first available access to HOV lanes and if the vehicles are rolling safely should be allowed to tow the vehicle to their own choice of service facility if agreed upon by the drivers of the vehicles being operated.

There will also be a simple tele - com port hookup to allow for voice communications but could support video as well. This could be a very useful long distance conference feature for the trains either for entertainment and/or for business. The 1100 series helping hand coupling piston system will allow a communication link of the vehicles when in operation as well as diagnose the towed vehicles system. This will allow for any number of direct communication systems to serve from one car cabin and control systems to the others if agreed upon in the towing process. This will share system data and perform any pre-calling process to a service facility that has the appropriate parts and personnel to complete the repair at the commercial cost agreed upon. Both the automobile owner and server system gives service cost parameters high low and the real conditional factors, i.e., parts cost and/or in-house or out of shop labor intended cost. The phone call cost or any charge for the look-see on arrival together with business ID for referral for the troubled motorist on their towed return home or decision to change service repair servers not stuck on the road the motorists availed to his own personal and social resources to pick his vehicle up and review his
first offer and cost of repair. This freedom for the motorist is easily achieved, with all other equipped vehicles for tow with the same ability to couple and report on any mechanical and/or physical changes upon their hook up and record. The diagnostic software of the new tow contact before you drive away through a comparative review of the personal recording taken when the car was delivered for service and with any mechanic a service facility notes for their actions on the reconnect for tow or transport ready for review.

Figure 29

 an additional security feature for the PFN secure on board memory as well as, any other necessary electronic parts. The electronic seal system (the technology will seek certification as a standard in the protected area of the PFN): Figure 15 is utilizing one thousand series numbers on this drawing because it uses the trickster circuits relay systems to activate the heater wire to release the seal to physically enter the safe box memory containment section of any PFN TRAC system (that will be certified for record keeping of any kind for accountability. 1025 is the security relay switch and can be a silicon relay with a gate lead 1033 or a standard mechanical relay where 1033 would be one of the leads to a primary coil the other terminal would be connected to the opposite pole in this circuit. 1026 is a wire or thin piece of conductible metal covered in a substance that will melt when heated to $300^{\circ} \mathrm{F}$ or something less (application specific) the prototypes will use a product call polysulphone which is a heat resistant plastic. The inside of a PFN should never reach this temperature as it is insulated. 1027 is the plastic well anchors for the seal with galleys to accept the liquid plastic during an authorized installation of clean memory and the removal of a untampered memory component. They are positioned structurally around the access door and are stamped with an registered ID number for legitimate access to this compartment. 1034 is the negative terminal and can be provided a contact terminal or wire to ground in the automotive applications. 1035 is the positive lead and it too can be provided a terminal or wired to a fused positive lead with the appropriate hard wiring and fuse amperage protection. 1030 is the negative power lead and 1029 is the positive power lead. 1031 is the processor and can send the appropriate signal to thegate circuit outfitted with a 1002 s trickster circuit that is resisted to a set signal, or the processor can energize the other side of a mechanical relay 1025 and thereby turn on the current and melt the plastic seal. Or 1032 can be used to send the correct electrical signal to switch the security relay 1025 and its resisted trickster circuit also energizing the seal system separate of the processor in the event the processor has been compromised. The circuit can be completely activated through the PFNTTRAC system with no outside contact and this can be achieved from a remote signal or through the keypad.

Figure 30

Is a physical-view of the PFN secure area for memory storage. This drawing does not depict any specific guarded area. it is used to show the physical locking of the access door and the seal going around through the anchor seal wells 1028 SA. 1036 is the physical lock throws through the side wall of the PFN. These can be operated physically and or electrically as well. And one design provides for the at least secured memory storage area to be spring loaded so when the proper signal is sent to the PFN to open the sealed area the mechanical lock is released and the seal is melted with the door opening an the memory tray sliding half way out. 1037 is the key slot cylinder and this cylinder can be constructed like the new ignition cylinders and outfitted to read a resister chip in the key to activate the SR part 1025 in figure 15 and melt the seal the seal is 1036 which goes around the entire access door. And 1038 is the secure box itself.

So there will not be any miss understanding the PFN box can provide interfacing protection and security to a lot of electrical components and personal property items, however, the the memory storage and any circuits responsible for TRAC routing will be electrically secured and physically secured in the certified or sanctioned area with lock and seal to protect the memory at a legal level for evidence and/or any legal proceeding.

An initial claim is made from all related applications for this technology's secure controller, or processor or computer system(s) with any application specific hardware, firmware, and software to processes accountable automated and remote control commands as a primary focal node housed in a protected encasement(s)
termed a PFN. (Specific components, configurations and physical structure for the PFN will be application specific and/or compliant, as well as, be constructed to provide any industry Standard(s) government Standard(s) insurance Standard(s) and/or codes, rules, regulations, and/or laws written to insure any certification, accreditation and maintain it for the PFNs to be accountable systems for all types of automated and remote control and/or robotics.) This claim is to include the firmware and software certified, approved and standardized by industry, government, insurance industry, and the public as Trust for Remote Activity Controls, because it authorizes and authenticates commands and their activities and provides the appropriate memory record for society to function legally.

Other responsively connectable PFN control circuits, components and/or devices are at least one of: at least one current memory device with either an application specific backup device or the same device with a redundant memory function in the same containment or securely linked to an equivalent protected and secure encasement, for the purpose of recording, pristine accountable application specific automated and remote control command strings to on-board peripheral devices that perform automated and remote control functions; electrical signal sensory device and audio/visual monitoring devices to report on the command function results of the onboard peripheral devices and equipment for the application specific commands in the same plurality of memory storage and protocols with synchronized time date and (with optional application specific geographic coordinates) all matched to the application specific command functions; at least a one-way communication device capable of receiving an application specific signal and responsively connectable to the at least one processor, either stored jointly in the same protected encasement or securely linked to a separate same protected encasement; and/or at least one two-way communication device capable of transmitting and receiving an application specific signal responsively connectable to the at least one processor either stored jointly in the same encasement or securely linked in a separate same protected encasement; a report back system capable to report back to at least one remote location of any or all of the application specific data that has been permanently stored in any PFN; a global positioning system, multi tasking cellular phone tracking or RF signal locating device responsively connectable to the at least
one processor providing time and geographic data for application specific control functions and memory records either stored in the same secure protected containment or securely linked in an equivalent protected encasement.

A claim of responsive connectable interface is made for this patent application's automated innovations, sensors and monitoring equipment to any other control technology's modules, and/or controllers, or processors and/or entire computer systems with any application specific, hardware, firmware, and software either secured, secluded, protected, in a responsible and/or accountable manner at any level, but capable to perform any automated and remote control and/or robotics functions. Also, any other responsively connectable desired and/or required circuits, components and/or devices including at least one of: at least one memory device capable of storing any operational equipment data and any operator performance data on-board; at least a one-way communication device capable of receiving any specific signal and responsively connectable to at least one processor stored in any fashion on-board; at least one two-way communication device capable of transmitting and receiving any specific signal responsively connectable to at least one processor stored in any fashion onboard, with off-board control options, data transfer options and memory storage for any purpose to at least at one remote location; any global positioning system, multitasking cellular phone with tracking or RF signal locating device responsively connectable to at least one processor capable of providing time, date and geographic data for any monitoring; and/or automated and remote control functions and/or robotics as well as to transfer this data to at least one remote location.

A further claim is made for any responsively connectable electrical sensing accessories and/or peripheral devices that performs and/or controls any accountable automated and/or remote control functions and/or applications, when it utilizes, electricity, compressed air or gasses, vacuums, hydraulic and/or fluid pressure, to energize any such devices like electro magnets solenoids, motors, mechanical or silicon relays, pistons, cylinders, pumps, valves, adjustable valves pindle valves cables, linkages levers, shifter forks, paws, ratchets, catches, couplers, spring returns, gearing or power transfer mechanisms cases, brake pads disk assemblies, or drums, clutches and/or interlocking drive mechanisms, spined hub collars and shafts.

A further claim is made for any responsively connectable electrical actuating accessory and/or peripheral devices that reports back on any responsively connectable electrical actuating accessory and/or peripheral device with any type of data signal created by any camera, transducer sensors that provide an electrical signal, for any system pressures and vacuums, surrounding environmental time and distance measurements, onboard device position sensing of devices from limited switches to rotational positions.

A further claim is made for any responsively connectable electrical actuating accessory and/or peripheral devices to control a vehicle speed, by controlling the physical position of the throttle though shaft on any air fuel mixture system or device responsible for providing this necessary fuel combination component to energize a power plant for internal combustion engines.

A further claim is made for any vehicle monitoring and remote control claim for any speed control modality for any circuitry, module, processor, device, component and/or its firmware, and/or onboard board software, like TRAC, that functions to control any electric stepper motors and/or solenoids or any throttle through shaft to control any type of drive by wire modalities (either on any internal combustion engine or any type of alternative power plant), and/ or for any electric vehicles to directly control electric drive motors or electric drive flywheel inertia power plants (electric wheel, etc.) and/or their drive trains to control vehicle speed, and/or by controlling any real time electrical energy production or generation from any on-board chemical conversion systems either by decomposing and/or composing molecular bonds (e.g. fuel cells, and other devices etc.); and/or to control and monitor the onboard real time production of alternative fuels and their waste products and/or heat production and/or by products for any type of power plants for any vehicles, including the real time monitoring and control of present standard fossil fuels and their waste products heat production and/or byproducts for any type of power plant for vehicles.

A further claim is made to electrically control any onboard cruise control mechanisms through at least one of various detailed modalities: to initially eliminate any acceleration capability; and/or to control speed for automated and/or remote control; and/or robotics driving.

A further claim is made for larger vehicles (Trucks and Buses) which provide any responsively connectable electrical actuating accessory and/or peripheral devices to: control a vehicle speed (similarly constructed); control the physical position of any throttle though shaft, operator control mechanisms (pedals, hand levers, cables and/or mechanical linkage); limit air flow, and/or to similarly effect fuel flow in any internal combustion engine so equipped to create a controlled deceleration as part of any phase one slow down for these vehicles; and/or control vehicle speed for any automated and/or aggressive remote control purpose.

Another claim is made for any fuel throttling device designed to eliminate, limit, and/or control the injection pump, which can function to restrict the injection pump (if diesel) to its idle position thereby only providing the necessary fuel combination component to energize the power plant for the diesel internal combustion engines, and/or any use of electrically controlled solenoids valves, stepper motors, and/or pindle valves to control fuel flow as has been detailed for air and fluid electrical flow control application.

A further claim is made for the automation of either driver controls and/or solenoid(s) to activate the cylinder releases, commonly referred to as a jake brake to participate in any slow down where applicable.

A claim is made for the automation of any clutch either through the operators controls or though any linkage by any system that can be utilized to energize the function to disengage and reengage the clutch, however the clutch will be disengaged during the second stage controlled slow down.

A further automated and remote control claim is made for the first phase of a two phase slow down and stop procedure, which is part of a three phase vehicle shut down protocol, that is inclusive of any and all possible modalities; that has been designed to initially take aggressive responsible and accountable control as a significant increase to public safety for automotive vehicular travel.

The first phase slowdown is to eliminate, and/or control an operator's ability to accelerate and/or increase the speed of a vehicle; while preserving an energized power steering function and power braking function on the vehicle with protocol determined operator control (ultimately as a standardized procedure). However, also claimed, as it was determined in this technology's initial experimentation, the simple
elimination of all acceleration capability from the unauthorized driver is the best single simple improvement to increase public safety in this first stage slow down. But, any and/or all of these three functions can be optionally operator controlled at various application specific protocol levels either preprogrammed or remotely augmented in real time by the appropriate commands as a means to affect a safer controlled phase one slow down for this shut down designed as the initial step in aggressive automated and/or in any remote control scenario.

A further claim is made for the complete and total automation and remote control of any emergency and/or mechanical braking system as found on any and all onboard applicable vehicles, or equipment, when used in any fashion to slow or stop and retain a vehicle in a stationary position by any preprogrammed protocol response either remotely originated or as part of some onboard software or firmware programming, like TRAC's PASSS and PAGSSS programs and MASMP and RPV, to increase public safety.

A further claim is made for the second phase slowdown, stop and secure function performed by a remote command and/or a preprogram timed deployment of a automated emergency or mechanical brake system to slow and stop a vehicle in a stationary position, like all TRAC programs.

A further claim is made for the complete and total automation and remote control of any service and/or hydraulic braking system as found on any and/or all onboard applicable vehicles, or equipment, for any and/or all automated and remote control braking, and especially when used in any fashion to slow or stop and/or retain a vehicle in a stationary position by any preprogrammed protocol response either remotely originated or as part of some onboard software or firmware preprogramming.

A claim is made for the automation and remote control of any air service bake system and emergency brake system utilized on large trucks and busses to assist in this technology's second phase of a vehicle shutdown to slow, stop and secure the vehicle in a stationary position, by first slowly applying the brakes to any rear most tandem axles and wheels (ideally on any trailer first if applicable and attached). This is in a graduated manner until the truck is sensed to have no movement and without locking up the wheels (controlled by wheel sensors and/or rear end drive train sensor), and then to secure the vehicle electrical solenoid(s) dump the maxi can pressure to
hold the truck and/or bus in a stationary position. TRAC software would control solenoid air valves (bellows), etc. and the ones in the appendix through programmable modular software, firmware and hardware.

A claim is made for heavy equipment and revolving track equipment for agriculture, construction, commercial applications and military equipment) to control through TRAC's CASMP and FACT programs, the braking of the left and right side track(s) independently and/or jointly to effectively control steering and braking through either automation of the operator controls, responsively connectable and/or automated braking in the final drives and/or in the transmission clutches and/or any electrically controlled hydraulic clutch packs located anywhere in the powertrain. Electrical control devices constructed to either push, pull or rotate physically and/or made connectible electrically to interface with the PFN/TRAC system.

The power plants RPMs are controlled in accordance with the same modalities covered for gasoline and diesel engines and/or for any electrical drives. All remote control device modalities would be determined by the particular equipment parts and design. However, the protocol for a controlled slow down and stop in a stationary position would incorporate the de-energizing of the track drives as well as the reversing of their direction and braking deployment if necessary for stop and guidance. Often times, the drives are so resistant to inertia movement when the are not energized either through mechanical gearing and/or hydraulic or electrical energy that in the de-energized state they will stop moving and remain in the stationary position at most any incline.

All track and/or rail transportation vehicles (trains, trams, subways, and their individual cars) outfitted with application specific PFNs will provide backup and/or augmentation to any preexisting automated and/or remote control system in existence and/or enhance any of these systems by providing real time tracking monitoring and remote control through computer and automated network links to better coordinate intersecting traffic between road, rail, and waterway shipping and boating by being able to control it through TRAC trip computers, controlling the speed of the trains through them. Diesel motors, diesel over electric motors, electric motor controllers and/or stepper motor control systems, and/or any operator mechanical controls, their cables, linkages, hydraulic lines, air lines, electrical control service lines and circuits
in a similar manner as has been detailed for the automated and remote control peripheral actuating devices for the road vehicles. And any and all such other necessary automated and remote control application specific devices are configured by the electrical specifications and functional requirements from all the detailed mechanisms and are placed to control any electrical services, compressed air or gasses (steam) or hydraulic fluids utilized to energize any and all of the control components and/or devices to control speed and braking of any trains, trams, subways and/or rail transportation. A special PFN claim is made for individual rail car tracking to provide information to rail system customers and users as to the location of a particular load, and/or audio and/or video surveillance for increased security as well as specially provided sensing devices, application specific is an option for sensitive, and/or valuable loads and/or security scenarios.

A further claim is made for the remote control of all boating and shipping vessels by also outfitting them with application specific PFNs for tracking, monitoring and management world wide with the same types of devices as detailed for the different type of power plants in any and all of the land based vehicles for throttling and/or increasing their RPMs as a general rule, transmissions and rudder controls will be electrically controlled from the PFN for automated and remote control guidance and forward and reverse functions. These vessels use the same automations detailed for operator controls, as well as employing electric control over air, steam, hydraulic, mechanical and other additional electrical devices and components to control and power actuate boat controls, where and when applicable and needed. The systems will be application specific to the size of the craft and the amount of preprogrammed and/or automated system already present in any vessel for PFN/TRAC to interface with.

A further claim is made for agriculture and farming equipment to be automated for remote control with much of the same detailed automated control mechanisms, and with tracking and monitoring to control equipment from computer operating monitoring systems and networks for cultivating and harvesting protocols as well as monitor and controlling ecological impact and resource management through application specific PFN systems and special application specific equipment
programming and functions managed by Commercial Application Specific Mangement Programs, which is operated through TRAC in the PFNs.

A claim is made for all other commercial, factory, and industrial equipment either minimally mobile and/or stationary to all be outfitted with application specific PFN and TRAC systems and peripheral actuating devices to remotely control them and shut them down by the same detailed modalities for all of the above reasons detailed throughout the related patents. But once again, application specific electrical and mechanical actuators and management programming will be responsible for performing these specific automated and remote control functions and providing accountability. These PFNs in multi-equipment setting locations or installations may be monitored by one local central system, which has one land line phone node or satellite hook up with a protected gateway for the PFNs to communicate with their application specific data. These could, in many cases, use short range communications so that any monitoring can be done at a local level with application specific data and then re-transmitted and stored in a redundant manner for analysis in any computer network for any reason and of any size. And if any so equipped machinery could not find a receiving local node for its short range data signal, it would go into its application specific shut down sequence and cease to operate until the proper signal was provided or the equipment was re-programmed. Battery power would be utilized to repeat transmission by any communication devices as a down and lost equipment location function and continued by the PFN power systems. In solo operation the PFNs will be monitored and remotely controlled by commercial servers with (tele communication systems and long range RF equipment) primarily that can provide local service as well as internet gateway hookups for inexpensive diverse location commercial monitoring - (this will also be used in the agriculture applications).

A further claim is made for all home and private applications of PFNs that will be used in conjunction with any existing security system, home computer controller systems and/or this technology's home equipment and utilities management system to organize, store, complete phone node contact and transmit data for utility and/or equipment use for any billing, personal records and/or taxing for same, as well as, provide services for repair and maintenance purposes, and also to provide and
support home healthcare and nursing telemetry and automated functions. All equipment can be outfitted with application specific PFNs so that they will only operate for the rightful owner and can not be transferred to another location without the proper authorization, or they will send out a recognizable identification signal to all multi band PFN system receivers to report their location of the displaced equipment to the registered owner by phone node connections to the internet, E-mail managed by the PFN/TRAC program HASMP..

A further claim is made for the control of any and all ignition components and modules to control engine RPMs and/or maintain a run position through electronic signals, either, by direct interfacing with OEM components and/or indirectly providing a specific signal especially generated to create a preprogrammed OEM response from the standard OEM's firmware and/or software through this technology's trickster circuits for any desired response (application specific). These circuits can employ electro/mechanical relays or switches and/or be constructed of solid state circuits. Also the complete engine kill or shut down of the power plant is the $3^{\text {rd }}$ phase of the three phase shut down for vehicles either done as a preprogrammed time activated function or as the result of a remote control signal received and a predetermined response to this signal.

A PFN claim is made for any responsively connectable interface with actuating devices for all machines that utilize any type of electrical current and/or signal to control peripheral devices and/or accessories for any vehicle, machine or equipment application.

A further claim is made for the "coyote or trickster" circuits and/or any circuits responsibly connectable to a PFN TRAC system or any other processor or any type of relay control system designed to provide an electrical signal in order to deceive any other processor's software and/or firmware so that it will perform one of its preprogrammed tasks as an additional automated function, and/or as a remote control function and/or as any part of any interface functions for synergistic machine controls

A second claim is made for the "coyote sensing" circuits or any other circuit that is designed to intercept and determine if a specific electrical signal is sent to a or OEM processor or automated relay system and utilize that signal in any manner to trigger or perform other automated functions via any control relays, a PFN and/or any
other processor and/or interrupt that signal to the OEM processor if so desired, and/or perform any remote control or communications functions or memory functions as a result of detecting the electrical signal.

A further claim is made for special responsive connections for all the "Coyote circuits" or any other circuits that are designed to create any type of plug and play connectors as a universal modality to interface and/or integrate; electrical parts, components, devices, C.O.T.S. personal products or different manufactures products by design to create a more inclusive product; and/or to seek a standard for any universal connections physically and/or electrically.

A PFN claim is made for any responsive connectable report back sensing devices and components that provide monitoring data on machine remote control, area surveillance and environmental sensing, operator activities and equipment operational data, which can also make all of these transactions accountable, like through TRAC software.

A further claim is made for any type of physical protection; for any reason, that is deemed necessary and/or made mandatory by any standards codes rules regulations or laws by any appropriate governing bodies, for any electrical components and their hardware connections, control circuits locating equipment communications devices, circuits, peripheral control devices and sensory equipment including audio and video systems.

A claim is made for any protected signal from a PFN or any other machine messaging system for accountable software tracking string and file access log, as well as any special conditioning of any remote signal (encrypted).

A claim is made for an unsecured signal from a PFN as part of any remote signaling for machine messaging that does not require any special signal conditioning.

A further claim is made for web access, to monitor remote control function in real time and to mass store data off-board as transmitted by the PFN and/or other machine messaging systems and to access the web for personal use from the PFN for E-mail messaging and/or remote tracking either personally, as commercial service and/or for legal and/or governmental reasons.

A further claim is made to be the sole provider of PFN data and any use of that data and/or any other machine messaging system's data utilized on the web when
it is a part of monitoring, tracking and/or remote control and/or accounting for machine use and its impact on the environment, societies infrastructure, equipment's safe use, any security functions, any data analysis and/or any remote control function of any kind in any time frame.

A claim is made for responsive connectable actuating devices to remotely control equipment.

A claim is made for responsive connectable actuating devices to remotely control machines.

A claim is made for responsive connectable actuating devices to remotely control vehicles.

A claim is made for report back data from any responsive connectable onboard sensing devices and/or audio video components processed by the PFN and/or any comparable machine messaging system for any piece of equipment ,machine and/or vehicle either to a local remote location or worldwide.

A claim is made for the Spider Eyes program and Green Eyes or watch 1100 and 1200 community and environmental watch programs carried on the web as web pages for the local, state or regional, national and world web pages providing data collected from PFNs and/or processed through TRAC, by service providers to government standards and protocols or directly provided by the government agencies, and/or other participating organizations and educational institutions.

A further claim is made for the 1100 spider eyes program to be part of any interactive highway system and law enforcement protocols that are approved by law to perform traffic control functions and surveillance functions and crowd control functions through remote control of any and all peripheral devices on any piece of equipment through any and/or all PFNs as so deemed appropriate and necessary by law, with any violations and misuse fully accountable through TRAC programs or any similar products.

A claim is made for the 1100 Helping Hand connectable car link system that physically connects two or more vehicles to tram, tow or train together either for towing purpose or as part of any mass transit for individual cars, using its automated coupling and communication links, and its automated flow control valve, that is detailed here as basic flow control technology for fluid, air and gases to be applied to
other functions in steering, braking and other automated and remote control application for the operation of many other functions, including operating military ordinance as per any vehicle's control power for peripheral devices.

A claim is made for a highway device for fuel injected cars or systems as a fuel caddy that provides for the quick connect to the fuel line pressure system on a vehicle and the bleeding off of enough fuel to refuel another vehicle through a length of hose which is sealed when disconnected. Also this device can be used to fuel small engine devices like lawn mowers etc. foregoing the need to store flammable fuel in separate containers.

The following claims relate to the specific equipment disclosed in the present application:

HEAT SEAL SYSTEM

 application specific purposes to seal, unseal and reseal unions or joints between materials.A further claim is made for the system to be configured with a security switch mechanism that permits the shorted condition of the power source through the metal strip when the appropriate electrical signal and or mechanical switch is closed to complete a circuit through the thin wire. There is a large amount of applications for unsealing bonds in containment systems, or between any two surfaces to be sealed.

NOTE: on the trickster circuits, the PFN computers or processors or any associated computers interfaced in the PFN will be capable of performing trickster functions by, for example, sensing and/or sending a specific signal to a OEM controller or another computer to elicit a preprogrammed response from these other processors. In this case only physical connections are generally needed and the
appropriate software or firmware in the master computer in this masterlslave relationship between the interfaced processors.

GEAR DRIVEN ACTUATORS

Strip Gears:

The present invention includes the control, via the PFN and/or remotely, of strip gear mechanisms with gear reduction system driven by a matching motor gear dive, with guide channels or mechanisms to perform any application specific movement as determined to be a basic push pull function accomplished with, for example, guides, tracks shafts linkages, cables, belts, sheaves, chains, mating gears and/or sprockets with, for example, the appropriate attachments mounts, anchors, adhesives, melding, welding, screwing, riveting, bolting and/or any linking of connecting surfaces by any connecting hardware to achieve the push pull arcing and or a minimal rotation function.

The present invention includes the control and/or automation of the present emergency brake pedal, via the PFN and/or remotely, for example, as disclosed in Figures 5 and 5.1, including a strip gear with channel guides to anchor to the floor boards and to apply the foot pedal for the emergency brake. This mechanism can push-pull, for example, any pedal, cables, levers, linkages, switches, valves, foot pedal assembly, rotational actuator, arched strip gear, inline gear reduction servo motor system and/or any device that requires linear movement.

Figure 5.1 is a drawing of a motorized arched gear drive emergency brake pedal assembly that replaces the standard manual emergency brake pedal. It has a gear reduction motor and drive and is reversible and can also have a quick release. These can be used in the shut down of the vehicle and be activated when a door is opened for safer boarding and off boarding of mobile vehicles and equipment, as described herein. Also, a seat sensor or belt switch can activate any electrically controlled braking system if more appropriate to the application (fork lifts, bulldozers etc), using, for example, dead man switches (electrically activated not just a mechanical).

Sensing Switch:

The present invention includes advantageously a Coyote circuit for current sensing with a driver circuit to detect a signal either digital, TTL, AC, and/or low voltage DC signals, and then performs switching functions, operational and/or control current to perform electrical tasks that the primary unprocessed low current signal could not perform on its own.

The Coyote circuit of the present invention is is a circuit access switching device designed for the replacement of the manual and/or physical striker switches for the doors, hoods and trunks in the new vehicles. This device can be used in many industries for many reasons and applications. The standard 1003 circuit sensor switch basically can help interface additional activities from the first or primary signal if so desired in a very inexpensive manner.

An automatable cable tension device for emergency brake cables to be used, for example, as a center point cable pull for the automation of the emergency brake system.

The present invention further includes as modality A , a gear motor drive and strip gear configuration for the emergency brake cables under the car as detailed in figure 5 top isometric drawing for the part 200 location for the brake cable tensing systems in figure 1.

A piston system with the same attachment and anchor points powered by air, gasses, hydraulic or fluids mediums and controlled by relay(s) and solenoid(s) and valve(s) is claimed as modality B.

The present invention includes, as Modality C, a ball and or nut screw or worm gear system with the same attachment and anchor points powered by an appropriate motor gear drive and relays to apply the emergency brake by tensing the cables in the same manner (the mechanism works like the nut screw device figure 6).

A solenoid or electric cylinder configuration with the same attachments, and anchor points powered by the appropriate push pull solenoid as detailed in the appendices is considered Modality D.

Modality E includes any COTS product linear actuator with the same attachment and anchor points to perform the push pull function to tension and relax the cable to apply the emergency brake.

The Emergency brake pedal assembly (in it's present COTS configuration) or as an OEM installed improvement to this present system, by making the appropriate modality choice, attachments and anchors for the application specific vehicle.

The present invention includes the attaching of these A-E modalities to perform push pull tasks and/or to tense any cables or relax them to increase and decrease speed and/or RPMS, and to automate and/or remotely control of any piece of equipment, machinery and/or vehicle.

The present invention further includes the attaching of any of these A-E modalities to perform push pull tasks, with any linkage and/or lever assemblies to increase and/or decrease speed, RPMS and or workout by automating and/or remotely controlling, for example, any master cylinders, injection pumps, throttle controls, and/or the carburetor.

Accelerator Pedal Stop Device

The present invention employs the ball nut modality which is electrified to restrict a driver from depressing the gas pedal. However, the other modalities A-E could be employed to achieve this goal to eliminate acceleration of a vehicle and this device can be employed to block any normal function of a control part handles

A separate hand pull emergency applicator device is claimed for the same ball nut modality to apply the hand brake in many vehicles, and here again, A-E modalities can be employed to perform this same task for automated and remote control.
a separate Automated Cable interruption device invention is claimed for any cable device that releases any anchored end of a cable or can interrupt the normal action of a cable through electrical controls for any automated or remote control purpose to control throttles for acceleration.

A separate invention for electrically activated solenoid air and or gasses valve is claimed. A separate invention claim is made for a automated brake modulator valve for the automation of a motorized modulator hydraulic brake valve system, and the flow of brake fluid controlled by solenoid valves to be capable of applying the brakes though electrical controls for automated and remote control purposes.

A separate invention claim is made for automated steering devices that employs rotational actuators and or any A-E modality on the steer gear, shafts, orbital
valves rack and pinion stub shafts, steel linkage shaft and powers the actuators with servo or stepper motors and are driven by sheaves, pulleys belts sprocets chains resistance wheels, or gears to perform automated and or remote control functions.

A separate invention claim is made for electrically controlled hydraulic valve to direct flow speed and pressure to any double piston steer pistons to automate steering and or for remote control.

A separate claim is made for remote guidance and activating any of the automated steering invention which have a rotational, sensor disk to confim wheel angle sensed distance data and speed data as well as location data.

A surveillance claim of invention is made for the unattended use of any camera system for surveillance which is a part of any remote control technology for this technology's "green eyes and spider eyes" programs and protocols, as part of any machine messaging network.

The PFN software is programmable and modular software in hardware with embedded software, firmware, and software that can perform remote activities through the PFN controllers. The system is also capable of authorizing and authenticating remote and automated activities for private interactions and commercial use, insurance and legal actions, and for all types of financial transactions and to be approved for these official settings as apart of any standard or certification for automated and/or remote control scenarios for vehicles, machines, equipment and environments.

A special inventive claim is made for the PFN as a Repeater communication device for varied communication equipment, long and short range, and/or with multiband capability and processor systems. Many PFNs will take a weaker local signal and/or a special signal, and retransmit the signal and/or data over it's long range communication equipment to be used on the Internet or isolated remote monitoring applications for tracking. This is used for tracking persons, for example, pets by all local PFNs reporting coordinates to specified e-mail address special gateway providers and or commercial servers for telemetry.

A special inventive telemetry claim is made for the PFN. The varied communication equipment and processors can be connected to present COTS physical monitoring and nursing care equipment, and used to monitor, report back and/or
administer medication from a remote location allowing more freedom to the patient and reducing health care cost and attention. Also with new short-range telemetry RF equipment, the PFN can support these capabilities by wireless with the patient just being in the proximity of a PFN.

Another claim of the present invention is made to a shut down system for vehicles that first slows a vehicle by eliminating acceleration by any of the above modalities, and stops a vehicle by any of the above modalities, and secures the vehicle in a stationary position, with the power plant, engine or other energy source deactivated.

Another claim is made for the PFN for varied communication equipment and processors that can be connected to present COTS physical monitoring and nursing care equipment and be used to monitor report back and administer medication from a remote location allowing more freedom to the patient and reducing health care cost and attention. Also with new short-range telemetry RF equipment the PFN can support this by wireless with the patient just being in the proximity of a PFN.

A special Claim is made for PASSS protocol and program to a shut down system for vehicles, that first slows a vehicle by eliminating acceleration by any of the above modalities, stops a vehicle by any of the above modalities, and the secures the vehicle in a stationary position with the power plant deactivated. PASSS stands for Proprietary Automated Slow Stop And Secure in a Stationary Position. PAGSSS stands for Proprietary Automated Guidance Slow Stop and Secure in a Stationary position and is the next step in this technology's commercial development of this program protocol.

A special Claim is made for Throttle actuators, including those that use a magnetic clutch to engage and disengage a throttle through shaft to limit or control acceleration.

An additional claim is made for any such magnetic clutch attacted to a shaft and can be activated or deactivated as part of any remote control or automated application

A special throttle actuator claim is made for any solenoid locking pin mechanism that engages and or disengages the throttle through shaft to stop acceleration, and to permit acceleration.

An additional claim is made for any such lockin pin solenoid that can link two parts to perform an action or function, and disengage the same parts by activating and deactivating the solenoid for any automated and remote control activity.

A special throttle actuator claim is made for any servo motor or stepper motor that controls the position of the throttle valve through the rotation of the throttle through shaft union with these gear reduction motors for remote control by automation.

An additional claim is made for any servo motor or stepper motor valve or motorized function perform by degrees of activation in opposite directions, including any task automated for remote control especially when it is done with authorization and authentication in memory.

A special accelerator linkage separation claim is made for a solenoid linkage separation system to be activated and deactivated to eliminate acceleration and to resume it for automate and remote control systems.

An additional claim is made for the solenoid linkage locking system for any and all other controls linkage controls in any other applications.

A special solenoid accelerator cable release system for the pedal is made, where the solenoid when activated releases a piston plunger that rides in a fixed position in a guide cylinder that is attached to one end of the accelerator cable, and the other end of the cable is attached to the internal piston plunger. In the fixed position the two piece of cable work as one, and when deactivated the pedal will move the piston plunger in the cylinder but not pull the other cable for automated and remote control applications.

Another additional claim for this invention is made for any cable system in any application for remote control by automation.

A special solenoid, motorized and or piston driven air duct valve claim is made for any additional air throttle valves placed any where along the air intake system of an internal combustion engine gas, diesel turbine or jet to limit air intake to throttle engine RPM or starve and kill a motor by automated and remote control means.

A special information bar claim is made for an automated scroll bar announcement system to display visual messages to surrounding cars during an
emergency shut down scenario like PASSS and PAGSSS and or just any emergency stop. A second possible use is to provide a visual communication device for drivers to coordinate intentions where wireless communication are not available for any audio communication. In this case, the scroll bar would be reversed printed and visible to the rear view mirror of the car and between the brake lights and written for normal viewing. Also it would be in different languages, and its messages will be stock preprogrammed messages with corgol statements, and/or programmed through voice recognition technology. The placement and laws governing use will be determined by the appropriate governing bodies and industry standards.

A PFN protective containment and interface claim is made for a multi current supply including 120 volts for lighting home and camping use to operate many 120 volt devices in an emergency situation. Connection outlets are available through the PFN inverter system with weather resistant and lockable covers in the interior, and on the exterior of a vehicle or piece of equipment.

An additional protective PFN interface and containment claim is made for any and all electrical accessories desired to be stored and or operated in, on or off of a host piece of equipment electrical system and to be connectable and responsive with at least one function, even if that is to be energized by the host piece of equipment.

A PFN legal privilege instruction claim is made for the courts, insurance companies to provide their limits on a specific operator licensing by defining the terms, conditions of any individuals protocol to operate a particular vehicle and or piece of equipment at any given time and provide these software instructions to the Trusted Remote activity Controller TRAC in the PFN to track a drivers performance and deploy the PASSS or PAGSSS program, if necessary, to insure public safety or the agreed upon compliance of the conditions to drive. These instructions can be down loaded physically into any single vehicle PFN as the designated vehicle an operator must use and or provided through PFN Communication system with DMV, law enforcement and court phone nodes to any vehicle so equipped with ID systems required for continual driving in the future.

A PFN Steering wheel Identification and driver protocol registration product claim is made. For example, finger print indentification, and other means of identification as well as telemetery for the physical condition of the operator have
been well detailed. The steering wheel monitors telemetry functions of the operator, along with the PFN hardware and TRAC software to check driver ID and complete a search for any conditions placed on an operators privilege to drive a vehicle or operate a piece of equipment.

A PFN stock compromised driver protocol software programs products claim is made for the sensed alcohol impaired driver employing breathalyzers, or using the nose and driver performance algorithms and assisted guidance and warnings as well as interdiction means like PASSS and PAGSS with law enforcement. The consciously aware driver check program for ill (Heart attack ect.) or sleepy drivers, monitors eyelid and pupil changes and driver performance and assistance devices programs activated and recorded along with audio interrogatories that require specific preprogrammed and pre-trained responses in the normal state, including optional speech recognition patterns, and the like.

The aggravated driver program takes blood pressure and monitors verbal tones and expletives physical behaviorior and temperature. This program optionally includes contact thermometers in the steer wheel, and infrared camera data of the operator, as well as erratic and/or excessive speed, and compares it to a normal driving state as developed over time

The habitual speeder program will have trail markers set in the GPS program (like Delome Street Atlas) for known highway speeds so when a vehicle is traveling a road at the higher speed, the program tells the operator of the violation and monitors the drivers response and reports it back to the authorities for the intolerable level of access speed.

Also the pensive or timid driver program detects and determines if an individual is a nuisance on the highway and must either drive at an increased speed or perform maneuvers with greater speed an proficiency. A running program of driver or operator data will be available for the driver to review and/or receive alert notices when a potentially deficient characteristic is detected in their driver performance. Obviously all healthy individuals living long enough will be licensed for decreasing levels of self driving, and will be using and relying more on automated guidance and remote control systems. This will be true of the impaired as well physically emotionally and mentally.

A PFN to provide data back to the Internet claim is made for video equipment employed and deployed on the privately owned vehicles to capture events in real time and through the accountable software provide real time video to news media for pay.

A further claim is made for all other telemetry data to be provided for commercial purposes from a PFN as a fee for access with the expectation of any and all data deemed by government as essential and apart of necessary safety equipment and public safety systems and or national security. However the technology provides for a reimbursement of the citizen for the publics use of their equipment in the form of data recorded and reported for tax rebates, for example, in the ownership and operational costs of the host vehicle and the PFN systems. This technology accomplishes this through it's Trusted Remote Activity Controller and the Trusted Remote Activity controller system embedded in the varried computer networks the Internet and the World Wide Web. Telemetry data is gathered and/or processed through a PFN and TRAC software system, analog, digital audio, visual and/or any application specific data processed through the system.

A further claim is made for the PFN TRAC device and systems to be in the form of COTS and proprietary products interfaced either as separate devices and/or integrated hardware parts and components (circuits, circuit boards, processors, receivers, transmitters, locating circuits, memory devices, wires, chips and connectors etc.) and COTS software and firmware products supported by the appropriate hardware and managed by this technology's trusted remote activity controller and accompanying system that authorizes, authenticates and then stores, for example, in a protected accountable memory, redundantly in two places locally and in many cases in atleast one remote location.

A further black box claim is made for the physical removal of data from the PFN, and an additional claim is made for the remote removal of data from the black box by wireless protected signal, land line protected signal, and or light transmission of data to be used as court and or legal evidence, to access or analyse use, abuse and or assign a monetary value for any and all of the above.

A PFN service product asseses the mechanical system of the host piece of equipment through application specific programs provided by the OEM's of the host machinery and or provided by this technology. A large software menu list of service
providers with email addresses that the PFN will call up and send the data to, and receive prices back for, the consumer to evaluate as an automated function, all different technical appraisals will be structured into a uniform estimate appraisal sheet and be printed out off the PFN or connected to a computer or provide a memory disk or transfer component for a computer, or just email the results to the computer terminal through the PFN communication equipment to where ever the ownerloperator desires.

An invention for a motorlgenerator brake device is claimed for utilizing an electric drive motor as a generator by appropriately energizing the proper fields to slow the vehicle down as a braking device, and allowing the inertia energy to be converted into electrical energy for any on board storage batteries, and/or to augment any electrical energy or power source to increase the travel distance of any electrically powered equipment machinery and or vehicles.

An invention for a separate processor Electronic Steering Control Module (ESCM) with, for example, the stamp computer or the 188 euroboard controller or comparable microprocessor with the same firmware and or software programming used for the PFN to manage real time video and/or digital signals with other telemetry data and connectable interfaces to perform guidance activities for automated and or remote control scenarios with proprietary PFNs and any other processor s or as a stand alone device.

The present invention also includes a police hand held traffic control device and cruiser system. This device incorporates the COTS radar systems and special radio frequencies and FACT (federal authoization control code) which is encrypted at the factory in the base PFN security section to allow law enforcement to deactivate a specific vehicle by communication with it and trading the necessary integrity data to justify an aggressive shut down like PASSS and PAGSSS, or other uses.

This is part of the spider EYEs program and will have security checks onand off the vehicles for review in any forced shutdow. This program will run a video record, audio record and telemetry record synchronized in time and geographic location and will be monitored in real time by law enforcement as well as the suspect drivers vehicle and any remote E-mail storage he chooses to send a record.

In a mobile scenario for the cruiser, a hologram target image and laser light guided modulated narrow beam RF signal will guide the FACT access codes to the appropriate reception sensor for the signal to begin a dialog with the suspect vehicle. During the process the officer's badge or sn number will be registered with both vehicle and any interactive community communication equipment or the interactive high way will authenticate a legitimate official shut down of the suspect vehicle and all is performed though the PFN and described in this and the related application. TRAC software will authorize authenticate and document to the local memories and at least one remote location.

As described above, the present invention includes an automated emergency or manual foot brake deployment systems including emergency foot brake applications by linear actuators (ball or nut screw systems or worm gear configurations). Any magnetic lock leverage and load transfer device and or walking ratchet mechanism. Alternatively, an emergency foot brake applications by arched strip gear actuators, for example, like the one displayed in figure 5. In addition, an emergency foot brake applications by piston actuators with pressure mediums is included. Emergency foot brake applications by piston or diaphragm actuators operated by vacuum, and the like.

The present invention also includes an automated and remote control device for the service brake performed through electromagnetic devices, Automated and remote control of any service brake operated through any PFN system due for is also described.

Alternatively, an automated and remote control device for the emergency hand pulled center pulled brake systems is also provided.

List of items

Emergency brake cable controls for the pedal, emergency brake cable forthe center hand pull mechanism, rotational steering controls for the steering column, the steer gear boxes orbital valves any rotational shaft linkage speed controls electrically operate throttle, close off valves ignition module eliminator or standard ignition shutdown system, air, spark, fuel, power plant controls, power train controls vehicle telemetry, environmental telemetry, operation and operator activity telemetry.

What is claimed is:

1. A real-time vehicle or equipment management system including at least one of a security function that restricts unauthorized access thereto and a primary focal node (PFN), comprising:
at least one sensory device monitoring and reporting on data including command function results of onboard peripheral devices and equipment with application specific data and optional application specific geographic coordinates corresponding to the application specific data;
at least one memory, operatively connected to said at least one sensory device, and located in or on the vehicle or the equipment in a secure manner, storing information in a secure manner, including storing a plurality of interface protocols for interfacing and communicating, said memory equipped with at least one of an application specific backup device and a redundant memory function recording application specific automated and remote control command strings to on-board peripheral devices that perform automated and remote control functions;
at least one processor responsively connectable to said at least one memory, and implementing the plurality of interface protocols for interfacing and communicating with the plurality of external devices; and
a plurality of external devices supported by at least one interface for C.O.T.S. products and accessories, the plurality of external devices interfacing with said at least one processor via at least one of the plurality of interface protocol, including at least one of: pagers, wireless phones, radio frequency equipment, locating equipment systems, cordless phones, laptops, one way communication device, two-way communication device, and computer organizers, at least one of said plurality of external devices including a report back capability to report the data collected by said at least one sensory device to at least one remote location including the application specific data that is stored in the PFN.
2. A real-time vehicle or equipment management system according to claim 1 , wherein said plurality of external devices includes at least one of: an electrical actuating accessory and at least one peripheral device controlling automated remote
control functions utilizing at least one of electricity, compressed air, gases, vacuums, hydraulic and fluid pressure.
3. A real-time vehicle or equipment management system according to claim 1 , wherein said plurality of external devices includes at least one of: electro magnets solenoids, motors, mechanical or silicon relays, pistons, cylinders, pumps, valves, adjustable valves pindle valves cables, linkages levers, shifter forks, paws, ratchets, catches, couplers, spring returns, gearing or power transfer mechanisms cases, brake pads disk assemblies, or drums, clutches and/or interlocking drive mechanisms, spined hub collars and shafts.
4. A real-time vehicle or equipment management system according to claim 1 , wherein said at least one of said plurality of external devices including the report back capability to report the data collected by said at least one sensory device on at least one of a responsively connectable electrical actuating accessory and peripheral device via at least one of a camera, transducer sensors that provide an electrical signal, pressure sensor, vacuum sensor, surrounding environmental time and distance measurements, and onboard device position sensing,
5. A real-time vehicle or equipment management system according to claim 1 , wherein said at least one of said plurality of external devices include at least one of a responsively connectable electrical actuating accessory and peripheral devices to control vehicle or equipment speed by controlling a physical position of a throttle though shaft on any air fuel mixture system or to energize a power plant for internal combustion engines.
6. A real-time vehicle or equipment management system according to claim 1 , wherein said at least one of said plurality of external devices include at least one of circuitry, module, processor, device, component, firmware, and onboard board software that functions to control at least one of an electric stepper motor and solenoid for at least one of throttle through shaft control and drive by wire modalities to control at least one of electric drive motors, electric drive flywheel inertia power plants, drive
trains to control vehicle speed, and controlling electrical energy production or generation using an on-board chemical conversion system.
7. A real-time vehicle or equipment management system according to claim 1 , wherein said at least one of said plurality of external devices include at least one of a responsively connectable electrical actuating accessory and peripheral devices to control and monitor onboard real-time production of alternative fuels, waste products, heat production, and by products for power plants.

> 8. A real-time vehicle or equipment management system according to claim 1, wherein said at least one of said plurality of external devices include at least one of:
> at least one fuel throttling device designed to at least one eliminate, limit, and control an injection pump, thereby providing the necessary fuel combination component for operation;
> at least one electrically controlled solenoids valve, stepper motor, and pindle valve to control fuel flow;
> at least one driver controls and solenoid to activate cylinder releases, optionally including a jake brake;
> at least one clutch automated via controls to energize disengagement and reengagement of said at least one clutch.
9. A real-time vehicle or equipment management system according to claim 1 , wherein said at least one of said plurality of external devices includes at least one of an emergency, mechanical, and hydraulic braking system automation and remote control the vehicles or equipment, when used in any fashion to slow or stop the vehicle or equipment, and optionally de-energizing track drives and reversing direction.
10. A real-time vehicle or equipment management system according to claim 1, wherein said at least one of said plurality of external devices include at least one of an air service brake system and Maxi can emergency brake system utilized on trucks and buses to slow, stop and secure the truck or bus in a stationary position, by first
slowly applying brakes to rear most tandem axles and wheels in a graduated manner until the truck or the bus is sensed to have no movement and without locking up the wheels responsive to feedback from at least one of wheel sensors and a rear end drive train sensor, and optionally securing the truck or the bus and dumping the maxi can pressure to hold the truck or the bus in a substantially stationary position.
11. A real-time vehicle or equipment management system according to claim 1, wherein said at least one of said plurality of external devices includes at least one brake system controlling left and right side track independently or jointly to effectively control at least one of steering and braking through automation of at least one of operator controls, drives, transmission clutches, electrically controlled hydraulic clutch packs located anywhere in the power train for heavy equipment, revolving track equipment, agriculture, construction, commercial applications and military equipment.
12. A real-time vehicle or equipment management system according to claim 1, wherein said at least one of said plurality of external devices include at least one of a braking system and a fuel control system to perform a vehicle or equipment slow down and stop procedure, comprising a multi-phase shut down protocol, including:
a first phase slow down to at least one of eliminate and control an operator's ability to accelerate and increase the speed of the vehicle or the equipment, while optionally preserving an energized power steering function and power braking function on the vehicle or the equipment;
a second phase slow down to perform a stop and secure function by at least one of a remote command and a preprogrammed timed deployment of at least one of an automated emergency and mechanical brake system to slow and stop the vehicle or the equipment in a stationary position; and
a third phase shut down to completely disable the equipment or the vehicle via at least one of a preprogrammed time activated function and a remote control function to the vehicle or the equipment.
13. A real-time vehicle or equipment management system according to claim 1, wherein said at least one of said plurality of external devices include a tracking and monitoring system to provide real-time tracking, monitoring and remote control through computer and automated network links to coordinate intersecting traffic between road, rail, and waterway shipping by controlling at least one of diesel motors, diesel over electric motors, electric motor controllers, stepper motor control systems, operator mechanical controls, cables, linkages, hydraulic lines, air lines, electrical control service lines and circuits.
14. A real-time vehicle or equipment management system according to claim 1, wherein said at least one of said plurality of external devices include a backup system to provide back up to any automated, remote control system.
15. A real-time vehicle or equipment management system according to claim 1, wherein said at least one of said plurality of external devices function to control electrical services, compressed air, gasses, steam, hydraulic fluids utilized to energize at least one control component to control speed and braking of at least one of trains, trams, subways and rail transportation.
16. A real-time vehicle or equipment management system according to claim 1, wherein said at least one of said plurality of external devices function to track and provide information to rail system customers and users of a location of a particular load, and optionally including audio and video surveillance for increased security, and sensing devices to sense at least one of sensitive and valuable loads.
17. A real-time vehicle or equipment management system according to claim 1, wherein the vehicle or the equipment includes application specific primary focal nodes for at least one of:
tracking, monitoring and controlling worldwide the vehicle or the equipment to at least one of throttle, increase and decrease revolutions per minute;
controlling transmissions and rudder controls for automated and remote control guidance, forward and reverse functions; controlling air, steam, hydraulic, and mechanical electrical devices.
20. A real-time vehicle or equipment management system according to claim 1, wherein said at least one of said plurality of external devices includes at least one of a coyote circuit, a trickster circuit, and other circuit responsibly connectable to the PFN or processor providing a signal that deceives another processor into performing a preprogrammed task, as an automated function, a remote control function, and an interface function for synergistic machine control.
21. A real-time vehicle or equipment management system according to claim 1, wherein said at least one of said plurality of external devices includes a coyote circuit providing a signal that deceives another processor into performing a preprogrammed task, including at least one of an automated function, a remote control function, and an interface function for machine control.
22. A real-time vehicle or equipment management system according to claim 1 , wherein said at least one of said plurality of external devices includes a coyote
circuit used to intercept and determine if an electrical signal is sent to a processor or automated relay system and utilize the signal to trigger or perform automated functions.
23. A real-time vehicle or equipment management system according to claim 1, wherein said at least one of said plurality of external devices includes at least one of a coyote circuit and other circuit used to create a plug and play connector as a universal modality to interface with at least one of electrical parts, components, devices, C.O.T.S. personal products or different manufactures products.
24. A real-time vehicle or equipment management system according to claim 1, wherein said at least one of said plurality of external devices includes at least one report back sensing device that monitors data on at least one of machine remote control, area surveillance, environmental sensing, operator activities and equipment operational data.
25. A real-time vehicle or equipment management system according to claim 1 , wherein the real-time vehicle or equipment management system is located in multiequipment locations and are monitored by at least one local central system which includes at least one land line phone, node, and satellite link with a protected gateway to communicate with application specific data, including at least one of short range communications so that monitoring can be done at a local level with application specific data and then transmitted and stored in a redundant manner for analysis in a computer network, and if no local level node is found, the vehicle or the equipment would enter an application specific shut down sequence and cease to operate until a predetermined signal was provided or the vehicle or the equipment was reprogrammed.
26. A real-time vehicle or equipment management system according to claim 1 , wherein said at least one of said plurality of external devices includes at least one application used in conjunction with a security system, home computer controller system, household equipment and utilities management system to organize, store,
complete phone node contact and transmit data for utility and/or equipment use for any billing, personal records and/or taxing for same, as well as, provide services for repair and maintenance purposes.
27. A real-time vehicle or equipment management system according to claim 1, wherein said at least one of said plurality of external devices includes the function of operating at a specific location and not being transferrable to another location without authorization, and when transferred in an unauthorized manner, the at least one of said plurality of devices transmits an identification signal to report the location of the displaced equipment.
28. A real-time vehicle or equipment management system according to claim 1 , wherein said at least one of said plurality of external devices are supported by a universal interface for separate C.O.T.S. products and accessories, the at least one of the plurality of external devices interfacing with said at least one processor via the at least one of the plurality of interface protocols, providing the capability of the at least one of the external devices to be at least one of remotely controlled and remotely operated.
29. A real-time vehicle or equipment management system according to claim 1, wherein said real-time vehicle or equipment management system is constructed application specific in physical structure to house and provide for optional easy to remove and replace said plurality of external devices via at least one of: compartments, shelves, trays, cassettes, cartridges, and bins.
30. A real-time vehicle or equipment management system according to claim 1 , wherein said real-time vehicle or equipment management system is utilized for accountability though automated onboard preprogrammed monitoring and data storage, including an optional backup system, of remote control activities in at least one of vehicles, equipment and machinery use.
31. A real-time vehicle or equipment management system according to claim 1, wherein said primary focal node supports at least one of application specific software protocols and hardware systems for industry standards for recorded data as determined by at least one of codes, specifications, rules regulations, and laws, for at least one of vehicles, equipment or machinery use.
32. A real-time vehicle or equipment management system according to claim 1, wherein said real-time vehicle or equipment management system includes redundant remote storage in at least one remote location in at least one application specific industry standard protocol as determined by at least one of codes, specifications, rules, regulations, data handling procedures and laws for at least one of equipment, machinery and vehicle use.
33. A real-time vehicle or equipment management system according to claim 1, wherein said real-time vehicle or equipment management system is at least one of global network, web and Internet accessible to monitor remote control function in real time and to mass store data off-board as transmitted by the PFN and/or other machine messaging systems and to access the web for personal use from the PFN for E-mail messaging and/or remote tracking either personally, as commercial service and/or for legal and/or governmental reasons.
34. A real-time vehicle or equipment management system according to claim 1, wherein said at least one of said plurality of external devices are supported by a universal interface with at least one of a Spider eyes program, a Green Eyes program, a community and environmental watch programs carried over at least one of a global network, local network, world wide web, and Internet for local, state, regional, and national communication, providing data collected from the PFN and processed through service providers to government standards and protocols or directly provided by the government agencies, or other participating organizations and educational institutions.
35. A real-time vehicle or equipment management system according to claim 1 , wherein the real-time vehicle or equipment management system is used in conjunction with an interactive highway system and law enforcement protocols to perform traffic control functions and surveillance functions through remote control of at least one peripheral device on the vehicle or the equipment through the PFN.
36. A car link system that physically connects at least two vehicles as at least one of a tram and train for towing or for a mass transit for individually connectable cars, optionally including at least one of an automated coupling, at least one communication link, at least one automated flow control valve, and at least one steering, braking and other automated and remote control application.
37. A highway device for fuel injected cars or systems, comprising a fuel caddy providing a quick connect to a fuel line pressure system on a vehicle, and removing sufficient fuel to refuel another vehicle through a length of hose which is sealable when disconnected.
38. A real-time vehicle or equipment management system including at least one of a security function that restricts unauthorized access thereto, comprising:
at least one sensory device monitoring and reporting on data relating to the performance or the actuation of the vehicle or equipment;
at least one memory, operatively connected to said at least one sensory device, and located in or on the vehicle or the equipment in a secure manner, storing at least temporarily information regarding the performance or actuation of the vehicle or the equipment;
at least one processor responsively connectable to said at least one memory and said at least one sensory device, and coordinating collection of the information regarding the performance or actuation of the vehicle or the equipment; and
a plurality of external devices supported by at least one interface and interfacing with said at least one processor via at least one interface protocol, including at least one of: pagers, wireless phones, radio frequency equipment, locating equipment systems, cordless phones, laptops, one way communication device, two-
way communication device, and computer organizers, at least one of said plurality of external devices including a report back capability to report the data collected by said at least one sensory device to at least one remote location.
39. A real-time vehicle or equipment management system including at least one of a security function that restricts unauthorized access thereto, comprising:
at least one sensory device monitoring and reporting on data relating to the performance or the actuation of the vehicle or equipment;
at least one processor responsively connectable to at least one sensory device, and coordinating collection of the information regarding the performance or actuation of the vehicle or the equipment; and
a plurality of external devices associated with or a part of the vehicle or the equipment, and supported by at least one interface and interfacing with said at least one processor via at least one interface protocol, including at least one of: pagers, wireless phones, radio frequency equipment, locating equipment systems, cordless phones, laptops, one way communication device, two-way communication device, and computer organizers.

Abstract

This application describes completely in many unique ways and detail all the devices to reduce a vehicle's speed and/or reduce a machines RPM's and/or stop any piece of equipment's as well as guide it if mobile through automated controls. First to slow it down, and guide it and/or control it if necessary (i.e., other pieces of equipment). Secondly it discusses how to stop any piece of equipment completely. And thirdly, the invention secures it in a safe stationary position either entirely or any number of specific moving parts. Many of these systems are initially here described to slow, reduce speed, steer, stop and/or secure equipment functions. However, they also can be used to increase a piece of equipment's functions. In other words their variations are completely capable to serve any remote or automated controls on a vehicle in the future to provide full robotics systems, e.g., for automated transportation systems, automated manufacturing, etc., either through individually isolated remote control systems and/or interfaced with other off-board systems through communication links, gateway computers, computer networks and the world wide web for inexpensive long distance monitoring and remote control. The invention focuses on the automobile industry but as has always been maintained throughout all these applications these devices and systems are designed to control every piece of equipment. The invention includes various accountable protocols and commercial developments to control speed, brake and steering for an automobile shut down to be performed through automation to a safe controlled secured deactivated state to be considered as a basis for a standard in aggressive vehicle remote control and/or to control and guide a vehicle and/or piece of equipment through many different automated systems.

Wi \% U

FIG 2.1

PROTECTED PRIMARY MANAGEMENT SYSTEMS One and Two Way PFN's

FIG 2.2

Application specific wall structures for PFNs

FIG 2.3

REMOTE MONITORING AND MANAGEMENT

 NETWORK(S) FOR PFN's

PAGER PROTOTYPE PROGRAM.
init:

X	var	w
tlag	var	bit
relay	var	bit
solenoid var	bit	

switch var bit
tflag $=0$
relay=0
switch $=0$
solenoid=0
input 12
input 14
input 15
output 4
output 1
output 2
output 3
output 5
output 6
output 7
output 8
output 9
output 10
output 11
output 13
out $1=0$
out $2=0$
out3=0
out4=0
out5=0
out $6=0$
out $7=0$
out $8=1$
out9=0
out $10=1$
out $11=0$
out $13=0$
Start:
if in $15=1$ then init RESET ID Sys.
if in 14-1 then cheekt
checkl:
if tilag $=1$ and in $12=0$ then relayc
check2:
if in $12=1$ and solenoid $=0$ then carrun check3:
it ini2 $=1$ and soleroid=1 and thag- 1 then slowdown
Lheck4:
goto start
checkt:
for $x=1$ to 35
pause 100
if in14=0 then nogo
next
goto go
nogo:
goto checkl
go:
tflag=1
debug "go condition", cr
goto checkl
noactivity:
debug "Beeper is Inactive", or
return
relayc:
debug "relay control"

- debug ? relay
if relay $=0$ then first
if relay=1 then second
first:
debug "first"
out $4=1$
out $2=1$ pause $2,300_{\text {out }}^{\text {N }}=0$
relay $=1$
goto relend
second:
debug "second"
-ut $+=0$
out $2=0$
out $=1$
pause 3000
out5=0
relay $=0$
tlag $=0$
hold: if in $1+=1$ then hold
stuckl: if in $15=0$ then stuck 1
goto ini ${ }^{\text {; }}$
relend:
thlag=0
hold1: if in $14=1$ then hold
goto check 2
carrun:
cut $1=x=0$
out $2 \Rightarrow x=0$
out $3=x=0$
solenoid=1
goto check3
slowdown:
if switch $=0$ then fir
if switch=1 then sec
If: \rightarrow ACEELRATOR DISENGEA
$\frac{\text { out1- } 1 \text { singir-Fhashens }}{\text { out8=0 Phay Messmer }}$
out9=1 Amp on For PLay
pause 15000
out8=1 off Resono Chip out10=0 GesET Recoroen culp
pause 1000
outlo=1 Reset Reroy
pause 21000
out2=81 ProGRESSIVE BRIGKE
switch=1 APPLTCATidW. \because
goto swend
sec:
$\frac{\text { out } 3=Q 1}{\text { out } 5=1}$ ENENGiZe KI/I RUGy
pause 3000 :
cut $=0$
rause 45000
out9 $=0$
switch=0 \quad,
tflag=0
hold3: if ind $t=1$ then hold3
stuck2: if in $15=0$ then stuck 2
soto init
sivend:
thag $=0$
holdt: if in $t=1$ then hold t
goto check +

more pedal cable and linkage INTERRUPTIONS

A

Proprietary fuel Flow Value
Placement

16 A

customized fuel flow Regulator To Cortrol Engive RPM's

WHEEL, BELT, AND CHAin Configurations.

π N

Fig. 29

Electronic Security Seal

Security Sealed Area For The PFN

SOHY Eolor PE Board ECD Eamera Sony thipset
 36）be

 tesphition WSSE KOmal 154 CH 492 Corsectan HWhythe Gestarat

Stral 10 bi ke rate >46
\％

 Ycsoobpt 14po 7E

th tout and etipped ard tind on ore end
 Gnotertobart

3thetatesciphot－Fiite 3571 Cobr wamera beare 1 229． 95
sony Camera Board
Sony Ghinset

bcherate 6 diten with
4204 ercolition
Stutherspectration

 ipulidided

pathetaeschato 14,59

PCI TV Capture Card

－System recuimenants
lem conpatid
 or ripher，EMB of RAM Wintows ${ }^{x}$ G5．SVEA praphes cara
－Car be used for ridee cortererisiong
－mplisimal 7se chaxal My menta． SHidea composite（RCA widec，cemefr se ker，wilips amera hut ctest
－Getpres sipara zudiop outpa（bop to some cirot

－Sumpors atse spal vizo input
－hadedas lsers nadrai，zables emote ecrros

－Breyear watany
Pat Mb．Desstiptiva
152881 PGi TV caplue gara． $\$ 59$

Sony Enclased Color Camera

Sont Chipset

－13＂Sen titatire trastor
Cob mage sersca
－HISC syitem tita
5194×49214

－ 15 DEF 2
－Signal to moise tato sdbal

－Auro elemfant shater speet ito 100000 sec．

Pation．Destrintion㗉科

Maruda Video Signal Converter

 （Hatebook Presenter）－कumerte viA simsta tr ractebook or deskop PG comrankibss 1）Dis male conediten
－Sumets $620 \times 48 \mathrm{E}$ trye fotor operato

－Frovicac non－matraced VGA Juthon atis

 compatile s， Winh videc inate contretor

－Incurtes cemerifar anil．cables．sofvare，and marluat

Pay Mg．Dexcriotiant

COMPRO＂Digital Camiras
 bal cimora desigzed te phag ditectly indo your paratlel poth tor coss batallation und cuick
 wilh user fiendie Windows compatibie

wifwerne that afows lor indge capforthg． xendering spocial etlects，swaea and worewat apabilities incluixiog FeCi compression．
 at 16.8 mithon ctors

－No midiza cafture sary remirad
－Pfugs into a paramol port corapable witt EPP E6F 3n－and mindiecta＇altrotes

 farmact，manta ano CE－TOM
－Syctem sequremeats 386 or betar compabss．

－Size 4.01×2 bwx 5.1 （at las

Patim．Bescription
Fice
151132 Enclosed Coior dig la Garaza ip39／ 5129.95

Infrared Lighted Camera

－ 6 infrared tepe for ullht vision
－Ance fis contuclied
－ 350 T 7 lane zesaction
＊Scaminitg frequency

－5aming sytem
21 mitatase

 no will monitny tracket one－weit wisanty

 PREE
1504．4 Exbosen brat lighted cannera．．．．．$\$ 129.95$

ELECTRICAL CONTROLS

SENSOR CONTROLLERS

OREM.

- Contact type No. 4A468 or transistor type No. 4A469 controllers with addon accessories act as a position sensor signal input/output center
- Self-contained power supply provides 12 VDC power source for sensors
- Input response time of 1 millisecond permits detection of small or high speed objects
8 inputs and 4 outputs standard, expandable to 8 outputs using optiondifoutput modules
- Input modules provide amplifier funcsion and can act as auxiliary output
- Easy to program with detachable keybeard No. 4A472
- teach function reduces amount of required manual programming
- 100 step EEPROM memory
- DiN N rail mounting
- Can be used with most brands of limit proximity, photoelectric, or rotary enituoder switches

\section*{ADDITIONAL FEATURES

ADDITIONAL FEATURES
 - Alarm buzzer

- 12, one-shot, ON delay, Off delay timers (10 when using Interval Check key)
- Time Range: 0.01 to 999 seconds
- 12, low speed counters (10 when using Interval Check key); 400 Hz response frequency
- One high speed counter (counts up and down); 3 k Hz response frequency
- Input Voltage: 100 to $240 \mathrm{VAC}, 50 / 60$ Hz
- Input Power Consumption: 35VA maximus
- Internal Power Supply for Sensors: 12VDC, 400 mA maximum
This high-speed sensor controller fills the gap between slower, expensive programmable controllers and inflexible hardwired relay control systems. Outputs from controllers can be tied into larger programmable controllers or factory control computers. It can perform many of the complex jobs usually reserved for a more expensive programmable controller. Easy to program and easy to change. Builtin diagnostics troubleshoot the system for you.

MODICOM

- Agency approvals: UL, CSA, VDE, FM Class 1 Division 2

MODICON MICRO

- Agency approvals: UL, CSA, VDE, FM Class 1 Division 2 Up to two plug-andplay communication ports for program- ming, host computer interfacing and ASCII devices © Built-in expansion link for connecting together up to four micros - All-in-one package indudes controller, 1/O, power supply, and communications - Interrupt processing for high throughput applications O Non-volatile FlashPROM memory eliminates battery maintenance - Utilize standard foilshielded flat telephone cables - Highly secure, noise resistant - Shares I/O status or data between Micros - Configure, program and monitor application program and data values $\boldsymbol{\phi}$ On-board, nonvolatile memory to store and transfer application programs - Ladder logic programming software runs in DOS and Windows environments © Dimensions: $5.5 \mathrm{H} \times 10 \mathrm{~W} \times 3^{\prime \prime} \mathrm{D}$

CPU SELECTION

STEP 1: Select the desired level
STEP 2: Select desirèd power supply voltage. Note: This voltage is independent from the input or output voltages 115 to 230 VAC or VDC.

STEP 3: Select desired input (signal) voltage: 115 or 230 VAC (uses relay/triac output); 24 VDC (uses relay or transistor output); Analog (CPU 612 series only) STEP 4: Select output type: Relay (2 amp at 24 to 250 VAC and 2 amp at 24 to 30 VDC); Transistor (.05 amp at 20 to 30 VDC source* switching); Triac (0.5 amp at 20 to 30 VDC); Analog (CPU 612 series only). Note: All units with triac outputs have 8 triacs and 4 relays.
STEP 5: Determine additional accessories. Note: A hand held programmer or computer transfer mode kit is needed to operate unit.
(*) PNP switching the positive side to the load.

Dascription	Power Supply	inputs Volts	$\begin{gathered} \text { Output } \\ \text { Type } \end{gathered}$	Modicon Model $110 \mathrm{CPU} . .$.	Stack No.	List	Each	-Shpg. W
LEVEL 1 (CPU 311): 1 K words user logic, 400 words data,	115 to 230VAC	24 DC	Relay	31100	64769	\$380.00	\$323.004	5.0
16 inputs 12 outprits, $4.25-5 \mathrm{~ms} / 1000$ logic scan.	115 to 230VAC	115 AC	8 Triac/4 Relay	31101	60768	470.00	399.504	4.3
1 Modhus/Ascil port, high speed UO expansion port.	115 to 230 VAC	230 AC	8 Triac/4 Relay	31102	64767	470.00	470.00A	4.2
Emasic 984 instruction set	24VDC	24 DC	Transistor	31103	. 607766	380.00	323.004	4.0
GVEL 2 (CPU 411): Same features as Level 1 plus:	115 to 230VAC	24 DC	Relay	41100	60765	440.00	374.004	4.1
Time of day clock,	115 to 230VAC	115 AC	8 Triac/4 Relay	41101	61775	530.00	450.504	5.0
233 ms throughput with interrupt processing,	115 to 230VAC	230 AC	8 Triac/4 Relay	41102	64763	530.00	450.504	4.1
3 High speed DC inputs	24VDC	24 DC	Transistor	41103	60762	440.00	374.004	?
ZEVEL 3 ICPU 512t: 2 K words user igme. 1820 words data. 16 inpurs 12 cutputs.	115 to 2301 10	21 Cr	Relis	3120	64781	75060	837.59d	
	15to Juth	15.5	37nant Fexay	1291	60760	830.00	305.504	
Ththanced 384 instraction ser, 3 High speed DC inputs,	115 to 230 VAC	230 AC	8 Tnac 4 Relay	51202	64759	830.00	705.50 A	4.2
Thine of day clock, -1-5 ms throughput with interrupt processing	24 VDC	24 DC	Transistor	51203	$6 \cup 758$	750.00	637.504	3.0
HEVEL 4 (CPU 612): All features of Level 3 plus:	-	-						
/ Analog inguts, +10 V 16 Bit, 4-20 mA 14 Bit	24 yCC	24VDC	Relav	61200	64757	1000.00	850.00 A	3.3
	Linc	2 VDC	Transtor	61293	64785	1001.00	850.004	4.0

ELECTRICAL CONTROLS

PROGRAMMABLE LOGIC CONTROLLERS

TSX ${ }^{\circledR} 07$ PROGRAMMABLE CONTROLLER

- Expansion to 48 I/O (for AC units), using second base unit located up to 665 ft . from master
- Panel or DIN rail mounting
- Mix I/O types: AC and DC inputs: relay and transistor outputs
- LED indicators for system operation and individual $1 / O$ status
- IK logic programming capacity in non-volatile EEPROM memory
- High speed counter and pulse output
- Real-time clock/calendar for action triggering, event logging or time period calculations
- 24 VDC sensor power supply rated to 150 mA
- Up to two potentiometers for easy operator adjustment of selected variables
- Peer communications allow distributed processing of up to 4 CPU's
- I/O interface modules provide ánalog \& discrete I/O options
- Hand-held terminal provides both list language programming and maintenance functions
- Programming software provides
"Windows Like" ease of use for DOS PC's

CPU SELECTION

STEP 1: Select desired power supply voltage. Note: This voltage is independent from the input or output voltages 120 to 240 VAC or 24VDC
STEP 2: Select number of inputs/outputs (I/O) and time calendar.
10 I/O has 6 inputs, 4 outputs and no time calendar
16 I/O has 9 inputs, 7 outputs and time calendar
24 I/O has 14 inputs and 10 outputs and time calendar
STEP 3: Select desired input (signal) voltage: 120VAC or 24 VDC
STEP 4: Select output type
Relay (2 amp at 24 to 264 VAC or 19 to 30VDC resistive)
Transistor (0.5 amp at 19 to 30 VDC)
Note: Transistor outputs are available in either sink or source.
STEP 5: Determine any additional accessories. Note: A hand held programmer is needed to operate unit.

A gearmotor is an electro/mechanical device using an electric motor to drive a geartrain encased in a housing. Geartrain reduces output speed while increasing available torque. Gearmotors are designed to move an object in a given direction and at a rate of speed (RPM) while providing required twisting force (torque). Selection should be easier once output performance requirements are identi-
fied. It is critical to know the speed and torque requirements of load to be.driven. Unusual loads or harsh environments must be considered before a driving device is selected. Horsepower is not a factor in selecting a standard gearmotor, since each gearmotor was predesigned for a specific performance level. For some applications, more detailed design criteria may be required.

MECHANICAL CONSIDERATIONS

Speed

ele Torque

Speed. How fast should equipment or object move? Output speeds are available from less than 1/2 RPM (revolution per minute) to nearly 300 RPM , depending on motor type and gear ratios. Based on your application, you may need to consider whether additional modified speeds will be produced through sheaves or sprocket type drive systems before determining gearmotor output speed.
Start Torque provides initial power to get things moving. On large conveyers, starting torque requirement may be high while a small rotating display cabinet may require very little torque to overcome resistance. Small gearmotors typically have "start" and "run" torque specifications shown due to their lower
overall output capabilities. Starting torque ratings can be lower than maximum running torque ratings. Heavier duty gearmotors are usually only rated for their full-load (running) torque capability since starting torque is relatively high.
Running Torque (Full Load) is the continuous twisting force to keep things moving after initial start and must maintain power under all variable load situations to provide adequate service. Running torque listed in the catalog are maximum torque available for safe, continuous operation. Frequent starts and stops will require use of starting torque more frequently. This could result in excessive heat buildup, causing premature motor failure.

HOW TO MEASURE TORQUE

CAUTION: Disconnect Power Before Proceeding

Torque required to drive a machine may be measured by using a flat grooved pulley, a cord and a spring scale. Pulley must be rigidly attached to machine's drive shaft, with cord wrapped several times around pulley. Do not allow cord to overlap. The other end is tied to the scale. When the scale is pulled. it will turn the pullev When the pulley first st: ©'s to tum the cale will regester starting force required in pounds.
Force registered on scale, in pounds, when multiplied by radius of pulley, in inches, yields the starting torgye. in in ths required by machine. If torque
characteristics of machine vary during its operating cycle, torque must be determined at the point in the cycle where it is the greatest. Radius is measured from the center of machine shaft to center of cord.
If pulley can be turned (by pulling on cord) at a rate equal to normal speed of driven equipment. an inci cation of ramning torque can be obtained. If lo.:. machine is mmost enurey due to frictron, tat requirement will be essentially the same regarthess of speed. However, if load is primarily the result of inertia or windage (air drag), characteristics of the inertia or windage elements must be known.

ELCTREA CONSDEAMAOMS

Betore you can select the best searmotor för your application, you need to identify your intended power supply capability. AC and DC input gearmotors from 12 VDC to 460 VAC are available. This chart provides typical characteristics of different motor types as a guide for your selection. tyes

Type	Statir 9 Torgue	fievers. igie
Synenronous	Low	Yes
Shaded Poie	Low	No
PSC	Medium	Yes
Split phase	Med/Kigh	Yes
Capacitor-Start	High	Yes
Three Phase	High	Yes
Perm. Mag. (12-180v0C)	High	Yes
Universal AC/DC	High	Yes

LOADS

Overhung Load

A load is any and all driven items connected to and driven by the gearmotor output shaft. Not all loads that gearmotors get coupled to have steady speed and torque requirements. Some loads demand power surges from gearmotor during running cycle. This can be abusive to gears. Also, environmental conditions and space restrictions need to be taken into account. Two types of loads that require careful consideration before selecting a gearmotor are:
Overhung load (OHL) is the perpendicular force pushing against the side of an output shaft. This force is either from weight hanging on output shaft or from a sprocket, pulley or gear being used on shaft. Every gearmotor has a OHL specification which should not be exceeded. Use following formula to calculate OHL if you plan to use a sprocket, pulley, gear or any weight will be suspended directly on shaft.

Multiply pounds of load (obtained from formula) by correct drive factor shown to determine actual OHL ratings in pounds on center output shaft. Catalog OHL ratings are measured on shaft diameter away from gearbox face on output shaft of reducers.
Shock Load. Some applications subject gearmotors to loads that transmit shock or abrupt peak loads back to gearmotor. Shock load can create peak loads several times greater than gearmotor torque rating. For example, when a heavy object accidentally is dropped on a running conveyor, this causes shock to gears and may even break them. Gearmotor does not recognize shock load as a warning sign and will try to put out even higher power, possibly exceeding its own gear strength. Be sure gearmotor is rated high enough to handle maximum anticipated shock load conditions.

GEARMOTOR SELECTION GUIDE

:GEARS/MATERIAL

Perailet Shaft \sim| Parallel Shaft models include helical and spur gear |
| :--- |
| designs. First stage gears are typically helical for low |
| noise and of phenolic, nylon or steel material. |

Right Angle models include predominantly worm type which are precision machined from steel. Worm wheel in usually bronze, but may be phenolic or cast iron. Right angle gearmotors tend to be of heavier construction, handle higher shock loads, and run quieter than comparably sized parallel shaft designs, but often less efficiently.

	APPLLCAIION FORMULAS	- \quad -
To Obtain	Having	Formula
Velocity (V) Feet Per Minute	Pitch Dia of Sheave or Sprocket-Inches and Revolutions Per Minute (RPM)	$\mathrm{V}=0.2618 \times \mathrm{D} \times \mathrm{RPM}$
Revolutions Per Minute (RPM)	Velocity (V) Feet Per Minute and Pitch Dia (D) of Sheave or Sprocket--Inches	$\text { RPM }=\frac{\mathrm{v}}{0.2618 \times \mathrm{D}}$
Pitch Dia. (D) of Sheave or Sprocket	Velocity (V) Feet Per Minute and Revolutions Per Minute (RPM)	$D=\frac{V}{0.2618 \times R P M}$
Torque (T) in-Lbs.	Force (W) Lbs. and Radius (R) Inches	$\mathrm{T}=\mathrm{W} \times \mathrm{R}$
Horsepower (HP)	Force (W) Lbs. and Velocity (V) Feet Per Minute	$\mathrm{HP}=\frac{\mathbf{W x V}}{33000}$
Horsepower (HP)	Torque (T) In-Lbs. and Revolutions Per Minute (RPM)	$\mathrm{HP}=\frac{\mathrm{T} \times \mathrm{RPM}}{63025}$
Torque (7)	Horsepower (HP) and Revolutions Per Minute (RPM).	$\mathrm{T}=\frac{63025 \times \mathrm{HP}}{\mathrm{RPM}}$
Force (W) Lbs	Horsepower (HP) and Velocity (V) Feet Per Minute	$\mathrm{w}=\frac{33000 \times \mathrm{HP}}{\mathbf{v}}$
$\begin{aligned} & \text { Revolutions Per } \\ & \text { Minute (RPM) } \\ & \hline \end{aligned}$	Horsepower (HP) and Torque (T) In-Lbs.	RPM $=\frac{63025 \times \mathrm{HP}}{T}$

THE FINAL STEP

Product bages following the Gearmoror felection Guide are sorted by DC and AC input, zhen categorized by lower to highest torque rated units. Within each design you will have multiple speed options to select from. Gearmotors listed on pages 208 through

213 are sorted by RPM for ghack reft: this gunde was designed to assist in serection suitable gearmotor for your application, it is not possible to identify every particular condition you may encounter in actual use.

CONVERSION CHARET OR FRACIGNS

Decimal treches Fracionat Inches

Decimal taches	Fraciunat Inches	Dacimal Inches	.
. 015625	33/64	. 515625	'
. 03125	$17 / 32$. 53125	
. 046875	35164	. 646875	-
. 0625	9/16	. 5625	
. 078125	37/64	. 578125	
. 09375	19832	. 59375	
. 109375	39/64	. 609375	
. 125	$5 / 8$. 625	
. 140625	41/64	. 640625	
. 15625	21/32	. 65625	
$.171875$	43/64		
1875	- 11/16	$.6875$	-
. 203125	45/64	. 703125	
. 21875	23/32	. 71875	
. 234375	47/64	. 734375	
. 250	3/4	. 750	
. 2655625	4954	. 765625	
. 28125	25/32	. 78125	
. 296875	51/64	$.796875$	-
. 3125	13/16	. 8125	
. 328125	$53 / 64$. 828125	-
. 34375	27/32	. 84375	- ${ }^{\text {..- }}$
. 359375	55/64	. 859375	r ${ }^{\text {a }}$
. 375	7/8	. 8750	
. 390625	57/64	. 890625	\checkmark
. 40625	$29 / 32$. 90625	- - -
. 421875	59/64	. 921875	-
. 4375	15/16	. 9875 -	\cdots
. 453125	61/64	. 953125	.
. 46875	31/32	. 96875	
$.484375$	$\begin{aligned} & 63 / 64 \\ & 1 \end{aligned}$	$\begin{aligned} & .984375 \\ & 1.0000 \end{aligned}$	

GEARMOTOR TERMINOLOGY

Fr

Actual Torque-The actual torque required to drive a machine. It is the torque measured at the input shaft of a machine being driven.
AGMA-American Gear Manufacturers Association. Composed of member companies who manufacture speed reducers, enclosed gear drives, open gearing, and gear type shaft couplings. They establish standards for the design and application of gear products. The combined experience of company members and technical members assures gear users that products will perform satisfactorily when built, selected, and tested in accordance with AGMA standards.
Ambient temperature-The temperature of the air around the power transmission equipment in operation.
Axial Thrust Load-The external loading of force acting lengthwise along a shaft.
Back Drive-A condition in which the drive (or prime mover) is driven by the load rather than driving the load. An example migitit be when a high inertia load, such as a fiywheel, is decelerating down to slower speed or complete stop.
Backash-The amount by which the width of a tooth space exceeds the thickness of theengaging tooth.
Cemfer Distance-When applied to speed redrecers. it is the distance betweer the centerlines of the input (high speed) shaft and the output (low speed) shaft. Shaft centerlines may be parallel or at right angfes to each other. Center distance is ofren uscd to desmante a simule zeducton wigh gear syed reauces, suen as 1.30 . 1.75.

Dovible Reduction-A multiple reduction unit consaining two stages of gear reduction housed in a single enclosure. The overall spêed reduction (ratio) is the product of the"gear ratios provided by the individual stages.
Duff Cycle-The relationship between operating and rest time. When applied to gear reducers, duty cycle is usually referred to as continuous or intermittent duty.

Continuous Duty-The ability of a geared unit to operate continuously within its rated capacity without exceeding the temperature limits of its lubricating system.

Intermittent Duty-A geared unit which has a specific operating time limit (min./hr.) to prevent exceeding the temperature limits of its lubricating system. This limit is often specified as a percentage. (A 25% duty cycle indicates a maximum total operating time of 15 minutes each hour.)
Efficiency-An expression of the amount of power delivered at the output of a power transmission system as a percentage of the amount of power supplied to the system's input side.
Gears-Machined elements that transmit motion and power by means of successive-
ly engaging teeth. When two gears run together, the one with the larger number of teeth is called the GEAR, and the one with the smaller number of teeth is called the PINION. Most common gear types available are helical, spur and worm gears.

Helical Gears-Gears that are cylindrical in form and mesh between parallel centerlines. Their teeth are cut at an angle, called the helix angle, across the face of the gear.

Spur Gears-Gears that are cylindrical in form and mesh between parallel centerlines with teeth cut straight across gear face.

Worm Gears-Gears that consist of a screw like worm and its mating gear. Both are cylindrital in form and mesh at right angles to each other. The WORM is the driving component and is identified by one or more teeth in the form of screw threads wrapped around a cylinder (similar to barber pole stripes). The WORM-GEAR, also called Worm-Wheel, is the driven component and has teeth similar to those of a helical gear with the top of its teeth curved inward to mesh with the worm.
Gear Ratio-Described below for helical, spur. and worm gears.

Helical and Spur fiars-Ratio of number of gear teeth on driven gear divided by a number of gear teeth on driving gear (pinion).

Worm Gears-The ratio of the number oi teeth on the Wom-litar Wrom- Whethi) davied by the humber of theatis or "starts" on the worm.
Gear ratio is normally expressed as (X):1.
Inertia (WR)-A measure of the resistance of an object to accelerate or decelerate.
Inertio Load-A load, such as a flywheel or other heavy rotating object, which tends to oppose acceleration up to rated speed or deceleration to stop.
Input Horsepower-The amount of power applied to the input shaft of a reducer by the prone mover. The input horsepower rating assigned to a reducer represents the maximum amount of power the reducer is capable of handling.
load-The burden imposed on a drive system by the equipment or machine being driven. There are three cycles.

Constant Torque-The load torque remains constant over the speed range, while the horsepower required varies directly with speed. This type of load is usually the result of friction related to sliding or rolling motion. Industrial equipment of this type include conveyors, hoists, and similar general machinery.

Variable Torque-The load torque and horsepower both vary as speed is changed; as speed increases, torque and horsepower both increase in some related manner. Examples include some types of

意
mixers, positive displacement and centrifugal pumps, air moving fans, and blowers.

Constant Horsepower-The load horsepower remains constant over speed range, while the torque required decreases as speed increases. Constant horsepower loads commonly are found on metal cutting or removing equipment such as saws, lathes, and milling machines.
Load Classifications-Loads can be classified by the degree of shock or impact they impose on the drive system. There are two main classifications.

Uniform Steady Load-Loads that are essentially smooth, shock or impact free. Equipment that normally exhibit this type of load include can filling and bottling machinery, uniformly loaded or fed conveyors, and printing presses.

Shock Loads-Loads that transmit shock or abrupt peak loads back to the driver (power source-motor, gearmotor, or reducer) and often repeat on a regular or cyclical basis. Shock loads may be categorized as light, moderate, or heavy. Equipment that exhibits this type of load are conveyors not uniformly fed, agitators for liquids and solids, tumblers, and variable lensn! 9 mixers.
Mechanical Rating-The maximum power or torque that a speed reducer can transmit, based on the strength and durability of its components.
Overall Erive Rotio-The rail. of inyut speed (RPM) to output speed (RPM). Overall drive ration is normally expressed as (X):1.
Overdrive-An interchangeable term for back drive.
Overhung Load-The side or radial force applied at right angles to a drive motor, gearmotor, or reducer shaft. This force results from a gear, pulley, or sprocket that the drive's bearing and shaft must support without damage while transmitting power.
Pinion-The input or driving gear that meshes with an output or driven gear.
Radial Load-An interchangeable term for overhung load.
Speed Ratio-The ratio or relationship of input speed divided by output speed. Speed ratio is normally expressed as (X): 1.

Thrust-The force acting lengthwise along the axis of a shaft either towards or away from it.
Torque-Twisting force that tends to cause rotation. For explanations of Running (Full Load)) Torque and Starting Torque as it pertains to gearmotors, see beginning of this GEARMOTOR SELECTION GUIDE.

AC GEARMOTOR SELECTION GUIDE

Name-
plate
RPM
-

$\begin{aligned} & \text { Inpurt } \\ & \text { HP } \end{aligned}$	$-60 \mathrm{~Hz}$	50 Hz
$1 / 15$	T-115/230	110/220
$1 / 4$	E $5115 / 230$	$110 / 220$
1/20	115	105
1/12	115	105
$1 / 8$	115	105
$1 / 13$	-115/230	1151230
13		-
1/6	115	-
1/6	115/230	$110 / 220$
1/4	115	
1/3	115	
1/3	208-230/460	190/380
$1 / 2$	115	
1/2	208-230/460	
1/2	115.	
1/25	$\%^{\circ} 115$	$\cdots 115$
1/20	$\mathrm{F}^{3} \mathrm{C}$	\% 110
1/20	$0 \times{ }^{-x} 115$	$\cdots 110$
$1 / 20$	\%-230 - 4	220-240
$1 / 20$	$1.230-\quad$	$\checkmark 220$
$1 / 15$	1151230	$110 / 220$
$1 / 100$	Cx* 115	
-	115	115
1/15	115	
1/3	115/230	-
1/2	115/230	-
1/2	230/460	190/380
3/4	115/230	-
$3 / 4$	230/460	190/380
1	230/460	190/380
1	230/460	190/380
2	230/460	190/380
3	230/460	190/380
1/20	51154230	-115/230
	115	-
-	115	
	115	-
11.0	i1.3	-
14	115	
1/25	115	115
$1 / 20$	- -115	$=105$
1/20	- -115	$=1$
$1 / 20$	- 230	220-240
12	37	230
If	:	-
$1 / 4$	115	-
12	115	
1/2	208-2304460	-
1/15	$\bigcirc 115230$	110220
1/25	115	115
1/20	115	
1/20	115	110
1/20	230	220-240
$1 / 20$	230	220
$1 / 2$	$\cdots 115230$	
1/12	\cdots \% 115230	$115 / 230$
$3 / 4$	- $\times 230 / 460$	190/380
1	- $230 / 460$	190/380
2	$\therefore 2301460$	1901380
1/6	-115/230	110/220
$1 / 15$	-115/230	2110220
1/3	$\therefore \cdots$, - -
$1 / 3$	115	
13	-208-230/460	220/440
13	[208-230/460	190/380
$1 / 4$. 115/230	110/220
$1 / 20$	\%. 115	- 110
$1 / 20$	\% 115	$\cdots 110$
1/8	\% 2115	-110
$1 / 20$	115230	115/230
	$\therefore 230 / 460$	-150/380
2-n**	- $230 / 460$	190/380
3		190/380
1120	115	I15
1/45	115	115
$1 / 3$	F-m ${ }^{\text {cos }} 115$	-
18	*2\% 115	-
1/3	208-230/460	190380
-12..	208-230/460	-
-	115	-
-	115	-
-	115	
	115	
1/45	$\therefore \quad 115$	115
二	$\begin{aligned} & 115 \\ & 115 \end{aligned}$	-

Straft
Config.

Motor	$\begin{array}{c}\text { Mot } \\ \text {-Type }\end{array}$
Eacl	
sur	

Eaclo-

sure | Overall | $\begin{array}{c}\text { Length } \\ \text { Less } \\ \text { Height }\end{array}$ | $\begin{array}{c}\text { Thern } \\ \text { Shaft }\end{array}$ |
| :---: | :---: | :---: |
| $\begin{array}{c}\text { Prote } \\ \text { fion }\end{array}$ | | | Spae

Contr
lable
 Brake
Adapt-
able?
 Pad

 $|$<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| - |
| :--- |
| - |
| - |</table-markdown></div>

DC GEARMOTOR SELECTION GUIDE

\square

DC GEARMOTOR SELECTION GUIDE

POWER
TRANSMISSION: GEARMOIORS

PULLEY SELECTION CHART
Phley-selection chart for motors turning 1725 RPM. Speeds shown are for the driven equipment in revolutions per minute.

Dis.	Diameter of Puliey on Equipment-Insu((In.) Equipnent Speed (RPM)														
- $\underset{\substack{\text { Pulley } \\ \text { min (a) }}}{ }$	$\begin{gathered} 32 \\ \{1.251 \end{gathered}$	tis!	(145)	$\begin{gathered} 54 \\ 12.01 \end{gathered}$	$(58$	$\begin{gathered} 64 \\ (2.5) \end{gathered}$	$\begin{gathered} 76 \\ (3.0) \end{gathered}$	$\begin{aligned} & 102 \\ & (4.0) \end{aligned}$	$\begin{aligned} & 127 \\ & (5.01 \end{aligned}$	$\begin{aligned} & \hline 165 \\ & \{6.5\} \end{aligned}$	$\begin{gathered} 203 \\ 10.01 \end{gathered}$	$\begin{aligned} & 254 \\ & (10.0) \end{aligned}$	$\begin{aligned} & 306 \\ & (12.0) \end{aligned}$	738.0	(18570)
- $32(1.25)$? 3	\pm	is3	50	250	¢50	-15	3t	± 10	3%	26.5	215		-	
-38(1.5)	205	1725	115	1290	1140	1030	850	645	515	395	320	265	215		
45(1.75)	9109	2000	1725	1500	1340	1200	1000	750	699	460	375	315	250	200	-
- 51 (2.0)	276	2200	1970	1725	1530	1375	1145	850	685	530	430	345	285	230	
$58(2.25)$	3100	2580	2200	1930	1725	1550	1290	965	775	595	485	385	325	255	215
$64(2.5)$	3450	2870	2460	2150	1900	1725	1435	1075	850	660	540	430	355	285	240
76(3.0)	4140	3450	2950	2580	2290	2070	1725	1290	1070	800	615	515	430	345	285
102(4.0)	5500	4575	- 3950	3450	3060	2775	2295	1725	1375	1060	860	700	. 575	460	375
\% 27 (5.0)	6850	5750	4920	4300	3825	3450	2865	2150	1725	1325	1075	860	. .715	575	475
"165(6.5)	8950	7475	6400	5600	4975	4480	3730	2790	2240	1725	1400	1120	. 930	745	620
203(8.0)		9200	7870	6900	6125	5520	4600	3450	2750	2120	1725	1375	1140	915	765
$254(10.0)$		-	9850	8620	7670	. 6900	5750	4300	3450	2650	+ 2150	1725	. 1430	1140	950
$302(12.0)$	-	-	-	-	9200	8280	6900	5160	4130	3180	$\therefore 2580$	2075	1725	1375	1140
$381(15.0)$							8635	6470	5170	3970	-3230	2580	2150	1725	1425
457(18.0)				-				7750	6200	4770	3880	3100	2580	2070	1725

SPEED CONTROLS FOR AC/DC AND SERIES DC MOTORS

- Use only with 115 V AC/DC universal . or Series DC brush-type motors
- Clockwise turn of dial permits control of motor speed from 20 to 100% of full speed
- Typical uses are gearmotors, power tools, sewing machines, grinders, blowers, and pumps
- Input 115 VAC $(\pm 10 \%) 60$ or 50 Hz

Mount in panels or directly into standard "handy" boxes (handy box not included)

- No. 4X796 uses single gang wall plate; No. 4X797 uses double gang wall plate (wall plates not included)
- Controls are not intended for shaded pole, PSC, split-phase, or capacitorstart motors
- Instructions furnished
- UL Recognized (E165942)

Max. Amps	Stack No.	List	Each	Shpg. Wh.
$\mathbf{5}$	$\mathbf{4 \times 7 9 6}$	$\$ 26.26$	$\$ 23.01$	0.3
10	$\mathbf{4 \times 7 9 7}$	30.95	$\mathbf{2 7 . 1 5}$	0.4

. 12 VDC PERMANENT MAGNET PARALLEL SHAFT GEARMOTORS

POWER TRANSMISSION: GEARMOTORS

10 TO 50 IN .-LBS.
Gearcase Zinc die-cast Lubrication: Grease filled Gears: Spur
Bearinges Bronze sleeve on both case, and motor $P<\overline{2}$ PKRTS AVAILABLE FOR MANY DC GEARMOTORS, CALL 1-800-323-0620

10 TO 50 IN.-LBS.
jearcase: Zinc die-cast ubrication: Grease filled jears: Spur
earings: Porous bronze sleeve n both case and motor lounting: All position

$\begin{gathered} \begin{array}{c} \text { Name- } \\ \text { plate } \\ \text { May } \\ \text { RPW } \end{array} \end{gathered}$	$\begin{gathered} \text { FA } \\ \text { Torque } \\ \text { To-Lbs. } \end{gathered}$	Overhuag Load lhs.	${ }_{\text {InPput }}$	$\begin{aligned} & \text { Fht } \\ & \text { Amps at } \\ & 12 \mathrm{VDCO} \end{aligned}$	Gear	Stock no.	List	Each	Shpg.
A 0.45	${ }_{46}^{50}$	${ }_{29}^{30}$	12880	${ }_{0}^{0.10}$	${ }^{71839} 1$	220003	\$41.64	\$37	1
A 3.4	44	28	$1 / 425$	0.50	1176:1	22.005	${ }_{41.64}^{41.64}$	3750 37.50	1
	43	27	1825	0.70	1217:1	21006	38.65	34.80	1
A 8 :	41	26	$1 / 4 \%$	190	524:1	22.007	38.6 .3	34.50	1
A 120	40	24	1125	1.30	6031	22.003	38.65	34.80	1.1
A 17.0	30	21	4125	1.40	394:1	22.009	${ }^{37.26}$	31.05	. 1
A 25.0	20	18	1/125	1.30	270:1	2 LOLO	37.26	31.05	1.1
B 50.0	10	15	1/125	1.10	146:1	22011	37.26	31.05	1.1

$\begin{aligned} & \text { Name- } \\ & \begin{array}{c} \text { leate } \\ \text { lipil } \end{array} \end{aligned}$	$\begin{gathered} \text { Fit } \\ \text { Torque } \\ \text { In.-qus. } \end{gathered}$	$\begin{aligned} & \text { Overhung } \\ & \text { Load } \\ & \text { Lbs. } \end{aligned}$		$\begin{gathered} \mathrm{FR} \\ \begin{array}{c} \text { Anps at } \\ 12 \mathrm{VDC} \end{array} \end{gathered}$	$\begin{aligned} & \text { Gear } \\ & \text { Ratio } \end{aligned}$	Stock No.	List	Eac	.	
0.4	50	40		0.30	2420:1	47832	\$101.04	\$50.15		
1.5	25	40	$1 / 12000$	33	871.5:1	47833	101.04	50.15		
			$1 / 400$	0.60		${ }^{478834}$	101.04	50.15	5	
			$1 / 120$	${ }^{0} .90$	-5870:1					
8.75 12.0	35 40	${ }_{46}$		1.10	191.6:1	47836	101.04	50.15		
17.0	16	13	1/160	1.10		42838	${ }^{101.04}$	50.15		
25.0	15	I3	$11 / 160$		5.7:1 488840		101.04101.04	50.1550.15		
Stock	A	$D_{B} \text { Dimensions (Inchess) }_{\mathbf{D}}$		E	Stock			Dimensions (Inches)		E
	3.60	. 78								
48733	3.60	. 78	. $80 \quad .33$	NA	478	3.95	. 60	. $54 \quad .19$	${ }^{9} .13$	
48834	3.85	. 78	.80 83	NA	488	4.33	. 60			
${ }_{42836}$	3.85 4.22	. 78	.80 80 .33	NA	478	4.33	. 60	. $54 \quad .19$. 13	

12 AND 90 VDC PERMANENT MAGNET PARALLEL SHAFT GEARMOTORS

13 TO 50 IN.-LBS.
Gearcose: Zinc die-cast
Lubrication: Grease filled
Gears: Heat-treated steel and aceta
Beariggs: Porous bronze sleeve on Б̄̈th case and motor
Sedla: O-ring type on output shaft

Mounting: All position
Rotation: Reversible
Thermal Protection: None
Brushes: Externally replaceable
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Enclosure: TENV

CALL 1-800-323-0620

50 TO 500 IN.-LBS.

Gearcase: Zinc die-cast Lubrication: Grease filled
Gears: Phenolic and hardened steel

Bearings: Needle/ball/sleeve on case; ball on motor
Seals: O-ring type on output shaft

Mounting: All position
Rotation: Reversible
Thermal Protection: None
Brushes: Externaily replaceable
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Enclosure: TENV

(TYP. 4)

Nameplate RPM	FullLoad Torque in. Ihs.	Overhung Load Lbs.		Full-Load Amps at Nameplate Volts	Gear Ratio	Stock No.	List	Each	Shpg. Wi.
	, 12 VDC PERMANENT MAGNET TENV								
6	50	50	1/30	2.1	482:1	11480	\$129.00	\$98.70	3.7
9.2	50	50	1/30	2.3	63:1	1 L 479	129.00	98.70	3.7
21	50	50	1/30	- 3.0	98:1	1 L 478	129.00	98.70	3.7
32	40	50	1/30	3.5	161:1	$1 \mathrm{L477}$	129.00	98.70	3.7
50	26	50	1/30	3.5	314:1	11476	129.00	98.70	3.7
102	13	50	1/30	3.5	31:1	11475	129.00	98.70	3.0

7	50	50	1%		${ }_{314.1}^{48.1} 482535$	124.00	94.90	
21	30	50	$1 / 30$	$0.3 \overline{5}$	161:1 42536	124.00	94.96	
32	43	50	1/30	0.42	98:1 47537	124.00	94.90	3.5
	26	50	1/30	0.42		124.00		
02	13	50	1/30	0.42	31:142539	124.00	4.90	

$\begin{gathered} \text { Name- } \\ \text { Niate } \\ \text { RPM } \end{gathered}$	Full- Load Torque In.-Lbs.	$\begin{aligned} & \text { Over- } \\ & \text { hung } \\ & \text { hoad } \\ & \text { Los. } \end{aligned}$	$\underset{H P}{\text { Input }}$	$\begin{gathered} \text { Full-Load } \\ \text { Amps at } \\ \text { Namepiate } \\ \text { Votts } \end{gathered}$	Gear Ratio Ratio	Stack No.	List	Each	Stypg.
12 VDC PERMANENT MAGNET TENV									
12	500 250	${ }_{250}^{250}$	1/15	${ }_{6.5}^{6.5}$		11474 1243	\$299.00	\$229.50	
20	150	250	1/15	6.5	81:1	11472	299.00	229.50	
40	75	250	$1 / 15$	6.5		11471	299.00	229.50	
60 90	75 50	250 250	$1 / 10$	9.0 9.0	55:1	11476	299.00 299.00	229.50 229.50	
6.5 13	500 250	${ }_{250}^{250}$	1/15	0.75 0.75	267:1	475351	${ }_{299.00}^{299.00}$	229.50	
21	150	250	$1 / 15$	0.75		42532	299.00	229.50	12.
42	75	250	1/15	0.75	81:1	42533	299.00	229.50	12.0

Typacal Uses: Low voltage machines. putips, fans, chemical feeders, and other appitications requiring 12 or 24 VDC supply poser.
Special rectures: Externall; replaceable brisites.
Armbiture Voits: $12 / 24$
Typaif: DC permanent magnet
Bearings: Ball
Mounting: All-position face and base móninting

Enciasure: TENW
Ambient: $40^{\circ} \mathrm{C}$
Windings: Copper
Service Factor: 1.0
Insulation Class: 3
Duty: Contínuous
Rotation: Reversible
Finish: Black enamel
Brand: Dayton

93 Fig.	nP		Narneplate RPM		Full-Luad Torqua In-thes.	Dverall Langth (C)	L	Fuil- Load Amps	Stock No.	List	Each	Shag.Wit
	12VDC	$\underset{\text { 24VDC }}{\text { at }}$	IZVDC	24YDC								
A	1/20	1/9	1750	4200	1.81	$67 / 16^{*}$	4.78"	5.1	47145	\$117.00	\$74.80	4.0
B	$1 / 14$	1/6	1750	3900	2.56	$613 / 38$	4.42	6.9	4214	178.00	11485	6.3
8	$1 / 7$	1/4	1750	3000	5.63	$8^{13 / 3 / 2}$	6.42	14.0	42143	181.00	129.50	8.9
8	1/6	13	1800	4200	6.38	93138	7.42	16.5	48529	201.00	143.5	10.0

SNOW PLOW PUMP MOTORS

Typical Uses: Replacement electric motors for use on Meyer brand and late style Western hydraulic snow plow mechanisms. Also suitable for other 12 VDC hydraulic power units and similar applications where a closed couple shaft is used.
Type: 4M292 is permanent magnet; 4M291 is field wound
Mounting: Stud
Bearings: Oil impregnated sleeve
Enclosure: TENV
Duty: Intermittent
Finish: Black
Brand: Machinery Components, Inc.

Replaces Original Motorin:	HP	Key	Nameplate RPM	Hotation*	OEM Repl. Model	Stock No.	List	Each	Stheg. Wt.
Meyer Series E47 and E49 Flectro Touch	11/2	A	4200	CCW	15054	4N1292	\$136.00	\$124.00	6.5
Late Style Western	13/4	B	2900	cW	56133	4M291	180.00	168.00	14.0

(*) Facing shaft

DC SPEED CONTROLS FOR 90V AND 180 V MOTORS AND GEARMOTORS

POWER
 TRANSMISSION: DC DRIVES

. ALL MODELS FEATURE:

- Adjustable maximum/minimum speed
- Fused control protection
- Run/stop switch
- Metal enclosures (except Nos. $4 Z 527$ and 62812 are phenolic)
- Built-in transient and surge suppression
- Performance matched to Dayton and GE PMDC motors
- Single-phase, $60 / 50 \mathrm{~Hz}$ input
- All models are UL Listed and Certified for Canada (E165942)

Solid state speed controls convert 115 or 230 VAC input to full wave DC power for speed control of permanent magnet (90 and 180 VDC armature) motors and gearmotors. Some controls can also control shunt wound DC motors.
For constant or diminishing torque applications requiring adjustable speed control over a wide range. Not intended for constant HP applications such as saws and drill. presses or in close proximity of high capacitive discharge electrical circuits such as welding equipment. Black finish (except Nos. 1F794 and 1F792 are white epoxy washdown duty). Dayton brand.

$\}^{*}$ External speed aduust interfacing accepts 0.10 V . or 1 to 5,4 to 20.10 to 50 mA signals with ofiset.
(\dagger) Includes control circuit to prevent restart of drve after interniption of AC power. Adustable acceleration and deceleration. Proszston io allow convertng to a tompe controt \{th? With No. aZS13.

A	1/50-1/6	115	10.1	10.30	Chassis	4	. 4^{4}	2	47827	\$61.73	$\$ 54.15$	1.0
8	1/35-1/6	115	10.1	10	Chassis	41/i	4	41/4	47828	108.81	95.45	2.5
C	1/50-1/6	115	10.1	10330	NEMA 1	5	41/4	17/8	42527	72.56	63.65	0.8
0	1/50-1/6	115	10.1	10	NEMA 1	6	4	45/16	5×412	128.02	11230	3.7
E	$1 / 4-1$	115	50.1	- 2	NEMA 4/12	91/2	5	$51 / 2$	5×485	372.21	326.50	6.0
F	1/35-1/6	115	50.1	2	NEMA 4/12	01/2	5	$51 / 2$	6×165	376.49	33025	5.1
F	18-1	115	50.1	2	NEMA 4/12	91/2	5	$51 / 2$	218171	468.00	411.75	5.3
6	1/8-1	115	50.1	2	NEMA 4/12	$91 / 2$	5	$51 / 2$	42829	573.42	503.00	6.8
H	18-1	115	50.1	2	NEMA 4/12	91/2	5	$51 / 2$	1794	-424.08	372.00	9.0

1	13-2	230	50.1	2	NEMA 412	$91 / 2$	5	$51 / 2$	47377	420.66	369.00	5.0
J	1/3-2	230	50.1	2	NEMA 4/12	$91 / 2$	5	$5{ }^{5} / 2$	17792	424.08	372.00	9.0
K	1/3-5	230	50:1	2	NEMA 4/12	$121 / 8$	9	93/16	62812	832.20	730.00	12.0

MAGNETIC REVERSING KIT FOR No. 6 Z812

Provides full armature reversing using for ward and reverse contactors mounted on a printed circuit board. Also disconnects motor armature from control when motor is stopped, meeting electrical code requirements for an " M " contactor.
Includes an antiplugging circuit and an auxiliary form A contact rated for 5 amps at 115 VAC or $30 \mathrm{VDC} .3-5 \mathrm{HP}$ range Forward reverse toggle switch for select ing motor rotation. Operable on 230VAC only, 180 V armature.
No. 6Z813. Shpg. wt. 3.3 lbs. List.. $\$ 406.13$.
Each.
.$\$ 356.25$

DC VARIABLE SPEED CONTROLS
 ,

- $2=$
$\because 4$

	STANDAR
- 0 perable on 60 or 50 Hz	
- $\%$ \% speed regulation over constant	
torque speed range	
- Adjustable minimum/maximum speed	
- Adiustable current limit	
Line voltose compensarion	
Transient voltage prorectio	
- Gree wheeling cincie	
- Truhibit capability	
	p

STANDARD FEATURES

- Nonfiltered
- Shunt tield (1 amp max; 100 VDC for 120 VAC in; 200 VDC for 240 VAC in)
- DC tach follower capability
- DC tach feedback capability: $3 \mathrm{~V} / \mathrm{K}$
- Full wave nower supply
- 100% fuil loaa restea
- Operate on 60 Hz at $\pm 10 \%$ roted line voliage
- Chassis units are supplied with speed pot, knob, and dial plate

DC speed controls for use with DC motors and gearmotors on constant or diminishine torque applications requiring wide range adjustable speed control. These include conveyors, assembly lines, packaging, food processing, silk screening, and photo processing equipment. Not intended for constant HP applications which include saws and drill presses. Do not ase in close proximity to high capacitive discharge electrical circuits such as welding equipment. UL Recognized (E76i80). Dart brand.

frpe	HP	Laput Volts ot 60 Hz	Dutput to PM DC Motor	Speed Range	$W^{\text {Dimensions (Inches) }}$			Dart	Stock No.	List	Each	Shpg. . Wt.
Chiassis	18-2*	120/240	$90 / 180 \mathrm{VDC}$	25:1	3.625	4.25	1.3	125DV-C-K	$2 \mathrm{M510}$	\$98.00	\$65.20	0.7
Enciosed	$18.2{ }^{*}$	120/240	$90 / 180 \mathrm{VDC}$	30:1	$\overline{0} .53$	7.43	3.55	253G-200E	62386	283.00	188.25	2.0
Chassis	1/8-2	$120 / 240$	90/180 VDC	30.1	5.53	7.00	1.63	$253 \mathrm{C}-200 \mathrm{C}$	62385	219.00	145.60	1.5
Enclosed	1881	120	90 VDC	$50: 1$	6.75	10.75	4.75	510-100RE-36A	$2 \mathrm{m511}$	641.00	426.75	4.3
Enciosed	1/4-2	240	180 VDC	$50: 1$	6.75	10.75	4.75	$520-200 \mathrm{RE}$	62388	537.00	357.50	3.6
Chassis	1/4-2	240	180 VDC	50:1	6.75	9.00	2.00	520-200C	62387	493.00	328.50	23

(*) $18-1 \mathrm{HP}$ at $90 \mathrm{VDC} ; 1 / 4-2 \mathrm{HP}$ at 180 VDC (No. 2 M 510 requires exterral heat sink for 2 HP ratang).

FIELD PROGRAMMABLE CLOSED LOOP DC VARIABLE SPEED CONTROL

MOTOR SELECTION INFORMATION

MOTOR

SELECTIO: GU:DES

SELECTING AC (ALTERNATING CURRENT) INDUCTION MOTORS

See Electric Motor Terminology section on pages 3308, 3309, and 3310 for detailed definitions.

Motors are used in a wide variety of applications. In some applications more than one motor design would work well. In others, an exact replacement cannot be found but a similar motor with slight differences in mechanical and electrical characteristics
will provide reliable operation. The following selection guide is designed to help you choose the correct motor for your application.

Follow these 4 Easy Steps to Choose Your Mator:

STEP I: GATHER MOTOR INFORMATION

You will need the following information to properly select a motor. If you are replacing a motor, much of the information can be found on the existing motor nameplate. See the sample nameplate below.
(1) Phase-Either single (1) or three (3). Match exactly.
(2) Voltage. Match exactly.
(3) Horsepower (HP)-Very small motors are often rated in watts. Choose an equal or next higher HP.
(4) Physical Size/Frame. Match exactly.:-
(5) Speed (RPM). Match within 5%.
(6) Frequency (Hz). Match exactly.
(3) Service Factor. Choose motor of equal or greater number.
(3) Type: See below.

Énclosure. See below.
(9). Duty Cycle. If current motor is intermittent duty, you may upgrade to continuous. Air-over must be installed in the airstream.

Bearing Type-Sleeve or Boll. Match exactly.
(2) Thermal Protection. See Thermal Protection Information on page 5.

5 Motor Type-See Electric Terminology section on pages 3308, 3309, and 3310 for detailed definitions.				
Type	Starting Torque as Percent of Full-Load Torque	Comparative Efficiency	Comparative Cost	Typical
Shaded Pote	Very Low 50-100\%	Low	Low	Small direct-drive fans and blowers
Permanent Split Capacitor (PSC)	$\underset{75-150 \%}{\text { Low }}$	Moderate	Low to Moderate	Direct-drive fans and blowers
Split-Phase	Low to Moderate $130-170 \%$	Moderate	Moderate	Belt-drive and direct-drive fans and blowers, small tools, centrifugal pumps, and appliances
Capacitor Start	Moderate to High $200-400 \%$	Moderate to High	Moderate to High	Pumps, compressors, tools, conveyors, farm equipment, and industrial ventilators
Three-Phase	$\begin{aligned} & \text { Moderate to High } \\ & 200-300 \% \end{aligned}$	High	Moderate	Applications where 3-phase power is available

Endosure-See Electric Motor Terminology section on pages 3308, 3309, and 3310 for detailed definitions. Three basic enclosures:		
Enclosure Type	How Can I Tell?	Where Do I Use This Endosure?
Open/Dripproof	Ventilation holes in shell and/or endshield.	Clean, dry, non-hazardous environments.
Enclosed	No ventilation holes in shell or endshield.	Dirty, moist, non-hazardous environments.
Hazardous Location	Enclosed. Must have a UL Hazardous Location nameplate on motor frame.	Designed for use in hazardous environments as defined by National Electrical Code (NEC) classifications. NEC Class and Group are designated on UL Hazardous Location nameplate mounted on motor.

MOTOR SELECTION INFORMATION

STEP 2: DETERMINE THE RIGHT CATALOG SECTION

By your application: Many of our motors are listed by application such as fan, pump, blower, compressor, etc. You will find these applications under "Motors" in the Product Index in the back of the Catalog. Turn to the specific page or section to find your motor and proceed to Step 4. If your application is not listed in the index, or if you cannot find the motor you want in the listed section, choose your motor by its characteristics.
By the characteristics: Motor type, horsepower, speed, and enclosure. Grainger carries general purpose motors designed for reli-
able ùse on a wide variety of applications. They are grouped in two categories: Industrial and Commercial. The motor category chosen is dependent on the characteristics of the applications (see below).
There is considerable overlap in applications which can use either motor. In general, Industrial motors are more rugged than Commercial motors, but cost more.
Choose the motor from the Industrial or Commercial motor section based on the characteristics of your application.

Designed for mechanical loads (also effective for air movTing)

- Eor hard-to-start applications such as conveyors, belt-driven equipment, machine tools, and reciprocating pumps
*all bearings to handle heavier radial and axial loads -Heavier construction for industrial applications

Commercial

Designed mostly for air moving and other light to medium duty applications such as fans and centrifugal pumps, small tools, and office equipment

STEP 3: FIND THE RIGHT PAGES IN THE SE TION

Motors are arranged in sections as follows:
1st;:By Type/Application
2nd:By Enclosure or Special Features within that type. Example- rihen looking for an Industrial 3-Phase TEFC motor, first turn to the Indastrial section, then find 3-Phase motor pages, then turn to TEFC pages.
STEP 4: SELECT SPECIFIC MOTOR
Matich all of the information you have gathered in Step 1.

GRAINGER STOCKS A BROAD LINE OF DAYTON AND GE MOTORS

Dayton

Top Performance. Dayton motors are built to exceed industry standards such as NEMA (National Electrical Manufacturers Association). Used as a replacement motor in a wide variety of applications, each Dayton motor must outperform the best motor it may be called upon to replace, hence "best of the best" performance. You can be confident that the Dayton motor will work as well as, or better than, the motor you are replacing.
Top Quality Verified by Engineers. Grainger's Engineering Dept., with its "state-of-the-art" test lab, confirms that Dayton motors consistently meet or exceed top performance standards. Engineering also confirms the motors have applicable agency approvals such as UL and CSA.
Clearly Identified. Dayton motors are clearly identified by full fact carton labels and nameplates with wiring diagrams. Maintenance and installation instructions appear in every motor carton.
Broad Line Offering. Dayton offers one of the broadest lines of motors in the industry. One brand can be used for nearly all your motor replacement needs.
Time Proven Performance. Established in 1937, Dayton has grown to be one of the most dependable names in the motor industry.

Broad Line Offering. Grainger now offers over 2400 stock GE brand motors including AC and DC motors from $1 / 370$ HP to 450 HP in Energy $\${ }^{2}{ }^{2}{ }^{\text {pe }}$ and standard efficiency designs including severe duty, explosion proof, farm duty, HVAC, and many others.
National Recognition. GE is considered the leading national brand motor with the largest installed customer base. The GE brand is widely known for quality and reliability.
Clearly Identified. GE motors are clearly identified by full fact carton labels and nameplates. Easy-to-read wiring diagrams are included
Premium Efficiency Leader. GE has long been recognized as an indust, leader in premium efficiency motors with a wide variety of ratings and types to suit many applications.
Heritage of Excellence. General Electric is one of the pioneers in the electrical industry with a proud 100 year history dating back to the time of founder Thomas Edison.

THERMAL PROTECTION INFORMATION

Motors that start automatically (e.g. thermostat controlled) and are located out of operator sight, must be protected against dangerous overheating due to failure-to-start or overloading. This protection may be a separate overcurrent device (e.g. motor starter) complying with Article 430 of the National Electrical Code (NEC), a thermally protected motor (internal motor protection), or an impedance protected motor.

Motors with automatic reset thermal protection MUST NOT be used where automatic or otherwise unexpected starting of the motor could be hazardous. Applications where automatic restarting could be hazardous include compressors, conveyors, power tools, farm equipment, and some fans and blowers. Where such a hazard exists, always use a manual reset thermally protected motor.

UL 507 STANDARD

Any motor used in fan product, such as bathroom exhaust fans, wall-insert fans, ceiling insert fans, attic exhaust fans, whole house fans, and duct fans, etc., which are built into or within the building structure and which are likely to operate unattended or in situations irewhich the operator may not detect a locked rotor (stalled motor) condition must have either a manual reset thermal protector or a thermal cut-off (one-shot) device.

Range hoods, circulating fans, pedestal fans, and ceiling saspended fans are not included. Agricultural fans are included if they are built into the building structure and are likely to operate unattended or in situations in which the person operating the fan may not detect a locked rotor (stalled motor) condition.

PREMIUM EFFICIENCY vs. STANDARD EFFICIENCY

Lower Operating Cost:

	$\text { vings }=0.746 \times H P \times L \times C \times N\left(\frac{100}{E_{1}}-\frac{100}{E_{2}}\right)$
HP	Motor Horsepower
L	Percent Load Divided by 100
C	Energy Coste Dolliars Per Kilowatt Hour
N	- Running Time, Hours Per Year
E_{1}	Efficiency (\%) of Siandãind Efficiency Motor
E_{2}	Efficiency (\%) of Premium Efficiency Motor

If you operate a 25 HP premium efficiency motor at full load for 24 hours a day (8760 hours per year) and your cost per kilotiatt hour is 9 cents, you can sove $\$ 532.00$ annually. This comparisoin.is based on a premium efficiency motor with a 94.1 efficiency rating vs. a standard efficiency motor with a 91.0 efficiency rating.

Increased efficiency leads to lower operating temperatures, resulting in longer life.
Cooler Operation:

MOTOR DIMENSIONS FOR NEMA FRAMES

Standardized motor dimensions as established by the National Electricat Manufacturers Association (NEMA) are tabulated below and apply to all base-mounteđ footors listed herein which carry a NEMA frame designation.

NEMA Frame	5*	- 2E	All Dimensioms in lnches			N-W	U	V§ Min.	-Key .		
			2 F	BA	H				Wide	Thick	Long
42	$25 / 3$	$31 / 2$	111/56	$21 / 46$	9/32 slot	11/8	$3 / 8$	-	-	$3 / 64$ flat	-
48	3	$41 / 4$	$23 / 4$	$21 / 2$	11/32 slot	11/2	$1 / 2$	-	-	364 flat	-
48H	3	$41 / 4$	$43 / 4$	$21 / 2$	1/32 slot	11/2	$1 / 2$	-	-	3/64 flat	-
56	$31 / 2$	$47 / 8$	3	$23 / 4$	11/32 slot	17/8 \dagger	5/8	-	$3 / 16 \dagger$	3/16 \dagger	$13 / 8 \ddagger$
56H	$31 / 2$	47/8	$385 \ddagger$	$23 / 4$	11/32 slot	17/8 \dagger	587	-	$3 / 16 \dagger$	$3116 \dagger$	$13 / 89$
56 HZ	$31 / 2$	**	**	**	**	$2^{1 / 4}$	7/8	2	$3 / 16$	316	$13 / 9$
66	$41 / 8$	57/8	5	$31 / 8$	13/32 slot	$21 / 4$	$3 / 4$	-	3/16	3/16	17/8
1431	$31 / 2$	$5{ }^{1 / 2}$	4	217	11/82 dia	$21 / 4$	$7 / 8$	2	$3 / 16$	$3 / 16$	$13 / 8$
1451	$31 / 2$	$51 / 2$	5	$21 / 6$	11/32 dia.	$21 / 4$	7/8	2	$3 / 16$	$3 / 16$	13/8
146AT	$31 / 2$	$51 / 2$	$5^{1 / 2}$	2314	11/32 dia.	$21 / 4$	$7 / 8$	2	$3 / 16$	3/16 .	$13 / 8$
148AT	$31 / 2$	$51 / 2$	7	$23 / 4$		$21 / 4$	$7 / 8$	2	$3 / 16$	3/16	$13 / 8$
149AT	$31 / 2$	$51 / 2$	8	$23 / 4$		$21 / 4$	78	2	$3 / 16$	$3 / 16$	$13 / 8$
1412AT	$31 / 2$	$51 / 2$	11	$23 / 4$		$21 / 4$	78	2	$3 / 16$	3/16	$13 / 8$
182	$41 / 2$	$71 / 2$	41/2	23/4	13/32 dia	$21 / 4$	78	2	$3 / 16$	3/16	$13 / 8$
184	$41 / 2$	$71 / 2$	$51 / 2$	$23 / 4$		$21 / 4$	78	2	$3 / 16$	$-3 / 16$	$13 / 8$
1821	$41 / 2$	$71 / 2$	$41 / 2$	$23 / 4$		23\%	$11 / 8$	21/2	1/4*	$1 / 4$	13/4
184T	$41 / 2$	$71 / 2$	$51 / 2$	23/4		$23 / 4$	$11 / 8$	$21 / 2$	$1 / 4$	$1 / 4$	$13 / 4$
182AT	$41 / 2$	$71 / 2$	$41 / 2$	$23 / 4$		$2{ }^{1 / 4}$	11/8	2	1/4	1/4	$13 / 8$
L182Acy	$41 / 2$	$71 / 2$	$41 / 2$	23/4	13/32 dia.	$21 / 4$	718	2	$3 / 16$	3/16	$13 / 8$
L182AT	47_{2}	$71 / 2$	$41 / 2$	$23 / 4$		$21 / 4$	$11 / 8$	2	1/4	1/4	$13 / 8$
1-acy	41/2	71/2	$7{ }^{*}$	23/4		$21 / 4$	78	2	3/16	3/16	$1{ }^{1 / 8}$
- tat	41/2	$71 / 2$	7	$28 / 4$		$21 / 4$	$11 / 8$	2	1/4	$1 / 4$	$13 / 8$
Lfimat	4ip	$71 / 2$	7	$23 / 4$		$24 / 4$	$11 / 8$	2	1/4	$1 / 4$	$13 / 8$
104NT	$41 / 2$	$71 / 2$	10	$23 / 4$		$21 / 4$	$11 / 8$	2	1/4	1/4	13/8
	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 51 / 2 \\ & 61 / 2 \end{aligned}$	$\begin{aligned} & 31 / 8 \\ & 31 / 8 \end{aligned}$	13/32 dia	21/4	$3 / 4$	$\stackrel{2}{2}$	$3 / 16$ $3 / 16$	$3 / 16$ $3 / 16$	$13 / 8$ $13 / 8$
293	. $51 / 4$	$81 / 2$	$51 / 2$	$3^{1 / 2}$	13/32 dia	3	11/8	$23 / 4$	1/4	1/4	2
245	$5 i / 4$	$81 / 2$	7	$31 / 2$		3	11/8	$23 / 4$	$1 / 4$	14	2
217	$51 / 4$	$81 / 2$	61/2-	$31 / 2$		$33 / 8$	13/8	\% $1 / 6$	5/16	$5 / 16$	23/8
2174	$51 / 4$	$81 / 2$	7	$31 / 2$		33/8	19/8	-	5/16	$5 / 16$	23/8
	$5^{1 / 4}$				$13 / 32$ dia						13/4
2YQAT	$51 / 4$	$\begin{aligned} & 072 \\ & 8 / 2 \end{aligned}$	$121 / 2$	$31 / 2$		23/4	13/8	$21 / 2$	$5 / 16{ }^{\text {² }}$	$5 / 16$	13/4
224*	$51 / 2$	9	$63 / 4$	$3{ }^{1 / 2}$	13/32 dia	3	1	$23 / 4$	1/4	1/4	2
265\#	$51 / 2$	9	$71 / 2$	$31 / 2$		3	1	$23 / 4$	- 214	1/4	2
云据	61/4	10	81/4	414	21/32 dia	39/8	11/3	$31 / 8$	$1 / 4$	1/4	
2510	$61 / 4$	10	$81 / 4$	41/4	17/32 dia	33/4	$13 / 8$	$31 / 2$	5/16	$5 / 16$	234
2 CH	$61 / 4$	10	10	$41 / 4$		$33 / 4$	$13 / 8$	$31 / 2$	5.16	$5 / 16$	$23 / 4$
29	$61 / 4$	10	$81 / 4$	$41 / 4$		4	15/8	$33 / 4$	38	$3 / 8$	$27 / 8$
4567	61/4	10	10	$41 / 4$		4	15/3	$33 / 4$	38	38	$27^{7 / 8}$
269	7	11	$91 / 2$	$43 / 4$	21/32 dia	$33 / 4$	$11 / 4$	$31 / 2$	1/4	1/4	$23 / 4$
2ent	7	11	91/2	-43/4	1732 dia	47/8	16/8	45/8	38	38	$33 / 4$
20815	7	11	11	43/4		$47 / 8$	15/8	458	38	318	3344
2eat	7	11	$91 / 2$	43/4		45/8	$17 / 8$	43/9	$1 / 2$	$1 / 2$	$31 / 4$
2065	7	11	11	43/4		$45 / 8$	17/8	$43 / 8$	12	12	$31 / 4$
20475	7	11	91/2	$4{ }^{31 / 4}$		$31 / 4$.	15/8	3	$3 / 8$	$3 / 8$	${ }^{17 / 8}$
28675	7	11	11	$43 / 4$		$31 / 4$	$15 / 8$	3	$3 / 8$	38	$17 / 8$
324\#	8	121/2	$10^{1 / 2}$	$51 / 4$	21/32 dia.	$47 / 8$	15/8	45/8	3/8	$3 / 8$	33/4
326\#	8	121/2	12	$51 / 4$		$47 / 8$	15/8	45/8	$3 / 8$	38	$33 / 4$
3241	8	121/2	101/2	51/4	21/33 dia.	55/8	$17 / 8$	53/8	$1 / 2$	12	$41 / 4$
32601	8	121/2	12	$51 / 4$		55/8	17/8	$53 / 8$	12	$1 / 2$	$41 / 4$
3241	8	121/2	101/2	51/4		51/4	$2^{1 / 8}$	5	1/2	12	37/8
3261	8	121/2	12	$51 / 4$		$51 / 4$	21/8	5	$1 / 2$	L/2	37/3
32475	8	$121 / 2$	101/2	$51 / 4$		$33 / 44$	17/84	$31 / 24$	1/2	$1 / 2$	24
32675	8	121/2	12	$51 / 4$		$33 / 44$	17/84	$31 / 24$	$1 / 2$	$1 / 2$	24
364\#)	9	14	111/4	57/8	21/32 dia.	55/8	17/8	$53 / 8$	1/2	$1 / 2$	$41 / 4$
354S\#	9	14	$111 / 4$	57/8		$31 / 4$	15/8	3	318	318	17/8
365\#	9	14	121/4	$57 / 8$		$55 / 8$	17/8	$53 / 8$	1/2	$1 / 2$	41/4
3644	9	14	$111 / 4$	57/8	21/32 dia.	$63 / 8$	$2^{1 / 8}$	$61 / 8$	1/2	$1 / 2$	5
3651	9	14	$12^{1 / 4}$	$57 / 8$		$63 / 8$	$2^{1 / 8}$	61/8	1/2	$1 / 2$	5

(*) Dimension D will never be greater than the above values on rigid mount motors, but it may be less so that shims up to $1 / 32^{\prime \prime}$ thick ($1 / 16^{*}$ on 364 U and 365 U frames) may be required for certain machines. (\dagger) Dayton motors designated 56 H have two sets of 2 F mounting holes $3^{\prime \prime}$ and $5^{\prime \prime}$. (4) Standard short shaft for dirent-drive applications. (H) Discontinued NEMA frame. (**) Base of Dayton 56 HZ frame motors has holes and slots to match NEMA 56, 56H, $143 T$ and 145 T mounting dimensions. (\dagger) Certain NEMA 56 Z frame motors have $1 / 2^{\prime \prime}$ dia. x $11 / 2^{\text {" }}$ long shaft with $3 / 64^{*}$ flat. These exceptions are noted in this catalog. ($\$$) Dimension " V " is shaft length available for coupling, pinion or pulley hub-this is a minimum value.

NEMA C and JFFACE MOUNT DIMENSIONS

Mounting dimensions of the 56 J face are exactly the same as the NEMA 56C, 143 TC and 145 TC faces.
56J face has a threaded shaft of stainless steel while all others have a keyed steel shaft. See illustrations and table below for specifics.

56C, 56J, 143TC and 145TC FACE DIMENSIONS

NEMA Face	Dia. (U)	aft Long (N-W)	Rabbet Dia.	Bolt Circle Dia.
42 C	$3 / 81$	11/8 ${ }^{\text {a }}$	$3{ }^{\prime \prime}$	$30 / 4{ }^{\text {n }}$
48 C	1/2	$11 / 2$	3	$33 / 4$
56 C	518	17/s	41/2	57/8
56.5	$5 / 8$	$2^{7 / 16}$	$41 / 2$	57/8
143TC. 8145 TC	$7 / 8$	$21 / 4$	$41 / 2$	57/8
146ATC \& 1412ATC	7/8	$21 / 4$	41/2	57/8
182TC \& 184TC	11/8	$29 / 4$	$84 / 2$	71/4
186ATC \& 189ATC	11/3	$21 / 4$	$81 / 2$	71/4
213TC \& 215TC	$13 / 8$	$33 / 8$	$81 / 2$	71/4
219ATC\&2110ATC	$1 \mathrm{l} / 8$	$23 / 4$	$81 / 2$	71/2
254TC \& 256TC	15/3	4	81/2	71/4
284 TC \& 286TC	17/9	$45 / 8$	$10^{1 / 2}$	9
L182ACY \& 186ACY	718	$2^{1 / 4}$	$4^{1 / 2}$	57/8

industrial MOTORS

CAPACITOR－START OPEN DRIPPROOF MOTORS

Rigid welded base

Copper windings
－ 1.15 to 1.35 service factor
Typical Uses：Air compressors，machinery， pumps，blowers，and other heavy－duty， hard－starting equipment．
Type：Capacitor－start
Bearings：Ball
Ambient： $40^{\circ} \mathrm{C}$
Duty：Continuous
Rotation：CW／CCW
Finish：Gray
Brand：Dayton

CAUTION：
Not for fans in unattended areas．
Refer to page 5 for UL507 Standard，
proper thermal protection，and other
motor selection information．

	Nameplato RPM	NEMA Frame	Thermal Protaction	Volts 60 Hz	$\begin{gathered} \text { Full-Load } \\ \text { Amps at } \\ \text { Nameplate Volts } \end{gathered}$	Service factor	Insulation Class	Stock Ho．	list	Each	Shpg． W．
173	1725	56	None	115／230	6.83 .4	1.35	A	$4 \mathrm{K852}$	\＄160．00	\＄117．15	20.0
\％	1725	56	Auto	115／230	6．83．4	1.35	A	5K115	167.00	122.25	20.0
：men	1140	56	None	115／230	7．33．7	1.35	A	5K118	215.00	157.50	26.0
1／2	1725	48	None	115／230	9．0／4．5	1.25	A	$6 K 178$	183.00	133.95	21.0
等？	1725	56	None	－115 230	9．614．8	1.25	A	$4 K 855$	183.00	133.95	22.0
\cdots	1725	56	Auto	115／230	9.67	1.25	A	$5 \mathrm{S116}$	193.00	141.25	21.0
，m	1725	56	Manual	115／230	9．6／4．し	1.25	A	5K696	203.00	148.60	22.0
\％	1725	56\％	Mantal	115／230	9．244．6	12	A	6K198＊	203.00	155.25	32.0
\％	1140	56	None	115／230	10．4／5．2	1.	A	5 K 617	329.00	241.25	34.0
3／4	1725	56	None	115／230	11．25．6	1.25	A	4K858	226.00	166.00	270
5	1725	56	Auto	115／230	11.25 .6	1.25	A	5K117	236.00	173.00	26.0
\％	1725	56	Manual	115／230	11．2／5．6	1.25	A	5K694．	242.00	177.25	27.0
	1725	56 H	Manual	115／230	11.45 .7	1.25	A	6K200＊	242.00	185.25	34.0
\％	1725	66	Auto	115／230	11.45 .7	1.25	A	$5 K 417$	300.00	229.75	30.0
	1140	56H	None	115／230	11．65．8	1.25	A	6 K 949 †	380.00	278.50	38.0
1 年	1725	56 H	None	$115 / 230$	13．6／6．8	1.25	B	5 5 921	250.00	183.00	28.0
，\％	1725	56 H	Manual	115／230	13．6／6．8	1.25	B	$6 K 699$	281.00	190.75	28.0
＋	1725	56 H	Auto	115／230	13．6／6．8	1.25	A	6 K 148	257.00	188.50	28.0
3	1725	56 HZ	None	1151230	13．6／6．8	1.25	B	6 K 271	306.00	224.25	32.0
	1725	56 HZ	Manual	115／230	13．6／6．8	1.25	B	$6 K 424$	319.00	233.75	32.0
	1725	66	None	115／230	15.077 .5	1.25	A	6K204＊＊	338.00	258.75	44.0
	1725	66	Manual	115／230	15．07．5	1.25	A	6K205＊	351.00	268.50	44.0
	1725	143 T	None	115／230	13．6／6．8	1.25	B	$6 K 825$	210.00	190.75	33.0
	1740	182	None	115／230	14．4／7．2	1.25	A	5K480	262.00	237.75	41.0
11／2	3450	143 T	None	115／230	17．5／8．8	1.15	B	6K630 \＃	208.00	189.00	31.0
	1725	56 H	None	1151230	20．4／10．2	1.15	8	5 K 923	303.00	222.00	3.0
	1725	56 H	Auto	115230	20．4／10．2	1.15	B	$6 K 305$	310.00	227.25	370
	1725	56 HZ	None	115／230	$20.4 / 10.2$	1.15	B	$6 K 272$	386.00	282.75	38.0
	1725	56 HZ	Manual	115／230	$20.4 / 10.2$	1.15	B	$6 K 422$	399.00	292.50	39.0
	1725	145 T	None	115／230	20.410 .2	1.15	B	$6 K 826$	307.00	228.50	39.0
	1740	184	None	$115 / 230$	$22.0 / 11.0$	1.20	A	SK481	298.00	270.25	49.0
2	3450	145 T	None	115／230	$29.4 / 11.2$	1.15	B	6K631\＃	245.00	232.50	36.0
	1725	56 H	None	115／230	21.410 .7	1.15	B	1K064：	358.00	274.00	400
	1725	56 HZ	None	1151230	21.410 .7	1.15	B	$6 K 393$－	457.00	334.75	420
	1725	56 HZ	Manual	1151230	$21.4 / 10.7$	1.15	B	6K972 ${ }^{-}$	471.00	345.25	42.0
	1730	${ }^{1827}$	None	115 230	$23.2 / 11.6$	1.15	B	$5 K 953$	367.00	226.00	52.0
	1740	213	None	115／230	24．6／12．3	1.20	A	$5 K 482$	377.00	341.75	58.0
3	3500	182 T	None	115／230	32．0／16．0	1.15	B	6K632＊	429.00	263.75	78.0
	1735	184 T	None	115／330	38．0／19．0	1.15	B	5 K 675	444.00	273.00	70.0
	1740	215	None	115／230	35．6／17．8	1.15	A	5K483	476.00	431.75	86.0
5	3520	184 T	None	230	19.6	1.15	B	$6 K 633$－\＃	512.00	315.00	83.0
	1740	184 T	None	230	23.0	1.15	${ }_{\text {B }}$	$6 \mathrm{~K} 554{ }^{\text {＋}}$	509.40	313.25	83.0
	1740	213 T	None	230	22.0	1.15	B	5K676－	595.00	516.50	100.0
	1740	215	None	230	22.0	1.15	A	5K484＋	631.00	572.50	102.0
$7^{1 / 2}$	3480	213 T	None	230	30.3	1.15	B	6 6 634 伟	791.00	486.00	136.0
	1730	215 T	None	230	35.5	1.15	B	5K677 \dagger	784.00	482.00	124.0
10	3500	${ }^{215 T}$	None			1.15	B	6K628 ${ }^{\text {＋}}$	1033.00		168.0
	1740	215 T	None	230	42.2	1.15	B	6K100－	973.00	598.50	144.0

（＊）Cast－iron endshields，double dipped windings，black finish．（ + ）Capacitor－start，capacitor－run．（＊）Enclosed shaft endshieid．

MOTOR DIMENSIONS•FORNEMA FRAMES

MOTOF SEEECTHO CUIDES

MOTOR DIMENSIONAL CHART (CONT.)
Standardized motor dimensions as established by the National Electrical Manufacturers Association (NEMA) are tabulated below and apply to all base-mountęd motors listed herein which carry a NEMA frame designation.

NEMA Frame	D*	2 E	2F	Il Difnensions Infache . $\mathbf{B A} \because \mathbf{H}$		N-W	U	$\begin{gathered} \mathbf{V}_{\S} \\ \text { Min. } \end{gathered}$	Key										
						Wide			Thick	Long									
$364 T$	9	14	211/4	57/8			57/8	22/8	$57 / 8$	518	518	41/4							
3651	9	14	121/4	57/3	182	57/8	23/8	57/8	518	518	$4^{1 / 4}$								
364 TS	9	14	111/4	57%	21/32 di	31/4	17/84	$31 / 24$	1/2	12	24								
365 TS	9	14	$12{ }^{1 / 4}$	$57 / 8^{-}$		33/44	17/84	$31 / 24$	$1 / 2$	$1 / 2$	2^								
4045 .	10	16	$12{ }^{1 / 4}$	$65 / 8$		744	$2^{21 / 8}$	7	$3 / 4$	34	55/8								
4051	10	16	$133 / 4$	$65 / 8$		$\cdots 714$	2\%	7	3/4	3/4:	5 $5 / 8$								
404 TS	10	16	121/4	65/8		$\bigcirc{ }^{-1}$	21/84	4	$1 / 2$	1/2	22944								
40515	10	16	133/4	$65 / 8$	1346 dix	$41 / 4$	2月6	4.	$1 / 2$	12	23/4								
4044	10	16	121/4	65/8		7/8	2\%	$6{ }^{1 / 8}$	518	$5 / 8$	$51 / 2$								
4051 -	10	-16	-133/4	65/8		71/3		67/8	58	$5 / 8$	51/2								
$444 T$	11	18.	; $141 / 2$	T1/2		8		81/4	78	78	67/8								
4451,447185	11	18.	161/2	$71 / 2$		最			78	78	67/8								
44TS, $447 \mathrm{TS} 8^{8}$	11	18	141/2	74/2		d		41/2a	518		34								
44575	11		161/2	71/2	.	y		41/2a	5\%		34								
4441	11	18	141/2	$71 / 2$		88\%	2/3	88/9	$3 / 4$	3/4	7								
455	11	18	161/2	$71 / 2$			22/4	$88 / 8$	$3 / 4$	3/4	7								
495	11	18	25	$71 / 2$	$13 / 16$ dia	881/2	3\%	$81 / 4$	78	78.	6\%/8								
4TSTS	11	18	25	$71 / 2$. $4 \% / 4 \times$	2\%/4	41/24	518	58	3 a								
(*) Dimeitision " D " will never be greater than the (**) Base of Dayton 56 HZ frame motors has holes above values on rigid mount motors, but it may and slots to match NEMAA $56,56 \mathrm{H}, 143 \mathrm{~T}$ and 145 T mounting dimensions. certain machines. (\dagger) Certain NBMA 562 frame motors have $1 / 2$ dia. $\times 11 / 2^{\prime}$ long shat with $3 / 64^{4 \prime}$ flat. These																			
$2 F$ yuibunting holes 3° and 5°. (\$) Dimension W ' is shat length available for coupling, (4) Stanidand shortishaft for direct-drive applications. pinion or pulley hub-this is a minimum value. (88) The $2 F$ dimension is 20																			

(i) Disconitinued NEMA frame

QUALITY MOTORS
. $5-70$ Electric motors listed in this catalog are engineered for maximum performance and are manufactured to the dimensional and performance standards established by National Electrical Manufacturers Association (NEMA). Fact labels on cartons give full specifications.

NEMA 48K \& 56K HUB DIMENSIONS SUMP PUMP MOTORS

NEMA 48M, 48N and 56N FLANGE MOUNT DIMENSIONS

OIL BURNER MOTORS

	48 M	48 N
	46 N	
AN	$61 / 4^{n}$	$7^{1 / 1^{n}}$
BE	$61 / 4 \max$	$7 \max$
AK	$51 / 2$	$63 / 3$
CE	$7^{3} / 4 \max$	$81 / 4 \max$.

CLOSE CC! JPIED PUMP SHAFT DIMENSIONS

Dimension	Frame Size	Type JM	Type JP
${ }^{m}$	$\begin{gathered} 143 \text { thru } 184 \\ 213 / 215 \end{gathered}$	$\begin{aligned} & 7 / 8^{n} \\ & 7 / 8 \end{aligned}$	$\begin{aligned} & 7 / 8^{n} \\ & 11 / 4 \end{aligned}$
"EM"	$\begin{aligned} & 143 \text { thru } 184 \\ & 213 / 215 \end{aligned}$	1	$\frac{1}{13 / 3}$
"EL"	$\begin{aligned} & 143 / 145 \\ & 182 / 184 \\ & 213 / 215 \end{aligned}$	$\begin{aligned} & 15 / 3 x \\ & 11 / 4 \\ & 11 / 4 \end{aligned}$	$\begin{aligned} & 15 / 32 \\ & 11 / 4 \\ & 13 / 4 \end{aligned}$
" $\mathrm{AH}^{\text {\% }}$	$\begin{gathered} 143 \text { thru } 184 \\ 213215 \end{gathered}$	$\begin{aligned} & 41 / 4 \\ & 41 / 4 \\ & 41 / 4 \end{aligned}$	$\begin{aligned} & 75 / 16 \\ & 81 / 8 \end{aligned}$
ET"	$\begin{gathered} 143 \text { thru } 184 \\ 213 / 215 \end{gathered}$	$\begin{gathered} 2^{7 / 8} \\ 2^{7 / 8} \end{gathered}$	$\begin{gathered} 516 / 16 \\ 57 / 8 \end{gathered}$
'EQ"	$\begin{aligned} & 143 \text { thru } 184 \\ & 213 / 215 \end{aligned}$	$\begin{aligned} & 5 / 8 \\ & 5 / 8 \end{aligned}$	$\begin{aligned} & 19 / 16 \\ & 2_{3 / 8}^{19 / 8} \end{aligned}$
"EN"	$\begin{gathered} 143 \text { thru } 184 \\ 213 / 215 \end{gathered}$	$\begin{aligned} & 3 / 8-16 \times 3 / 4 \\ & 3 / 8-16 \times 3 / 4 \end{aligned}$	$\begin{aligned} & 3 / 8-16 \times 3 \times 4 \\ & 1 / 2-13 \times 3 / 4 \end{aligned}$
Shaft Key Size	$\begin{gathered} 143 \text { thru } 184 \\ 2132215 \end{gathered}$	$\begin{aligned} & 3 / 16 \times 3316 \times 15 / 8 \\ & 3 / 16 \times 3 / 16 \times 15 / 8 \end{aligned}$	

NEMA LETTER DESIGNATIONS FOLLOWING FRAME NUMBER
C Face mount; see previous page.
H Has 2 F dimension larger than same
frame without H suffix.
K Face mount for jet pumps; see above.
K Has hub for sump pump mounting;
mee at right for dimensions.
Nlange mount for oil burner, see
column at left.

T, U Integral HP motor dimension standards set by NEMA in 1964 and 1953.

Y Non-standard mounting; see manufacturer's drawing for mounting dimensions.
Z Non-standard shaft (NW, U dimensions).

USE AIR MOTCRS WHERE ELECTRIC MOTORS ARE IMPRACTICAL

A compact, lightweight source of smooth, vibrationless power, Gast rotary van air motors can be used in applications where electric or hydraulic motors are impractical. Unlike an electric motor, the air motor runs cool to prevent heat buildup and provides smooth startups.

Use air motors in batch mixers, conveyors, and hoists. With no heat buildup or sparks, air motors are ideal for explosionproof applications. See Index under Air Motors.

CAPACITOR-START OPEN DRIPPROOF MOTORS

Typical Uses: Air compressors, machinery, pumps, blowers, and other heavy-duty, hard-starting equipment.
Type: Capacitor-start
Bearings: Ball
Mounting: Rigid welded base through 145T frame, bolted base on 182 T frame and above.
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: GE

CAUTION:

Not for fans in unatiended areas.
Refer to page 5 for UL507 Standard,
proper thermal protection, and other
motor selection information.

*) Capacitorstart, capacitor-run

PARTS AVAHLABEE， CALL $1-800-323-0620$ 	－Rigid w －Copper Typical Us combustibl air compr ers，tools，	welded wind es：Dep e dust ressors and	base ngs endable o dirty ar machine nveyors．	peration i reas on p ry，fans，	Type Bear Amb Duty non－ Rota blow， Finis Bran	Cap ings： ient： ：Con tion： h：Gr d：Da	acitor Ball $0^{\circ} \mathrm{C}$ inuou W／CC y ton	－start us W			
	HPName－ RPM glate	NEMA Frame	Thermal Protection	Volts 60 Hz	Fuli－Load Amps at Nameplate Volts	S．F．	ins． Class	Stock No．	List	Each	Shpg． Wt．
	1／8 178	42	None	115230	4.020	1.0	${ }_{\text {B }}$	110060	\＄136．00	\＄184．00	17.0 170
	1／6 1725	42	None	115220	4．22．1	1.0	B	18061	148.00	113.20	17.0
	1／4 1725	42	None	115／230	5．22．6	1.0	B	1K062	155.00	118.50	18.0
	$\stackrel{1}{\approx}$	48	Auto	1151230	4.62 .3	1.0	A	5×191	162.00	118.60	18.0
最的	1725	56	None	1151230	5.82 .9	1.15	A	51／262	155.00	113.45	18.0
	1725	56	Auto	1151230	5．8／2．9	1.15	A	5K263	162.00	118.60	18.0
Whay	1／3 3450	48	Auto	115／230	5．22．6	1.0	A	6K481	146.00	106．90	20.0
	1725	42	None	1151230	7.03 .5	1.0	B	1 K 063	172.00	131.50	20.0
Whtw	1725	48	Auto	1151230	5.82 .9	1.0	A	5K192	179.00	131.05	20.0
	1725	56	None	1151230	6．8／3．4	1.15	A	4K936	172.00	125.90	20.0
	1725	56	Auto	1151230	6．883．4	1.15	A	5K121	179.00	131.05	21.0
	1725	56	Manual	115230	6．83．4	1.15	A	5×636	185.00	135.40	21.0
W2．	1725	56	Auto	115／208－230	7．63．6－3．8	1.15	B	6K306	183.00	132．60	21.0
	1140	56	None	1151230	7.38 .7	1.0	B	5K502	247.00	181．00	27.0
	－1／2： 3450	48	Auto	$115 / 230$	7.23 .6	1.0	A	6 K 482	165.00	126.20	20.0
	3450	56	Manual	1151230	8．0／4．0	1.0	B	6K184	167.00	127.65	21.0
	1725	48	None	1151230	8．4／4．2	1.0	B	6K17	212.00	155.25	22.0
	1725	48	Auto	115／230	8.44 .2	1.0	B	5K193	219.00	160.75	20.0
	1725	56	None	115／230	9．0／4．5	1.15	B	6 K 937	203.00	148．60	23.0
Shatay	1725	56	Auto	1151230	9．044．5	1.15	B	616122	220.00	161.50	23.0
	1725	56	Manual	1151230	9.044 .5	1.15	B	6×637	215.00	． 164.50	23.1
KYZ\％	1725	56	Auto	115208－230	9．2／4．44．6	1.15	B	6K307	224.00	－－162．75	25.0
	1140	56	None	$115 / 230$	10．4／5．2	1.0	B	5K672	352.00	258.00	37.0
	3143450	56	Auto	1151230	$9.8 / 4.9$	1.0	A	6K483	183.00	133.50	26.0
	3450	56	Manual	1151230	9.844 .9	1.0	A	6 K 358	185.00	135.35	26.0
Whetwer	1725	56	None	1151230	11．45．7	1.15	B	6K938	242.00	177.25	28.0
	1725	56	Auto	$115 \sqrt{230}$	11.45 .7	1.15	B	6K123	268.00	196.50	28.0
TVET＊	1725	56	Manual	1151230	11.455	1.15	B	6×639	254.00	194.50	26.0
Whtw	1725	56	$A{ }^{+n}$	1151208－230	11．65．8－5．8	1.15	B	6K308	272.00	197.25	28：0
Staser	13450	． 56	Auto	115230	12，06．0	1.0	A	6K484	227.09	． 164.75	28.0
mvater－－－	3450	56	Manual	115／230	12.06 .0	1.0	A	5K960	233.00	${ }^{1} 770.75$	28.0
Wer	1725	56 H	None	115／230	14.07 .0	1.15	B	$1 \mathrm{K065}$	277.00	203.00	33.0
\％	1725	56 H	Auto	1151230	14.07 .0	1.15	B	6K562	301.00	206.25	33.0
	1725	56 H	Manual	$115 / 230$	14．07．0．	1.15	B	$6 K 640$	290.00	212.75	33.0
	1725	56 H	Auto	115／208－230	15．07．2－7．5	1.0	B	615309	305.00	－． 221.50	33.0
Fta	1725	56 HZ	None	115230	14．07．0．	1.15	B	6K407	336.00	246，25	33.0
Y，\％	1725	66HZ	Manual	115／230	14.07 .0	1.15	B	61418	350.00	256.25	36.0
	1725	143 T	None	115／230	14.07 .0	1.15	B	6 6 827	270.00	201.25	34.0
	1725	66	Auto	115230	$13.6 / 6.8$	1.0	B	6K124	351.00	268.50	35.0
	1740	182	None	1151230	13．8／6．9	1.0	A	5K485	277.00	251.25	49.0
	11／2 3450	56H	Manual	1151230	16．48．2	1.0	B	61×338	317.00	232.25	34.0
	3500	143 T	None	115／230	16.48 .2	1.0	B	313300	217.00	210.59	340
2－	1725	56 H	Auto	115230	17．688．8	1.15	B	5K565＊	357.00	261.50	41.0
	1725	56 H	Manual	115230	17．6／8．8	1.15	B	${ }^{5 K 641 *}$	330.00	242.00	41.0
	1725	56 H	None	115230	17．68．8	1.15	B	1K065＊	315.00	230.75	41.0
s\％	1725	56 HZ	None	1151230	17．6／8．8	1.5	B	6K419＊	416.00	304.75	41.0
	1725	56 HZ	Manual	1151230	17．6／8．8	1.15	B	$6 \mathrm{~K} 42 \mathrm{O}^{*}$－	429.00	314.25	41.0
－	1725	145T	None	115230	17．6／8．8	1.15	B	6K828＊＊	320.09	238.50	41.0
20	1740	184	None	115230	18．49．2	1.0	A	5 K 486	350.00	317.50	56.0
獊	23450	56 H	Manual	115230	20.4410 .2	1.0	B	5 K 961	372.00	272.75	41.0
	3500	145 T	None	1151230	18.899 .4	1.0	B	3K344＊	264.00	254.00	41.0
	1725	56 H	None	1152320	19.09 .5	1.0	B	1K067＊	482.00	353.00	54.0
W6\％	1740	1827	None	115230	$23.6 / 11.8$	1.0	B	$5 \mathrm{Kg66}$	416.00	255.00	57.0
29x	1740	213	None	115／230	24.01120	1.0	A	5K487	473.00	429.00	80.0
\％	$3 \quad 3500$	$182 T$	None	$115 / 230$	32．0／16．0	1.0	B	6K145	465.00	－285．75	77.0
	1740	184 T	None	1151230	30.0115 .0	1.0	B	5K967＊	496.00	305．00	79.0
	1730	215	None	1151230	33.6116 .8	1.0	A	5K488＊	643.00	583.50	100.0
	$5 \quad 3505$	184 T	None	230	19.6	1.0	B	6×146＊	624.00	383.75	88.0
	1730	213 T	None	230	33.0	1.0	B	5K968＊	562.00	345.50	106.0
－${ }^{2}$	1745	215	None	230	20.0	1.0	A	5K489＊	832.00	754.50	120.0
	$71 / 23480$	213T	None		30.3		B			508.50	
\cdots	1740	215 T	None	230	30.0	1.0	B	6K176＊	841.00	517.00	136.0
	（＊）Capacitor－s	start，capa	citor－run．								
Refer to page 5 for UL507 St	AUVION：N andörcl prop			natteinde ection，àn	arease other ma	18	$\begin{aligned} & y_{16 x}^{2} \\ & \text { aimet } \\ & \text { action } \end{aligned}$	info			

CAPACITOR-START TEFC MOTORS

Typical Uses: Dependable operation in noncombustible dusty, dirty areas on air compressors, pumps, machinery, fans, blowers, tools, and conveyors.
Type: Capacitor-start
Bearings: Prelubricated ball
Mounting: Rigid welded base through 145T frame, bolted base on 182 T frame and above.
Enclosure: TEFC
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: GE

CAUTION:

Not for fans in unattended areas.
Refer to page 5 for UL507 Standard,
proper thermal protection, and other
Thotor selection information.

[^0]
minus ? MOTOKS

3-PHASE OPEN DRIPPROOF MOTORS

NEMA service factors up to 1.35 provide a reserve margin for intermittent overloading or fluctuating (high/low) voltage conditions

- Base design of NEMA 56HZ motors have holes and slots to match NEMA $56,56 \mathrm{H}, 143 \mathrm{~T}$, and 145 T frames

- NEMA design B

Typical Uses: Pumps, blowers, machine tools, air compressors, and other moderate to hard-starting applications where 3 phase power is available.
Bearings: Double-shielded ball
Mounting: Rigid welded, except 250 U frames have removable cast-iron base
Thermal Protection: None
Windings: Copper
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brandabayton

Modifications \& Service Available at Most Locations

$\mathbf{H P}=\mathrm{F}$	Namepfata RPM.	MEMA Frame	Volt's 60 Hz	$\begin{gathered} \text { Full-Load } \\ \text { Amps at } \\ \text { Nameplate Yolts } \end{gathered}$	Service Factor	NEMA Nominal Efficiency	Insulation Class	Stock No.	List	Each	Shpg. Wt
1/4 \% $^{\text {易 }}$	$\begin{aligned} & 1725 \\ & 1140 \end{aligned}$	$\begin{aligned} & 56 \\ & 56 \end{aligned}$	$\begin{aligned} & 208-220 / 440^{*} \\ & 208-220 / 440^{*} \end{aligned}$	1.2-1.4/0.7	1.35 1.35	66.0 62.0	A	$\begin{aligned} & \text { 2N101 } \\ & \text { 2N878 } \end{aligned}$	$\$ 153.00$ 227.00	$\begin{array}{r} \$ 117.00 \\ 173.75 \end{array}$	15.0
1/3	3450	48	230/460 \ddagger	1.400 .7	1.35	64.0	B	3N851	131.00	100.20	17.0
	3450	56	208-220/440*	1.3-1.4/0.7	1.35	64.0	A	3N589	148.00	113.20	16.0
	1725	56	230/460	$18 / 0.9$	135	62.0	B	3N040	149.00	113.95	170
	$1725{ }^{\circ}$	56	208-220/440*	$1 . \pm 1.4 / 0.7$	1.35	66.0	A	2N102	166.00	126.95	180
	1140	56	208-220/440*	1.7-18/0.9	1.35	70.0	A	2N879	236.00	180.75	33.0
$1 / 2$. 3450	48	230/460 \ddagger	$1.8 / 0.9$	1.25	70.0	B	3N852	139.00	106.30	18.0
	3450	56	208-220/440*	2.2-2.4/1.2	1.25	66.0	A	3N590	156.00	119.30	19.0
	1725	56	$230 / 460 \ddagger$	2.0/1.0	125	72.0	B	3N041	174.00	133.05	210
	1725	56	208-220/440*	$2.0-2.0 / 1.0$	1.25	72.0	A	2N103	191.00	146.05	20.0
	. 1140	56	208-220/440*	2.1-3/11	1.35	72.0	A	2N880	259.00	198.50	25.0
$3 / 4$	3450	48	-230/460 \ddagger	2.41 .2	1.25	74.0	B	3N853	166.00	126.95	18.0
	3450	56	208-220/440*	$2.8-3.01 .5$	1.25	70.0	A	3N591	183.00	139.95	20.0
	1725	56	230/460ł	2.8/1.4	1.25	77.0	B	3N042	194.00	148.35	230
	1725	56	208-220/440*	$2.8-2 / 1.4$	1.25	77.0	A	2N104	211.00	161.50	23.0
	1140	56H	208-220/440*	3.0-3.0/1.5	1.25	74.0	.	3N316	27900	213.50	300
1	3450	56	208-220/440*	3.4.3.2/1.6	1.25	T. n	A	3N178	213.00	162.25	22.0
	1740	1437	$300-230 / 460$	$3.4-3.5 / 1.8$	1.5	30.0	B	3N655	18700	142.95	26.0
	1725	56	208-220/440*	$3.4-3.4 / 1.7$	$1: 25$.8. 5	A	3NO12	?27,00	173.75	26.0
	1725	56 H	230/460 \ddagger	3.6/1.8	1.15	3.0	B	3N043	204.00	156.25	33.0
	1725	56HZ	230/460\%	$36 / 18$	1.15	77.0	B	3N251	347.00	189.00	27.0
	1760	182	208-220/440*	$37-3.6118$	1.35	81.5	A	2N980	316.00	237.25	45.0
	1140	145 T	200-230/460*	+0-1.2/2.1	1.1 .3	78.5	B	3N675	-43.00	186.25	34.0
	1160	184	208-220/440*	$4.4+4.3 .1$	1.25	78.5	A	2N988	304.00	228.25	45.0

(*) 50 Hz operation at rated voltage and $190 / 380 \mathrm{~V}$.
(\ddagger) Operable on $50 \mathrm{~Hz}, 190 / 380 \mathrm{~V}$, at $5 / 6$ of 60 Hz HP and speed (1.0 service factor).

3－PHASE OPEN DRIPPROOF MOTORS

DAYTON 3－PHASE OPEN DRIPPROOF MOTORS（Cont．）

HP	Nameplate RPM	NEMA Frame	Volts 60 Hz	Full－Load Ampas at Nomeplate Volts	Service Factor	NEMA Nominal Efficiency	lasulation Class	Stock No．	List	Each	Shpg． Wht
11／2	3450	56	208－220／440＊	4．4－4．22．1	1.15	78.5	A	3N592	\＄254．00	\＄194．50	26.0
	3500	143T	200－230／460 \ddagger	4．6－4．4／2．2	1.15	81.5	B	3N666	204.00	156.25	30.0
	3515	182	208－220／440＊＊	4．8－4．6／2．3	1.2	80.0	A	2N995	348.00	261.25	45.0
	1725	56 H	230／460才	4．82．4	1.15	80.0	B	3NO44	239.00	183.00	32.0
	1725	56 H	208－220／440＊	4．9－4．82．4	1.2	81.5	A	3N013	262.00	200.75	33.0
	1725	56 HZ	230／460才	4．822．4	1.15	80.0	8	3N252	274.00	209.75	31.0
	1740	143T	200－230／460才	5．0－5．2／2．6	1.15	82.5	B	3N656	211.00	161.50	35.0
	1755	184	208－220／440＊	5．1－5．0／2．5	1.2	82.5	A	2N981	349.00	262.00	50.0
	1155	182T	200－230／460	5.95 .82 .9	1.15	81.5	B	3N676	286.00	214.50	55.0
	1140	184	208－220／440＊	5．6－5．4／2．7	1.15	77.0	A	2N989	357.00	268.25	50.0
2	3450	56 H	208－220／440	5．8－5．62．8	1.15	81.5	A	3N593	270.00	206.75	33.0
	3500	$145 \mathrm{~T}^{1}$	200－230／460	6．0－5．6／2．8	1.15	82.5	8	3N667	240.00	183.75	35.0
	3510	184	208－220／440＊	6．2－6．03．0	1.2	81.5	A	2N996	380.00	285.25	50.0
	1725	56 H	230／460 \ddagger	6.013 .0	1.15	80.0	B	3N693	240.00	183.75	34.0
	1725	56 HZ	230／4607	6．03．0	1.15	80.0	B	3 N 253	300.00	229.75	35.0
	1740	145 T	200－23014607	6．6－6．83．4	1.15	81.5	B	3N657	227.00	173.75	38.0
	1750	184	208－220／440＊	6．3－6．23．1	1.2	84.0	A	2N982	379.00	284.50	55.0
	1150	184 T	200－230／460 \ddagger	7．4－7．23．6	1.15	82.5	B	3N677	280.00	210.00	65.0
	1145	213	208－220／440＊	7．3－7．23．6	1.15	81.5	A	2N990	350.00	262.50	76.0
3	3500	145 T	200－230／460 \ddagger	8．5－8．0／4．0	1.15	85.5	B	3N668	264.00	202.25	36.0
	3500	184	208－220／440＊＊	9.18 .814 .3	1.15	82.5	A	2N997	389.00	292.00	55.0
	1725	56HZ	$230 / 460 \ddagger$	8．8／4．4	1.15	80.0	B	3N376 \dagger	314.00	240.50	41.0
	1755	182 T	200－230／460\＄	9．7－9．6／4．8	1.15	82.5	B	3N658	248.00	186.25	55.0
	1750	213	208－220／440＊	9．1－8．8／4．4	1.15	85.5	A	$2 N 983$	489.00	367.00	75.0
	1175	${ }_{213} 1$	200－230／460才	10．8－10．8／5．4	1.15	84.0	B	3N678	369.00	277.00	80.0
	1170	215	208－220／440＊	10．2－10．0／5．0	1.15	86.5	A	2N991	461.00	346.00	80.0
5	3515	182T	200－230／460才	14．0－12．6／6．3	1.15	88.5	B	3N669	299.00	224.50	65.0
	3500	213	208－220／440＊	13．8－13．2／6．6	1.15	86.5	A	2N998	537.00	403.00	75.0
	1750	184 T	200－230／460士	15．4－14．6／7．3	1.15	85.5	B	3N659	273.00	204.75	68.0
	1755	215	208－220／440＊	14．5－13．8／6．9	1.15	86.5	A	2N984	532.00	399.25	93.0
	1170	${ }^{215 T}$	200－230／460\＃	17．0－16．088．0	1.15	86.5	B	3N679	469.00	351.75	113.0
	1165	254 U	208－220／440 ${ }^{\text {F }}$	16．5－16．0／8．0	1.15	87.5	A	2N992	586.00	439.50	124.0
$\begin{aligned} & 74 / 2 \\ & 10 \\ & 3 \end{aligned}$	3500	184 T	200－230／460 \ddagger	21．4－18．49．2	1.15	$8{ }^{8}$ 5	B	3N670	389.00	292.00	74.0
	3520	215	208－220／440＊	20．8－19．89．9	1.15	\＆．${ }^{\text {c }}$	A	$2 N 999$	577.00	433.00	85.0
	1760	${ }^{213 T}$	200－230／460き	22．5－21．0／10．5	1.15	87.5	B	3N660	389.00	291.75	90.0
	1745	254 U	208－220／440＊	21．5－20．2／10．1	－	87.5	A	2N985	937.00	703.00	118.0
；	1180	254 T	208－230／460 \ddagger	24．4－24．0／12．0	\％ 15	87.5	B	3N691	641.00	480.75	176.0
10．	3520	213 T	200－230／460才	28．5－26．6／13．3	1.15	89.5	B	3N671	474.00	355.75	85.0
7	3510	254 U	208－220／440＊	27．0－25．6／12．8	1.15 ：	89.5	A	3N003	592.00	444.25	125.0
	1755	215 T	208－230／460\＃	28．6－26．6113．3	1.15 ＜	87.5	B	3N661	478.00	358.75	112.0
\％	1740	256 U	208－220／440＊	28．0－26．813．4	1.15	87.5	A	2N986	1014.00	761.50	142.0
	1175	256 T	208－230／460\＃	$31.531 .0 / 15.5$	1.15	88.5	B	3N692	779.00	584.00	214.0
15	3510 1770	215T	$200-230 / 4607$	$42.537 .8 / 18.9$	1.15	89.2	\bar{B}	$3 N 672$	627.00	470.50	111.0 187.0
20	3540									625.50	
	1770	256 T	208－230／4607	55．0－51．0 25.5	1.15	90.2	${ }_{B}$	3N663	828.00	621.50	230.0
$25^{\text {cim }}$	3535	256 T	208－230／460才	67．0－59．0／29．5	1.15	90.2	B	3N674	1006.00	754.50	242.0
	1765	284 T	200	72.0	1.15	91.0	B	3N665	1003.00	752.50	248.0
	1765	2847	230／460 \ddagger	63．0／31．5	1.15	91.0	B	3N6F4	1003.00	752.50	244.0

[^1]
W．YRefonto page 5 for UL507 Standard，proper thernial protection，and other motor selection information．

3－PHASE LINE MONITOR

Protects Equipment \＆Motors from Dangerous Line Conditions
－Incorrect phase sequence
－Loss of a phase
－Low voltage conditions， 98 to 92% of adjusted nominal raltoge
－Voltage unbalance between phases

Features
－Easy－to－set line voltage
－Wye or Delta 3－wire hookup
－ 8 amp，SPDT isolated relay contacts
－LED indicator signals normal opera－ tion
－Automatic reset
－4\％voltage unbalance
－ 5 second trip delay
－No．6C058 uses socket No．5X852 （see page 473；No．6C059 includes socket

Adjustable Naminal Line Voltage is $50 / 50 \mathrm{~Hz}$	Maximum Line Voltage	Sockat Required	SSAC Model	Stock No．	List	Each	Shpg． Wh．
$\begin{aligned} & 200 \text { to } 240 \text { VAC } \\ & 400 \text { to } 480 \end{aligned}$	${ }_{530}^{277}$ VAC	5X852	PLM6405 PLM9405	$6 C 058$ $6 C 059$	\＄62．79 73.34	\＄62．25	0.5 0.8

industrial MOIORS

3-RHASE OPEN DRIPPROOF MOTORS

Typical Uses: Pumps, fans, blowers, air compressors, conveyors, machinery, and other industrial equipment.
Bearings: Ball
Thermal Protection: None
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brond: GE

[^2]
3-PHASE OPEN DRIPPROOF MOTORS

GE 3-PHASE OPEN DRIPPROOF MOTORS (Cont.)

HP	Nameplate RPM	NEMA Frame	Volts 60 Hz	Full-Load Amps int Nameplate Volts	Service Factor	NEMA Nominal Efficiancy	Framet	Base	$\begin{aligned} & \text { GE } \\ & \text { Stack } \\ & \text { No. } \end{aligned}$	Stock No.	List	Each	Sipg. Wh
20	3540	254 T	230460\#	49.0024.5.	1.15	88.5	RS	Bolted	$\cdots 644$	5N384	\$900.00	5577.00	232.0
	1755	256 T	2301460\#	53.4/26.7	1.15	88.5	RS	Bolted	$\times 646$	4 NO 61	937.00	601.50	236.0
	1755	2560 T	200	60.9	1.15	88.5	RS	Bolted	N645	5N3365	937.00	601.00	279.0
	1755	256 T	575	21.3	1.15	88.5	RS	Bolted	N623	4 NO 42	937.00	601.50	217.0
25	3530	2566	230460\#	60.430 .2	1.15	89.5	RS	Botted	N647	5N366	1049.00	673.00	279.0
	1765	234 T	230460\#	62.431 .2	1.15	89.5	RS	Bolted	N649	$4 \mathrm{NH043}$	1157.00	741.50	340.0
	1765	2847	200	71.6	1.15	89.5	RS	Bolted	N648	5×1367	1157.00	741.00	359.0
	1765	2847	575	25.0	1.15	89.5	RS	Bolted	N62	$4{ }^{4} 1044$	1157.00	741.50	328.0
30	3560	28475	230/460\#	69.234 .6	1.15	90.2	RS	Bolted	N650	5N368	1276.00	818.00	359.0
	1760	2885	2304450\#	73.686 .8	1.15	89.5	RS	Bolted	N652	4 N 045	1318.00	845.00	358.0
	1765	2867	200	86.0	1.15	89.5	RS	Botted	$\mathrm{N}^{6} 51$	5M369	1318.00	844.50	409.0
	1750	2861	575	29.9	1.15	89.5	RS	Bolted	N625	4M045	1318.00	845.00	348.0
	1175	$326 T$	2304460	8361418.-	1.15	90.2	CI	Rigid	S144	5N645	2273.00	1457.00	630.0
40	3565			90.84544					N653	54330	1671.00	1072.00	409.0
	1765	224T	$23 N / 460$	103.651.8	1.15	91.0	Cl	Rigid	S114	544896	1965.00	1281.00	480.0
	1765	$324 T$	200	$1170{ }^{\circ}$	1.15	91.0	Cl	Rigid	53338	541937	1965.00	1259.00	600.0
	1186	$364 T$	460	653	1.15	91.0	Cl	Rigid	S1180	511889	3050.00	1958.00	640.0
50	3540.	324 TS	$230 / 460$	12 L 460.7	1.15	99.0	CI	Rigid	S115	514298	2327.00	1494.00	500.0
	1765°	32615	2301460	128.0654 .0	1.15	91.0	Cl	Rigid	S146	5 N 900	2214.00	12100	495.0
	1765	225\%	230/460	128.064.0.	1.15	91.0	Cl	Higid	S116	54901	2149.00	1379.00	510.0
	1185	365 T	460	67.7 .	1.15	91.7	Cl	Rigid	S1200	5N902	3786.00	262800	980.0
$\begin{gathered} 86 \\ 6 \\ \end{gathered}$	3540	326 TS	230460	144.8/724	1.15	93.0	C	Rigid	S117	5N403	2609.00	1575.00	540.0
	1775	364 TS	230/460	149.6774 .8	1.15	91.7	Cl	Rigid	S1184	549904	3218.00	2065.00	640.0
	1776	304%	$230 / 460$	149.674.8	1.15	91.7	Cl	Eigid	S1181	SH905	3124.00	2005.00	650:0
	1180	404T	460	75.4	1.15	90.2	CI	Higid	S1220	5NSPE	4657.00	2584.00	1320.9
$\begin{array}{r} 35 \\ 5 \\ 0 \end{array}$	3650	36475	2580460	179.8/89.9	1.15	93.6	CI	Rigid	S1191	5nk907	3846.00	2467.00	9000
	1775	365 TS	2304460	185.492 .7	1.15	83.0	Cl	Rigid	\$1204	5N908	3595.00	2270.00	660.0
	1775	3655	230/460	185.492 .7	1.15	93.0	C	Rigid	S1201	5Ngog	3432.00	2204.00	6800
	1180	405 T	460	82.2	1.15	91.7	Cl	Rigid	S1240	5N910	5246.00	3364.00	1350.0
$\frac{10}{4 x}$	3545	366 TS	2301460	234.0117 .0	1.15	94.1	${ }^{\text {Cl }}$	Figid	S1211	5N911	4048.00	25988.00	920.0
	1780	40415	$230 / 460$	242.01121 .0	1.15	93.0	CI	Bigid	S1224	5 N 912	4734.00	31039.00	886.0
	1780	404 T	2304460	24201121.0	1.15	930	C	Rigid	S1221	54913	4597.00	2950.00	990.0
	1185	444 T	460	125.0	1.15	90.2	c.	Rugid	5147	5 \$914	6717.00	4312.00	1326.0
姣:	3560	$404 T S$	460	146.0	1.15	91.7	CI	Rigid	S1231	5 N 915	5641.00	3618.00	1350.0
	1780	405 TS	460	150.0	1.15	83.0	CI	Rigid	S1244	5 k 916	5445.00	3496,00	1038.0
	1780	405T	460	150.0	1.5	93.	CI	Rigid	\$1241	5*917	5286.00	3393.00	1050.0
	1185	445 T	460	153.0	1.15	99.	CI	Rigid	S150	5N918	7400.00	4747.00	1710.0
$\begin{array}{r} 150 \mathrm{E} \\ \hline \mathrm{~g} \end{array}$	3560	4057 T	460	174.0	1.15	91.7	CI	Rigid	5125	54919	7842.00	5036.00	1370.0
	1780	44415	460	178.0	1.15	94.1	CI	Rrigid	S149	5 1 949	7514.00	4821.00	1650.0
	1780	444 T	460	178.0	1.15	94.1	CI	Rigid	S126	5 N 958	7295.00	4579.00	1650.0
	1185	445 T	460	183.0	1.15	93.6	CI	Figid	S152	$5 \mathrm{~N} / 351$	8248.00	5292.00	1780.0
$\begin{aligned} 2004 \\ 30 \\ 3 \end{aligned}$												6369.00	
	1785	445 TS	460	234.0	1.15	94.5	CI	Reigid	S156	5 N 953	8318.00	5338.00	1750.0
	1785	445 T	460	234.0	1.15	94.5	CI	Rigid	8128	5 N 954	8076.00	518200	1750.0
250	$\begin{aligned} & 3570 \\ & 1785 \end{aligned}$	${ }_{445 \mathrm{TS}}^{445 \mathrm{~T}}$	$\begin{aligned} & 460 \\ & 460 \\ & 460 \end{aligned}$	2884.0	1.15 1.15	$\begin{aligned} & 93.6 \\ & 95.0 \\ & \hline \end{aligned}$	$\overline{\mathrm{Cl}}$	Rigid Figid	$\begin{aligned} & \mathbf{S 1 2 9} \\ & \mathbf{S 1 3 0} \end{aligned}$	$\begin{aligned} & 5 N 953 \\ & 5 N+566 \end{aligned}$	13241.00 8996.00	$\begin{aligned} & 8511.00 \\ & 573.00 \end{aligned}$	$\begin{aligned} & 1750.0 \\ & 1850.0 \end{aligned}$
300	3575	44975	575	254.0	1.15	95.0	C	Rigid	53398	5AM9]	19894.00	1284200	
	1785	449 T	460	3420	1.15	95.4	Cl	Rigid	\$ 3381	5 N 955	17730.00	11395	2350.0
	1780	4497	575	270.0	1.15	96.0	Cl	Rigid	53384	5 M 959	17730.00	11406.00	1598.0
400	1785	449 T	460	436.0	1.15	96.8	CI		59382	51961	19233,00	12339.00	2690.0
	1785	449 T	575	351.0	1.15	95.8	Cl	Ripgid	S3399	5N962	19233,00	12374.00	1697.0
450	3570	44975	575	377.0	1.15	95.4	CI	Rigid	53390	509964	20551.00	13222.00	1770.0

($)$) RS $=$ Rolled Steel constructors $\mathrm{CI}=$ Cast- -ron construction.
(\#) Usable on 200 V at 1.0 service factor

CAUTION:

Not for tans in unattended areas.
Refer to page 5 for UL507 Standard. proper thermal protection, and other motor selection information.

Modifications \& Service Available at Most Locations

MOTOR PROTECTION

Motors that start automatically (eg. thermostat controlled), that are located remotely or unattended, or that are out-of-sight of the operator, must be protected against dangerous overheating due to failure-to-start or overloading. This protection may be separate overcurrent device (eg. motor starter) complying with Article 430 of the National Electrical Code (NEC), a thermally protected motor (integral motor protection), or an impedance protected motor.
Motors with automatic reset thermal protection MUST NOT be used where automatic or otherwise unexpected starting of the motor could be hazardous. Where such a hazard exists, always use a manual reset thermally protected motor. Applications where automatic restarting could be hazardous include compressors, conveyors, power tools, farm equipment, and some fans and blowers.

inoustiral MOTORS

3－PHASE TEFC MOTORS

Special base design of NEMA 56 HZ motors has holes and slots to match NEMA 56，56H，143T，and 145 T frames
－NEMA design B
CAST－IRON MOTOR FEATURES
－Protective coating on rotor
－Eye bolt on 180 frame and above
－Double baked stator on 210 frame and above
－Shaft slingers
－Drain holes for condensation
Typical Uses：Cool and efficient perfor－ mance on pumps，blowers，air compres－ sors，machine tools，conveyors，and other equipment operating in noncombustible dusty，dirty areas．
Bearings：Ball．Double－shielded on 42 thru 360 frame；open ball with filler caps on 400 frame and above．
Mounting：Rigid welded；254U frame has removable base
Thiermal Protection：None
Wigdings：Copper
Ambient： $40^{\circ} \mathrm{C}$
Duify：Continuous
Rotation：CW／CCW
Finish：Gray
Beend：Dayton

Berind：Dayton			＊									
4P	Nameplate RPM	NEMA Frame	Volts 60 Hz		Service Factor	MEMA Nomieal Efficients：	Frame：	Insulation Ciass	Stock No．	List	Etach	Shpg． Wt
1／4	172517251725	42	208－220／440＊	1．0－1．0／0．5	1.0	66.0	RS	B	$3 N 843$	\＄168．00	\＄128．45	17.0
\％		48	230／460才	$1.01 .3 / 0.6$	1.0	4.7	RS	B	3N349\＃	151.00	115.45	17.0
"品		56	208－220／440＊	1．2－1．4／0．7	1.0	\bigcirc	RS	A	2N863	168.00	128.45	17.0
	3450.	48	230／460 \ddagger	1．4／0．7	1.0	64.0	RS	B	31854\＃	140.00	107.05	18.0
	1725＊＊	42	208－220／440＊	1．3－1．3／0．7	1.0	70.0	RS	B	$3 N 844$	185.00	141.45	19.0
	1725	48	230／460 \ddagger	1.30 .6	1.0	72.0	RS	B	3N350\％	168.00	128.45	18.0
\％	1725	56	208－220／440＊	1．4－1．4／0．7	1.0	66.0	RS	A	2N864	185.00	141．45	19.0
－	1140	56	208－220／440＊	1．7－1．8／0．9	1.0	70.0	RS	A	2N925	260.00	199.00	23.0
	3450	48	230／460 \ddagger	1.80 .9	1.0	70.0	RS	B	$3 N 855$	162.00	123.95	18.0
	3450	56	208－220／440＊	2．2－2．3／1．2	1.0	66.0	RS	A	$3 N 442$	179.00	136.90	20.0
	1725	48	230／460 \ddagger	1．9／0．9	1.0	74.0	RS	B	3N351	198.00	151.50	$18.0=$
	1725	56	208－220／440＊	2．0－2．0／1．0	1.0	72.0	RS	A	$2 N 865$	215.00	164.50	21.0
	1140	56	208－220／440＊	2．1－2．2／1．1	1.0	72.0	RS	A	$2 N 926$	279.00	213.50	26.0
$3 / 4$	3450	48	230／460 \ddagger	2.41 .2	1.0	74.0	RS	B	3N856	178.00	136.15	22.0
	3450	56	208－220／440＊	2．8－2．9／1．5	1.0	70.0	RS	A	3N443	195.00	149.10	22.0
	1725	48	230／460 \ddagger	3．0／1．5	1.0	77.0	RS	B	3N352	213.00	163.00	22.0
	1725	56	$208-220 / 440^{*}$	2．8－2．7／1．4	1.0	77.0	RS	A	2N866	230.00	176.25	24.0
	1140	56 H	208－220／440 \ddagger	3．0－3．01．5	1.0	74.0	RS	B	3N427	268.00	205.50	30.0
1	3450	56	208－220／440＊	3．4－3．2／1．6	1.0	80.0	RS	8	3N317	233.00	178.50	23.0
	1740	56 HZ	230／460 \ddagger	3.611 .8	1.0	77.0	RS	8	3N285	278.00	213.00	27.0
	1725	56 H	208－220／440＊	3．4－3．4／1．7	1.0	78.5	RS	A	3N017	245.00	187.75	29.0
	1755	143T	208－230／460	3．7－3．8／1．9	1.15	815	RS	F	3N729	219.00	163.75	44.0
	1740	143 T	208－230／460 \ddagger	3．4－3．6／1．8	1.15	78.5	RS	F	3N548	209.00	160.00	28.0
	1755	182	208－220／440	$3.73 .6 / 1.8$	1.0	78.5	RS	\pm	2N933	345.00	259.00	45.0
	1155	145 T	208－230／460 \ddagger	4．3－4．4／2．2	1.15	75.5	RS	F	3N756	277.00	207.00	50.0
	1150	145 T	208－230／460	3．8－4．0\％20	1.15	78.5	RS	F	3N549	264.00	202.25	32.0
	1155	184	208－220／440	4．1－4．022．0	1.0	7.0	RS	A	2N941	388.00	291.25	45.0
11／2	－3450	56H	208－220／440＊	4．4－4．2／2．1	1.0	78.5	RS	A	3N444	256.00	196.00	30.0
	3505	1437	208－230／460才	4．8－4．6／2．3	1.15	80.0	RS	F	$3 N 747$	229.00	171.25	44.0
	3500	143 T	208－230／460 \ddagger	4．6－4．4／2．2	1.15	80.0	RS	F	3N551	218.00	167.00	29.0
	3510	182	208－220／440	4．9－4．8／2．4	1.0	78.5	RS	1	2N946	359.00	269.50	45.0
	1725	56 H	208－220／440＊	4．9－4．8／2．4	1.0	81.5	RS	A	3N018	260.00	199.00	34.0
	1740	56 HZ	$230 / 460 \ddagger$	4．8／2．4	1.0	80.6	RS	8	3N286	302.00	231.00	32.0
	1745	145T	208－230／460才	5．4－5．8／2．9	1.15	81.5	RS	F	3N730	236.00	176.50	50.0
	1740	145 T	208－230，460 \ddagger	4．8－4．9／2．5	1.15	80.0	RS	F	3N550	225.00	172.50	32.0
	1750	184	208－2204440	5．1－5．0／2．5	1.0	80.0	RS	A	2N934	386.00	289.75	50.0
	1155	182 T	208－230／460 \ddagger	5．7－5．6／2．8	1.15	80.0	RS	F	$3 N 552$	307.00	230.50	55.0
	1140	184	208－220／440	5．6－5．4／2．7	1.0	77.0	RS	A	$2 N 942$	396.00	297.25	50.0

[^3]（ \ddagger ）Operable on $50 \mathrm{~Hz}, 190380 \mathrm{~V}$ ，at $5 / 6$ of 60 Hz HP speed．
Covisute lis tixa pace
（i）Totally enclosed nonventilated．

DAYTON 3－PHASE TEFC MOTORS（Cont．）

HP	Nameplate BPM	NEMA Frame	Volts 60 Hz	Full－Load Amps at Nameplate Volts	Service Factor	NEMA Nominal Efficiency	Frame：	lns． Class	Stock No．	List	Each	Shpg． WL
2	3450	56 H	208－220／440＊	5．6－5．4／2．7	1.0	81.	RS	B	3N445	\＄281．00	\＄215．25	33.0
	3495	145 T	208－230／460 \ddagger	6．0－5．42．7	1.15	82.	RS	F	3N748	264.00	197.25	44.0
	3500	145T	208－230／460才	5．8－5．5／2．8	1.15	82.	RS	F	3N554	251.00	192.25	30.0
	3500	184	208－220／440	6．2－6．0／3．0	1.0	80.	RS	A	2N947	386.00	289.75	50.0
	1725	56 H	208－220／440 \ddagger	6．2－6．2／3．1	1.0	80.	RS	B	3N486	245.00	187.75	36.0
	1740	56 HZ	230／460	6．013．0	1.0	80.	RS	B	3N287	331.00	253.25	36.0
	1740	145T	208－230／460才	6．6－6．4／3．2	1.15	84.	RS	F	3N731	250.00	186.75	50.0
	1740	145 T	208－230／460 \ddagger	6．4－6．43．2	1.15	81.	RS	F	3N553	238.00	182.25	36.0
	1760	184	208－220／440	6．4－6．2／3．1	1.0	82.	RS	A	2N935	421.00	316.25	60.0
	1155	184 T	208－230／460才	7．7－7．83．9	1.15	78.	CI	F	3N757	343.00	256.00	105.0
	1150	184 T	208－230／460	7．3－7．23．6	1.15	80.	RS	F	3N555	327.00	245.50	60.0
	1145	213	208－220／440	7．3－7．23．6	1.0	80.	RS	A	2N943	470.00	352.75	64.0
3	3500	145 T	208－230／460 \ddagger	8．3－7．83．9	1.15	85.	RS	F	3N761	288.00	220.50	37.0
	3515	182 T	208－230／460 \ddagger	9．2－8．8／4．4	1.15	82.	CI	F	3N749	292.00	218.00	84.0
	3510	182T	208－230／460才	8．9－8．6／4．3	1.15	84.	RS	F	3N557	278.00	208.75	50.0
	3510	184	208－220／440	8．9－8．6／4．3	1.0	82.	RS	A	2N948	337，00	253.00	60.0
	1735	1829	208－2304460\％	9．3－8．84．4	1.15	84.	Cl	F	$3 N 732$	294.00	219.75	94.0
	1740	182T	208－230／460 ${ }^{\text {¢ }}$	9．4．9．24．6	1.15	82.	RS	F	3N556	280.00	210.00	55.0
	1755	213	208－220／440	9．2－8．014．5	1.0	84.	RS	A	2N936	521.00	391.25	62.0
	1165	213 T	208－230／460才	10．5－10．4／5．2	1.15	82.	CI	F	$3 N 758$	433.00	323.25	140.0
	1170	2137	208－2301460才	10．7－10．8／5．4	1.15	82	RS	F	3N569	412.00	309.25	80.0
	1170	215	208－2201440	10．7－10．6／5．3	－1．0－	84.	RS	A	2N944	500.00	375.00	80.0
57	3495	184T		14．2－12．8／6．4	1.15	86.	Cl	F	$3 N 750$	371.00	277.25	90.0
	3500	184T	208－230／460	14．0－13．066．5	1.15	85.	RS	F	$3 N 559$	353.00	265.00	65.0
－	3490	213	208－220／440	14．2－13．4／6．7	1.0	85.	RS	A	2N949	589.00	442.00	69.0
－	1740	184 T	208－230／460才	15．0－13．5／6．8	1.15	86.	CI	F	3N733	340.00	254.00	95.0
！m	1750	184 T	208－230／460	14．6－13，8／6．9	1.15	86.	RS	F	3N558！\dagger	324.00	243.00	75.0
	1760	215	208－220／440	14．7－14．47．2	1.0	86.	RS	A	2N937	575.00	431.50	98.0
	1165	215 T	208－230／460\％	16．7－16．688．3	1.15	85.	CI	F	3N759	623.00	465.25	180.0
	1165	215 T	208－230／460\％	16．7－16．28．1	1.15	85.	RS	F	3N570	593.00	444.75	111.0
	1165	254 U	208－220／440	17．0－16．6／8．3	1.0	86.	RS	A	2N945	944.00	708.50	132.0
	3520	${ }^{213 T}$	208－230／460	20．8－18．899．4	1.15	87.	$\ldots \mathrm{Cl}$	F	3N751	499.00	372.75	140.0
	3510	213 T	208－230／460青	21．5－21．0／10．5	1.15	86.	RS	F	3N571	475.00	356.50	85.0
	1745	$213 T$	208－230／460 \ddagger	22．2－22．2／11．1	1.15	85.	CI	F	3N734	433.00	323.25	$155.0{ }^{\text {a }}$
	1760	213 T	208－2301460	21．8－20．4／10．2	1．38；	86.	RS	F	3N572t \dagger	412.00	309.25	90.0
	1760	254 U	208－220／440	21．0－20．2／10．1	1.0	88.	RS	A	2N938	667.00	500.50	137.0
	3515	$215 T$	208－230／460才	26．8－24．0／12．0	1.15	89.			3N752	590.00	440.50	
	3505	215 T	208－230／460 ${ }^{\text {年 }}$	27．9－25．6／12．8	1.15	． 38.	RS	F	3N573	562.00	421.75	105.0
	1750	$215 T$	208－230／4607	28．6－26．2／13．1	1.15	88.	CI	F	3N735	526.00	392.75	187.0
	1755	215 T	208－230／460٪	28．7－26．4／13．2	1.15	87.	RS	F	3N574tt	501.00	375.75	123.0
$15 \mathrm{~F}$	3535	${ }^{254 \mathrm{~T}}$		$41.8-37.6 / 18.8$	1.15	86.	Cl	F	3N753			295.0
	1745	254 T	208－230／460	42．6－38．4／19．2	1.15	88.	CI	F	3N736	824.00	621.00	295.0
20	3525	$256 T$	208－230／460声	53.948 .014 .0	1.15	88.	Cl	F	3N754	1086.00	818.50	320.0
	1745	256 T	208－230／460 \ddagger	54．9－49．224．6	1.15	90.	CI	F	$3 N 737$	1018.00	767.00	337.0
25	3545	284 TS	208－2301460才	66．6－59．4／29．7	1.15	89.	Cl	F	3N755	1360.00	1026.00	340.0
	1770	284 T	208－230／460才	67．7－63．4／31．7	1.15	91.	Cl	F	$3 N 738$	1259.00	949.00	429.0
$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \\ & \hline \end{aligned}$	1760	$286 T$	230／460	70，0／35．0	1.15	91.	CI	F	3N739	1487.00	1122.00	500.0
	1775	324 T	230／460	94．8／47．4	1.15	91.	CI	F	$3 N 740$	1904.00	1435.00	548.0
	1775	326 T	230／460	116．0／58．0	1.15	93.	CI	F	3N741	2454.00	1851.00	621.0
	1780	364 T	230／460	144.072 .0	1.15	92.	CI	F	3N742	3431.00	2587.00	748.0
75100	1780	365 T	230／460	178．089．0	1.15	93.	Cl	F	3N743	4131.00	3116.00	828.0
	1780	405T	230／460	240．0／120．0	1.15	93.	Cl	F	$3 N 744$	5501.00	4148.00	1156.0
125	1780	444 T	460	148.0	1.15	93.	Cl	F	3N745	7423.00	5598.00	1500.0
	1780	445 T	460	174.0	1.15	93.	CI	F	3N746	8861.00	6683.00	1600.0

（＊）Operable on 50 Hz at $208-220 / 440 \mathrm{~V}$ or $190 / 380 \mathrm{~V}$ at $5 / 6$ of 60 Hz speed and full HP ．
（ \dagger ）Operable on $50 \mathrm{~Hz}, 190 / 380 \mathrm{~V}$ ，at $5 / 6$ of 60 Hz speed and full HP ．（ $\dagger \dagger$ ）Rated 1.15 service factor at $230 / 460 \mathrm{~V}, 1.0$ service factor at 208 V

KITS FOR CAST－IRON MOTORS

${ }^{*}$ ） 140 frame motors feature rolled steel construction．

INDUSTRIAL MOTORS

3－PHASE TEFC MOTORS

Typical Uses：Pumps，fans，blowers，air compressors，conveyors，machinery，and other industrial equipment．
Bearings：Ball
Mounting：Rigid
Thermal Protection：None
Ambient： $40^{\circ} \mathrm{C}$
Duty：Continuous
Rotation：CW／CCW
Finish：Gray
Brand：GE

Modifications \＆Service＇ Available at Most Locations

	Namaplafia nPM．	NEMA Frame	Volts 50 Hz	E．Full－Laad Amps at Mameplate Volts	Service Factor	NEMA Nominal － 1 ciency	Frame \dagger	Ins． Class	Basa		Stack No．	List	Each	Shpg． Wt．
174	1725	48	208－230／460	1．3－1．40．7	1.0	62．7＊	RS	B	Rigid	K151	$4 N 820$	\＄178．00	\＄107．85	16.0
	$1725 \div$	48	230／460	1.20 .6	1.0	67．5＊	R，	B	Rigid	K194	4N8497	201.00	121.80	16.0
边	$1725 \div$	48	575	－ 0.6	1.0	61．3＊	RS	B	Rigid	$\mathbf{K} 418$	4N821	188.00	113.90	16.0
\％	1725	56	208－230／460	1．3－1．4／0．7	1.0	66．0＊	RS	B	Rigid	K439	4N822	178.00	107.85	16.0
\％	1140	56	230／460	1.40 .7	1.0	66.0^{*}－	RS	A	Rigid	K321	$4 N 823$	265.00	161.00	19.0
123	3450	48	208－230／460	1．5－1．80．9	1.0	61．9＊	RS	B	Rigid	K153	4 N 824	176.00	106.65	16.0
等	1725	56	208－230／460	1．5－1．5／0．8	1.0	66.0 ＊	RS	B	Rigid	K154	3N535	199.00	120.55	16.0
\％	1725	56	2301460	1.500 .8	1.0	68．8＊	RS	B	Rigid	K196	4N851	250.00	151．50	17.0
He：	1140	56	$230 / 460$	1.810 .9	1.0	67．9＊	RS	B	Rigid	K155	4×826	287.00	174.25	22.0
12	3450	48	208－230／460	－2．0－2．0／1．0	1.0	69．9＊	RS	B	Rigid	K156	4N827	191.00	115.70	18.0
	3450.	56	208－230／460	－20－2．0／1．0	1.0	69．0＊	RS	B	Rigid	K157	3N537	191.00	115.70	18.0
\％${ }^{\text {\％}}$	1725	56	208－230／460	\therefore 2．1－2．2／1．1	1.0	$69.0 *$	RS	B	Rigid	K158	3N536	234.00	141.70	18.0
\％	1725	56	230／460	－ $2.0 / 1.0$	1.0	73．9＊	RS	B	Rigid	K197	4N853 \ddagger	278.00	168.75	23.0
気	1725.	56	${ }_{5}^{575}$	-0.9	1.0	69．8＊	RS	B	Rigid	K426	4N829	234.00	141.70	21.0
年	1140	56	230／460	$2.6 / 1.3$	1.0	69．9＊	RS	B	Rigid	K159	$4 N 831$	309.00	187.50	27.0
3／4	3450	56	208－230／460	2．6－2．6／1．3	1.0	76．0＊	RS	B	Rigid	K160	3N539	210.00	127.15	22.0
	1725	56	208－230／460	2．8－2．8／1．4	1.0	76．0＊	RS	B	Rigid	K161	$3 N 538$	251.00	152．00	23.0
	1725	56	230／460	2.611 .3	1.0	78．5＊	RS	B	Rigid	K198	4N854†	286.00	173.75	32.0
	1725	－56	575	1.3	1.0	73．4＊	RS	B	Rigid	K421	$4 N 833$	251.00	152.00	21.0
	1140	${ }^{56}$	230／460	$3.0 / 1.5$	1.0	76．1＊	RS	B	Rigid	K162	$4 N 835$	316.00	191.75	30.0
	1155	143T	230／460\＃	$3.0 / 1.5$	1.15	74.0	Cl	B	Rigid	K515	4N798	305.00	199.00	42.0
1	3450	56	208－230／460	3．23．0／1．5	1.0	80．0＊	RS	B	Rigid	K163	3N541	248.00	150.25	24.0
	3450	56	575	1.2	1.0	78.6^{*}	RS	B	Rigid	K532	$4 N 836$	248.00	150.25	25.0
	1725	56	208－230／460	3．6－3．8／1．9	1.0	72．0＊	RS	B	Rigid	K154	3×540	262.00	159.25	27.0
	1725	56	575	1.7	1.0	73.1 ＊	RS	B	Righd	K424	$4 N 838$	262.00	159.25	26.0
	1745	143T	230／460\＃	3．4／1．7	1.15	77.0	CI	B	Rigid	K171	3×400	253.00	165.25	44.0
	1725	143T	575	1.7	1.0	73.1	RS	B	Rigid	K425	$4 N 839$	262.00	159.25	27.0
	1140	56 H	230／460	3．6／1．8	1.0	78．3＊	RS	B	Rigid	K165	4N841	321.00	194.75	40.0
	1160	145 T	230／460\＃	$4.2 / 2.1$	1.15	75.5	CI	B	Rigid	K173	4N799	310.00	202.25	50.0
11／2	3450	56	208－230／460	5．0－4．8／2．4	1.15	79．0＊	RS	B	Rigid	K166	3N543	275.00	166.75	26.0
	3480	1437	230／460\＃	4．0／2．0	1.15	80.0	CI	B	Rigud	K174	$4 N 800$	268.00	175.00	50.0
	1725	56H	208－230／460	4．9－4．8．2．4	1.0	$80.0{ }^{*}$	RS	B	Rigid	K167	3N542	274.00	166.25	41.0
	1735	145T	230／460\＃	$5.2 / 2.6$	1.15	78.5	II	B	Rigid	K176	3N401	265.00	173.25	50.0
	1725	145T	575	1.9	1.0	77.7 ．	－$\quad \mathrm{RS}$	B	Rigid	K573	4×842	274.00	166.25	36.0
	1150	1827	230／460\＃	4.882 .4	1.15	75.5		B	Rigrd	K188	4N801	340.00	218.00	88.0
2	3450	56	$230 / 460$	5.212 .6	1.15	81．7＊	RS	B	Rigid	K168	3N564	304.00	184.50	40.0
	3460	145 T	230／460\＃	5.4127	1.15	80.0	CI	B	Rigid	K177	3N546	294.00	192.00	47.0
	1715	145 T	230／460\＃	5．82．9	1.15	80.0	CI	B	Rigid	K 179	3N402	279.00	182.00	50.0
	1725	145T	575	2.6	1.0	77.1	RS	B	Rigid	K575	4N844	293.00	177.75	40.0
	1160	184 T	230／460\＃	6．43．2	1.15	80.0	CI	B	Rigid	K189	$4 N 802$	372.00	238.50	111.0

（＊）Average efficiency，not NEMA nominal efficiency．（\＃）Usable on 200 V at 1.0 service factor．
(\dagger) RS $=$ Rolled Steel construction； $\mathrm{CI}=\mathrm{Cast-cron} \mathrm{construction}. \mathrm{(} \ddagger$ ）TENV．

3-PHASE TEFC MOTORS

GE 3-PHASE TEFC MOTORS (Cont.)

HP	Namaplate RPM	NEMA Frame	Yolts 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	NEMA Nominal Efficiency	Frame \dagger	Ins. Class	Base	$\begin{gathered} \text { GE } \\ \text { Stack } \\ \text { No.: } \end{gathered}$	Stock No.	List	Each	Shpg. Wit
3	3450	145 T	230/460	8.0/4.0	1.0	83.4	RS	B	Rigid	K180	$4 \mathrm{N846}$	\$350.00	\$212.25	49.0
	3420	182T	230/460\#	8.0/4.0	1.15	78.5	CI	B	Rigid	K192	4N803	357.00	229.25	80.0
	1755	182 T	230/460\#	9.0/4.5	1.15	84.0	CI	B	Rigid	K184	4N804	347.00	222.75	82.0
	1765	182T	200	10.4	1.15	80.0	Cl	B	Rigid	K293	4N805	347.00	222.75	80.0
	1755	182 T	575	3.6	1.15	84.0	CI	B	Rigid	K295	4N806	347.00	222.75	90.0
	1170	213 T	230/460\#	9.4/4.7	1.15	85.5	CI	B	Rigid	S331	4N808	505.00	324.00	130.0
	1170	213 T	575	3.8	1.15	85.5	CI	B	Rigid	S3233	4N807	505.00	323.75	135.0
5	3450	184 T	230/460\#	12.6/6.3	1.15	82.5	Cl	B	Rigid	K193	4N809	432.00	277.25	100.0
	3450	184T	575	5.1	1.15	82.5	Cl	B	Rigid	K436	4N847	432.00	277.50	92.0
	1750	184 T	230/460\#	13.0/6.5	1.15	85.5	Cl	B	Rigid	K185	4N632	397.00	254.75	100.0
	1750	184 T	200	15.0	1.15	85.5	Cl	B	Rigid	K437	4N848	397.00	254.50	110.0
	1750	184 T	575	5.2	1.15	85.5	Cl	B	Rigid	K296	4N810	397.00	254.75	100.0
	1160	215 T	230/460\#	14.07 .0	1.15	84.0	Cl	B	Rigid	S332	4N811	700.00	449.25	154.0
	1160	215 T	575	5.6	1.15	84.0	CI	B	Rigid	S3393	4 N 812	700.00	449.50	130.0
$7^{1 / 2}$	3470	$213 T$	230/460\#	19.09 .5	1.15	84.0	CI	B	Rigid	S301	$4 N 813$	578.00	370.50	150.0
	3470	213 T	575	7.6	1.15	84.0	CI	B	Rigid	S3248	4N814	578.00	370.50	159.0
	1745	213 T	230/460\#	19.0/9.5	1.15	86.5	CI	B	Rigid	S302	4N815	578.00	370.50	150.0
	1745	213 T	200	22.0	1.15	91.7	CI	B	Rigid	S3329	$4 N 817$	578.00	370.50	160.0
	1745	213 T	575	7.6	1.15	86.5	Cl	B	Rigid	S3244	4N816	578.00	370.50	161.0
	1165	254T	230/460\#	20.0/10.0	1.15	86.5	Cl	B	Rigid	S333	4N818	963.00	617.50	252.0
	1165	254 T	575	8.0	1.15	86.5	CI	B	Rigid	S3394	4N819	963.00	617.50	250.0
10	- 3470	215 T	230/460\#\#	24.0/12.0	1.15	85.5	CI	B	Rigid	S303	4N638	682.00	437.25	181.0
	$=3470$.	215 T	575	9.6	1.15	85.5	CI	B	Rigid	S3253	4N650	682.00	437.00	194.0
	- 1740	$215 T$	230/460\#	24.0/12.0	1.15	87.5	CI	B	Rigid	S304	4N657	705.00	452.25	180.0
	$\square 1740$	215 T	200	27.6	1.15	87.5	Cl	B	Rigid	S3330	4N772	705.00	452:25	178.0
	\%= 1740	215 T	575	9.6	1.15	87.5	Cl	B	Rigid	S3256	4N665	705.00	452.00	199.0
	$\cdots 1170$	256 T	230/460\#	26.0/13.0	1.15	87.5	Cl	B	Rigid	S334	$4 N 788$	1201.00	770.50	277.0
	$\cdots 1170$	256 T	575 -	10.4					Rigid	S3395	4N791	1201.00	771.00	
15	-m 3530	2547	230460\#	36.0118 .0	1.15	86.5	Cl	B	Rigid	S305	4N639	936.00	600.00	264.0
	- 3530	254 T	575	14.4	1.15	86.6	Cl	B	Rigid	S3260	4N651	936.00	600.00	263.0
	$\cdots 1760$	254 T	230/460\#	36.0/18.0	1.15	88.5	Cl	B	Rigid	5306	4N658	948.00	608.00	268.0
	1760	254 T	200	41.4	1.15	88.5	Cl	B	Rigid	S3331	4N773	948.00	608.00	271.0
	1760	254 T		14.4	1.15					\$3261				284.0
	$=1165$	284 T	230/460\#	40.0120 .0	1.15	88.5	Cl	B	Rigid	S336	4N789	1691.00	1085.00	396.0
	1165	284 T	575	16.0	T.15	88.5	Cl	B	Rigid	S3264	4N787	1691.00	1085.00	423.0
20														314.0
	≈ 3520	${ }^{2565}$	575	184	1.15 :	88.5	CI	B	Rigid	S3350	4N656	1195.00	766.00	335.0
	\% 1755	256 T	230/460\#	46.0123 .0	1.15	90.2	Cl	B	Rigid	S308	4N659	1173.00	752.00	315.0
	1755	${ }^{256}$	200	52.9	1.15	90.2	CI	B	Rigid	\$3333	4N774	1173.00	752.00	314.0
		256 T	575	18.4	1.15	90.2	Cl	B	Rigid	S3274	4N668	1173.00	753.50	225.0
	勺\%1175	286 T	230/460\#	50.0/25.0	1.15	90.2	Cl	B	Rigid	S339	4N790	2013.00	1292.00	440.0
25	持 3520	284TS	230/460\#	60.0130.0	1.15	88.5	CI	B	Rigid	S309	$4 N 641$	1508.00	967.00	404.0
	1760	2847	230/460\#	60.0130.0	1.15	90.2	Cl	B	Rigid	S310	4N660	1466.00	940.00	398.0
	fin 1760	284 T	200	. 69.0	1.15	90.2	CI	B	Rigid	S3334	$4 N 775$	1466.00	939.50	443.0
	1760	284 T	575	24.0	1.15	90.2	Cl	B	Rigid	\$3276	44669	1466.00	939.50	443.0
	1175	324 TS	230/460	69.4/34.7	1.15	89.5	CI	F	Rigid		5N853	2588.00	1660.00	620.0
	1175	324 T	230/460	69.4/34.7	1.15	- 89.5	CI	F	Rigid	S342	5N854	2514.00	1615.00	490.0
30	3530	286 TS	230/460\#	70.0/35.0	1.15	89.5	Cl	B	Rigid	S311	4N642	1680.00	1078.00	400.0
	3530	286 TS		80.5	1.15	89.5	Cl	B	Rigid	\$3347	4N655	1680.00	1077.00	480.0
	1750	286 T	230/460\#	70.0/35.0	1.15	90.2	CI	B	Rigid	S312	4N661	1855.90	1191.00	468.0
	1750	286 T	200	80.5	1.15	90.2	CI	B	Rigid	S3336	4N776	1855.00	1191.00	454.0
	1750	2867	575	28.0	1.15	90.2	CI	B	Rigid	S3283	4N671	1855.00	1190.00	507.0
	1175	326 T	230/460	82.0/41.0	1.15	90.2	Cl	F	Rigid	S345	5N855	2773.00	1779.00	650.0
40	3540	324 TS	230/460	101.8150.9	1.15	91.0	CI	F	Rigid	S313	5N856	2339.00	1501.00	500.0
	1765	324 T	230/460	99.8/49.9	1.15	91.0	CI	F	Rigid	S314	5 N 857	2145.00	1376.00	490.0
	1765	324 T	575	40.0	1.15	91.0	CI	F	Rigid	\$3287	5N858	2145.00	1374.00	630.0
	1185	364 T	460	53.4	1.15	91.7	Cl	F	Rigid	S3180	5N859	4908.00	3151.00	960.0
50	3545	$326 T \mathrm{~T}$	230/460	121.4/60.7	1.15	92.4	CI	F	Rigid	S315	5N860	2865.00	1839.00	570.0
	3545	326 T	230/460	$121.4 / 60.7$	1.15	92.4	CI	F	Rigid	53342	5N861	2782.00	1786.00	620.0
	1770	326 TS	230/460	123.86161.9	1.15	91.7	CI	F	Rigid	S344	5N862	2472.00	1585.00	680.0
	1770	$326 T$	230/460	123.8/61.9	1.15	91.7	$\stackrel{\text { CI }}{ }$	-	Rigid	S316	$5 N 863$	2401.00	1540.00	550.0
	1770	${ }^{3265}$	575 460	49.6	1.15	91.7	$\stackrel{\sim}{\square}$	$\stackrel{\mathrm{F}}{\mathrm{F}}$	Rigid	S3294	5N864	2401.00	1539.00	680.0
	1185	365 T	460	66.3	1.15	92.4	Cl	F	Rigid	S3200	5N865	5663.00	3640.00	780.0

\#) Usable on 200 V at 1.0 service factor
(t) RS $=$ Rolled Steel construction; $\mathrm{Cl}=$ Cast-Iron construction

3-PHASE TEFC MOTORS

GE 3-PHASE TEFC MOTORS (Cont.)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline HP \& Nameplate RPM \& NEMA Frame \& Volts 60 Hz \& Full-Load Amps at Nameplata Yotts \& Service Factor \& NEMA Nominal Efficieacy \& Frame \(\dagger\) \& Ins. Class \& Base \& \begin{tabular}{l}
GE \\
Stock \\
No.
\end{tabular} \& Stock No. \& List \& Each \& Shpg. Wt. \\
\hline \multirow[t]{6}{*}{60} \& 3555 \& \(364 T S\) \& 2304460 \& 149.4774 .7 \& 1.15 \& 92.4 \& Cl \& F \& Rigid \& S3171 \& 5N866 \& \$4904.00 \& \$3150.00 \& 800.0 \\
\hline \& 1775 \& 364 TS \& \(230 / 460\) \& 144.072 .0 \& 1.15 \& 93.0 \& CI \& F \& Rigid \& S3184 \& 5N867 \& 3989.00 \& 2558.00 \& 980.0 \\
\hline \& 1775 \& 364 T \& 2304460 \& 144.0/72.0 \& 1.15 \& 93.0 \& CI \& F \& Rigid \& S3181 \& 5N868 \& 3873.00 \& 2487.00 \& 760.0 \\
\hline \& 1775 \& 364 T \& 460 \& 72.0 \& 1.15 \& 93.0 \& Cl \& F \& Rigrd \& S3344 \& 5N869 \& 3873.00 \& 2484.00 \& 980.0 \\
\hline \& 1775 \& 364 T \& 575 \& 57.6 \& 1.15 \& 93.0 \& CI \& F \& Rignd \& S 3300 \& 5N870 \& 3873.00 \& 2484,00 \& 980.0 \\
\hline \& \& 404 T \& 460 \& 75.7 \& \& 91.7 \& CI \& F \& Rigid \& S3205 \& 5N871 \& 6633.00 \& 4257.00 \& 1360.0 \\
\hline \multirow[t]{4}{*}{75} \& 3560 \& 365 TS \& 230/460 \& 176.6188 .3 \& 1.15 \& 93.6 \& Cl \& F \& Rigd \& S3191 \& 5N872 \& 5491.00 \& 3529.00 \& 805.0 \\
\hline \& 1780 \& 365 T \& 230/460 \& 178.8189.4 \& 1.15 \& 93.6 \& Cl \& F \& Rigid \& S3201 \& 5N873 \& 4656.00 \& 2987.00 \& 1070.0 \\
\hline \& 1780 \& 365 T \& 575 \& 71.5 \& 1.15 \& 93.6 \& Cl \& F \& Rigid \& \$3302 \& 5N874 \& 4656.00 \& 2987.00 \& 1070.0 \\
\hline \& 1185 \& 405 T \& 460 \& 95.3 \& 1.15 \& 91.7 \& Cl \& F \& Rigid \& S3220 \& 5N875 \& 7296.00 \& 4689.00 \& 1066.0 \\
\hline \multirow[t]{5}{*}{100} \& 3560 \& 405 TS \& \(230 / 460\) \& 224.0112 .0 \& 1.15 \& 90.2 \& Cl \& F \& Rigid \& S3211 \& 5N876 \& 6592.00 \& 4234.00 \& 1058.0 \\
\hline \& 1780 \& 405 TS \& 230/460 \& 224.01112 .0 \& 1.15 \& 93.0 \& Cl \& F \& Rigid \& S3224 \& \(5 N 877\) \& 6231.00 \& 3997.00 \& 1420.0 \\
\hline \& 1780 \& 405 T \& 230/460 \& 224.01112.0 \& 1.15 \& 93.0 \& Cl \& F \& Rigid \& S3221 \& \(5 N 878\) \& 6051.00 \& 3881.00 \& 1420.0 \\
\hline \& 1780 \& 405 T \& 575 \& 89.9 \& 1.15 \& 93.0 \& Cl \& F \& Rigid \& S3304 \& \(5 N 879\) \& 6051.00 \& 3881.00 \& 1420.0 \\
\hline \& 1185 \& 444 T \& 460 \& 115.0 \& 1.15 \& 93.0 \& Cl \& F \& Rigid \& S348 \& 5N880 \& 7677.00 \& 4923.00 \& 1820.0 \\
\hline \multirow[t]{4}{*}{125} \& 3570 \& 444 TS \& 460 \& 137.0 \& 1.15 \& 91.7 \& CI \& F \& Rigid \& S323 \& 5N881 \& 10350.00 \& 6648.00 \& 1740.0 \\
\hline \& 1785 \& 444 TS \& 460 \& 140.0 \& 1.15 \& 92.4 \& CI \& F \& Rigid \& S347 \& \(5 N 882\) \& 8181.00 \& 5250.00 \& 1760.0 \\
\hline \& 1785 \& 444 T \& 460 \& 140.0 \& 1.15 \& 92.4 \& CI \& F \& Rigid \& S324 \& \(5 N 883\) \& 7943.00 \& 5096.00 \& 1760.0 \\
\hline \& 1190 \& 445 T \& 460 \& 147.0 \& 1.15 \& 94.1 \& CI \& F \& Rigid \& S351 \& 5N884 \& 11496.00 \& 7384.00 \& 1910.0 \\
\hline \multirow[t]{4}{*}{150} \& 3570 \& 445 TS \& 460 \& 165.0 \& 1.15 \& 92.4 \& CI \& F \& Rigid \& S325 \& \(5 N 885\) \& 12534.00 \& 8055.00 \& 1740.0 \\
\hline \& 1785 \& 445 TS \& 460 \& 165.0 \& 1.15 \& 93.0 \& Cl \& F \& Rigid \& \$350 \& \(5 N 886\) \& 9950.00 \& 6387.00 \& 1910.0 \\
\hline \& 1785 \& 445 T \& 460 \& 165.0 \& 1.15 \& 93.0 \& Cl \& F \& Rigid \& S326 \& \(5 N 887\) \& 9660.00 \& 6200.00 \& 1910.0 \\
\hline \& 1190 \& 445 T \& 460 \& 173.0 \& 1.15 \& 94.5 \& Cl \& F \& Rigid \& S354 \& 5N888 \& 12713.00 \& 8166.00 \& 2050.0 \\
\hline \multirow[t]{3}{*}{\[
200
\]} \& 3575 \& 445 TS \& 460 \& 214.0 \& 1.15 \& 93.0 \& Cl \& F \& Rigid \& S327 \& \(5 N 889\) \& 13028.00 \& 8371.00 \& 1950.0 \\
\hline \& 1785 \& 445 TS \& 460 \& 227.0 \& 1.15 \& 93.0 \& Cl \& F \& Rigid \& \$353 \& \(5 N 890\) \& 12109.00 \& 7777.00 \& 1990.0 \\
\hline \& 1785 \& 445 T \& 460 \& 227.0 \& 1.15 \& 93.0 \& CI \& F \& Rigid \& S328 \& \(5 N 891\) \& 11756.00 \& 7551.00 \& 1990.0 \\
\hline \multirow[t]{3}{*}{250

$=0$} \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& 1780 \& 445 TS \& 460 \& 278.0 \& 1.0 \& 95.0 \& CI \& F \& Rigid \& S356 \& 51893 \& 15503.00 \& 9964.00 \& 2050.0

\hline \& 1780 \& 445 T \& 460 \& 278.0 \& 1.0 \& 95.0 \& CI \& F \& Rigid \& S330 \& $5 N 894$ \& 15051.00 \& 9673.00 \& 2050.0

\hline
\end{tabular}

(t) $\mathrm{Cl}=$ Cass-Iron construction

Top Performance. Dayton motors are built to exceed industry standards such as NEMA (National Electrical Manufacturers Association). Used as a replacement motor in a wide variety of applications, each Dayton motor must outperform the best motor it may be called upon to replace, hence "best of the best" performance. You can be confident that the Dayton motor will work as well as, or better than, the motor you are replacing.
Top Quality Verified by Engineers. Grainger's Engineering Dept., with its "state-of-the-art" test lab, confirms that Dayton motors consistently meet or exceed top performance standards. Engineering also confirms the motors have applicable agency approvals such as UL and CSA.
Clearly Identified. Dayton motors are clearly identified by full fact carton labels and nameplates with wiring diagrams. Maintenance and installation instructions appear in every motor carton.
Broad Line Offering. Dayton offers one of the broadest lines of motors in the industry. One brand can be used for nearly all your motor replacement needs.

Time Proven Performance. Established in 1937, Dayton has grown to be one of the most dependable names in the motor indusury.
Broad line Offering. Grainger now offers over 2400 stock GE brand motors including AC and DC motors from $1 / 370 \mathrm{HP}$ to 450 HP in Energy $\$ \mathrm{aver}^{21}$ and standard efficiency designs including severe duty, explosion proof, farm duty, HVAC, and many others.
National Recognition. GE is considered the leading national brand motor with the largest installed customer base. The GE brand is widely known for quality and reliability.
Clearly Identified. GE motors are clearly identified by full fact carton labels and nameplates. Easy-to-read wiring diagrams are included.
Premium Efficiency Leader. GE has long been recognized as an industry leader in premium efficiency motors with a wide variety of ratings and types to suit many applications.
Hf ritage of Excellence. General Electric is one of the pioneers in the electrical industry with a proud 100 year history dating back to the time of founder Thomas Edison.

THE RIGHT STUFF. RIGHT HERE. RIGHT NOW.

Our branches are conveniently located and stocked with commonly used items from this catalog. If you need it now, call Grainger. To find the branch nearest you, check the white pages in your local telephone directory under "Grainger."

3-PHASE SEVERE DUTY MOTORS

INDUSTRIAL MOTORS

- Suitable for $65^{\circ} \mathrm{C}$ ambient at 1.0 service factor on 140 frame and above
- Designed for high humidity, acidic, alkali, or dirty (nonexplosive) conditions
- 324 frame and above supplied with grease fittings

Typical Uses: Pumps, fans, blowers, air compressors, conveyors, machinery, and other industrial equipment.
Bearings: Ball
Mounting: Rigid base
Enclosure: TEFC
Frame: Cast iron
Thermal Protection: None
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: GE

CAUTION:
Net for fans in unattended areas.
Rofer to page 5 for ULL507 Standard, proper tremarmp protection, and other motor selection information.

HP		Nameplate RPM	NEMA. Frame	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Service. Factor	NEMA Nominal Efticienc\%	lass. class		Stock Na.	List	Each	$\begin{aligned} & \text { Shpg } \\ & \text { Hit } \end{aligned}$
3/4		1155	143T	230/460	3.0/1.5	1.15	74.0	F	K347	4N732	\$365.00	\$238.25	56.0
1		1745	143T	230/460	3.4/1.7	1.15	77.0	F	K348	4N734	373.00	243.50	56.0
		1745	1437	575	1.4	1.15	77.0	F	K1439	$4 N 733$	373.00	243.50	56.0
	\%	1160	145 T	230/460	4.2/2.1	1.15	$\bigcirc 75.5$	F	K349	4N736	372.00	242.75	63.0
	\%	1160	145 T	575	1.7	1.15	- - -5.5	F	K1440	4N735	372.00	243.00	52.0
$11 / 2$		3480	143T	230/460	4.0/2.0	1.15	80.0	F	K350	4N738	369.00	240.75	56.0
		3480	1435	575	1.0	1.15	80.0	F	K1441	4N737	369.00	240.75	56.0
	-	1735	- 145T	230/460	5.2/2.6	1.15	77.0	F	K351	$4 N 740$	382.00	249.25	52.0
	=	1735	145T	- 575	2.1	1.15	77.0	F	K1442	$4 N 739$	382.00	249.25	52.0
	\%	1150	182T	2304460	4.8/2.4	1.15	75.5	F	K239	5N768	425.00	272.75	109.0
2		3460	$\cdots 145 T$	$230 / 460$	$5.4 / 2.7$	1.15	81.5	F	K353	$4 N 744$	427.00	278.75	55.0
	\%	3460	$\therefore 145 \mathrm{~T}$	$=575$	2.2	1.15	81.5	F	K1443	4N743	427.00	278.50	63.0
	\cdots	1715	145T	230/460	5.8/2.9	1.15	80.0	F	K354	4×746	404.00	263.75	63.0
		1715	145 T	575	2.3	1.15	80.0	F	K1444	4N745	404.00	263.75	63.0
		1160	1847	2301460	6.4/3.2	1.15	78.5	F	K342	5×751	516.00	331.50	88.0
3		3420	182 T	230/460	$8.0 / 4.0$	1.15	78.5	F	K343	$\begin{aligned} & 5 N 752 \\ & 5 N 753 \\ & 5 N 754 \end{aligned}$	436.00	$\begin{aligned} & 280.00 \\ & 300.25 \\ & 406.00 \end{aligned}$	$\begin{array}{r} 73.0 \\ 77.0 \\ 117.0 \end{array}$
		1765	182 T	$230 / 460$	$9.0 / 4.5$	1.15	82.5	F	K344		467.00		
		1170	$213 T$	2301460	9.4/4.7	1.15	82.5	F	S359		632.00		
5		3450	184 T	230/460	12.6/6.3	1.15	81.5	F	K345	$\begin{aligned} & 5 N 755 \\ & 5 N 756 \\ & 5 N 757 \end{aligned}$	531.00	$\begin{aligned} & 341.25 \\ & 312.25 \\ & 570.00 \end{aligned}$	$\begin{array}{r} 90.0 \\ 103.0 \\ 160.0 \end{array}$
		1750	184 T	230/460	$13.0 / 6.5$	1.15	85.5	F	K346		486.00		
		1160	215 T	230/460	14.0/7.0	1.15	84.0	F	S360		887.00		
71/2		3470	2137	230/460	19.0/9.5	1.15	84.0	F	S361	$\begin{aligned} & 5 N 758 \\ & 5 N 759 \\ & 5 N 769 \end{aligned}$	649.00	$\begin{aligned} & 416.75 \\ & 415.25 \\ & 783.50 \end{aligned}$	$\begin{aligned} & 143.0 \\ & 143.0 \\ & 295.0 \end{aligned}$
		1745	$213 T$	230/460	19.04 .5	1.15	$85 . \overline{\text { b }}$	F	S362		64.00		
		1165	254 T	230/460	20.0/10.0	1.15	85.5	F	S363		1221.00		
10		3470	215 T	230/460	$24.0 / 12.0$	1.15	84.0		S364	$\begin{aligned} & 5 N 760 \\ & 5 N 761 \\ & 5 N 770 \end{aligned}$	854.00	$\begin{aligned} & 548.50 \\ & 525.00 \\ & 957.50 \end{aligned}$	$\begin{aligned} & 172.0 \\ & 172.0 \\ & 340.0 \end{aligned}$
		1740	215 T	230/460	$24.0 / 12.0$	1.15	85.0	F	S365		818.00		
		1170	256 T	230/460	26.0/13.0	1.15	86.5	F	\$366		1492.00		
15		3530	254 T	$230 / 460$	36.018 .0	1.15	85.5	F	S367	$\begin{aligned} & 5 N 762 \\ & 5 N 763 \end{aligned}$	$\begin{aligned} & 1182.00 \\ & 1111.00 \end{aligned}$	$\begin{aligned} & 759.00 \\ & 713.50 \end{aligned}$	$\begin{aligned} & 246.0 \\ & 255.0 \end{aligned}$
		1760	254 T	230/460	$36.0 / 18.0$	1.15	88.5	F	S368				
20		3520	256 T	230/460	46.0/23.0	1.15	875	F	5370	$\begin{aligned} & 5 N 764 \\ & 5 N 765 \\ & 5 N 771 \end{aligned}$	1464.00	$\begin{array}{r} 940.00 \\ 888.50 \\ 1559.00 \end{array}$	$\begin{array}{r} 297.0 \\ 308.0 \\ 523.0 \end{array}$
		1755	2567	$230 / 460$	$46.0 / 23.0$	1.15	89.	F	5371		1384.00		
		1175	286 T	230/460	$50.0 / 25.0$	1.15	80.5	F	S372		2417.00		
25		3520	2847	230/460	60.0/30.0	1.15	88.5	F	5373	$\begin{aligned} & 5 N 766 \\ & 5 N 767 \\ & 4 N 723 \end{aligned}$	1809.00	$\begin{aligned} & 1162.00 \\ & 1060.00 \\ & 2078.00 \end{aligned}$	$\begin{aligned} & 385.0 \\ & 396.0 \\ & 575.0 \end{aligned}$
		1760	284 T	230/460	$60.0 / 30.0$	1.15	91.0	F	S374		1652.00		
		1175	324 T	460	34.7	1.15	89.5	F	S450		3234.00		
30		3530	286TS	230/460	70.0/35.0	1.15	89.5	F	S376	$\begin{aligned} & \text { 5N669 } \\ & \text { 5N670 } \\ & 4 N 724 \end{aligned}$	2114.00	$\begin{aligned} & 1356.00 \\ & 1235.00 \\ & 2156.00 \end{aligned}$	$\begin{aligned} & 500.0 \\ & 500.0 \\ & 586.0 \end{aligned}$
		1750	286 T	2301460	70.0/35.0	1.15	91.0	F	S3.7		1925.00		
		1175	3265	460	41.0	1.15	903	F	S452		3355.00		

INDUSTRIAL MOTORS

3-PHASE SEVERE DUTY MOTORS

GE 3-PHASE SEVERE DUTY MOTORS (Cont.)

HP	Nameplate RPM	NEMA Frame	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	NEMA Nominal Efficiency	Class.	$\begin{aligned} & \text { GE } \\ & \text { Stock } \\ & \text { No. } \end{aligned}$	Stock No.	List	Each	Shpg. w.
40	3560	324 TS	460	50.9	1.15	89.5	F	S406	4N691	\$2564.00	\$1646.00	558.0
	1765	324 T	230/460	99.8/49.9	1.15	90.2	F	S380	4N708	2491.00	1598.00	570.0
	1765	324 T	460	49.9	1.15	90.2	F	S423	4N710	2491.00	1598.00	578.0
	1185	364T	460	53.4	1.15	90.2	F	S454	4N725	5497.00	2883.00	818.0
50	3545	326 TS	460	60.7	1.15	90.2	F	S407	$4 N 692$	3318.00	2132.00	560.0
	1770	$326 T$	230/460	123.8/60.9	1.15	91.7	F	S382	4N709	2667.00	1711.00	641.0
	1770	326 T	460	61.9	1.15	91.7	F	S425	4N711	2667.00	1711.00	635.0
	1775	326 T	575	50.8	1.15	91.7	F	S3293	4N706	2667.00	1711.00	622.0
	1185	365 T	460	66.3	1.15	90.2	F	S456	4N726	6321.00	3171.00	818.0
60	3555	364 TS	$230 / 460$	149.4/74.7	1.15	88.0	F	S383	4N767	5456.00	3505.00	885.0
	1775	364 T	230/460	144.0777.0	1.15	91.7	F	S384	4N768	4374.00	2809.00	855.0
75	3560	365 TS	230/460	176.6/83.3	1.15	89.5	F	S385	4N769	6464.00	4154.00	905.0
	1780	365 T -	$230 / 460$	178.8/89.4	1.15	91.7	F	S386	4N770	5429.00	3487.00	965.0
	1780	$365 \mathrm{~T}^{-}$	575	73.2	1.15	91.7	F	S3303	4N707	5429.00	3487.00	921.0
	1185	405 T	460	95.3	1.15	93.0	F	S460	4N727	8226.00	4243.00	1149.0
100				112.0		91.0	F	S410	4N693	7415.00	4764.00	
	1780	405 T	460	112.0	1:15	93.0	F	S431	4N712	7037.00	4519.00	1218.0
	1185	444 T	460	115.0	1.15	92.4	F	S462	4N728	8684.00	6245.00	1472.0
125	1785	444 T	460	140.0	1.15	93.0	F	S433	4N713	10083.00	6477.00	1592.0
	1190	445 T	460	147.0	1.15	93.6	F	S464	$4 N 729$	12505.00	7462.00	1798.0
0	3570	$445 T \mathrm{~S}$	460	165.0	1.15	92.4	F	5412	4N694	11731.00	7540.00	1552.0
	1785	445 T	460	165.0	1.15	93.0	F	S435	$4 N 714$	11379.00	7260.00	1767.0
	1190	445 T	460	173.0	1.15	93.0	F	S466	4N730	13721.00	7841.00	1900.0
290									4N695	13329.00	8566.00	
	1785	445 T	460	221.0	1.15	94.5	F	S437	4N715	13107.00	8422.00	1880.0
\%	1190	449 T	460	229.0	1.15	94.1	F	S468	$4 N 731$	17435.00	11206.00	2300.0
250	1780	449 T	460	. 273.0	1.15	95.0	F	S439	4N716	16648.00	10699.00	2300.0

\#
$230 / 460 \mathrm{~V}$ with dual voltage brake coil
Typical Uses: For applications requiring braking and holding action at standstill such as conveyors, index mechanisms, machine tools, and commercial and industrialyoverhead doors.
Bearings: Ball
Thermal Protection: None
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuóus
Rotation: CW/CCW
Finish: Gray
Brand: GE

GE BRAND, BRAXE MOTORS

HP	Namepiate RPM	NEMA Frame	Enclosure	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	Brake Rating Ft-Lhs.	Ins. Class	GE Stock No.	Stack No.	List	Each	Sheg. Nt
								 $\because 2$					-4
$1 / 2$	1725 1140	$\begin{aligned} & 56 \\ & 56 \end{aligned}$	$\begin{gathered} \text { TEFC } \\ \text { TEFC } \end{gathered}$	$\begin{aligned} & 230 / 460 \\ & 230 / 460 \end{aligned}$	$2.4 / 1.2$ $2.6 / 1.3$	1.0 1.0	3 3	8 8	$\begin{aligned} & \mathrm{K} 456 \\ & \mathbf{K} 526 \end{aligned}$	$\begin{aligned} & 5 N 171 \\ & 5 N 172 \end{aligned}$	$\$ 511.00$ 705.00	$\$ 309.75$ 427.25	30.0 27.0
$3 / 4$	1725	56	TEFC	$230 / 460$	3.0/1.5	1.0	3	B	K458	5×173	597.00	361.75	33.0
1	1725	$\begin{gathered} 56 \\ 143 T \end{gathered}$	$\begin{aligned} & \text { TEFC } \\ & \text { TEFC } \end{aligned}$	$230 / 460$ $230 / 460$	$3.8 / 1.9$	1.0 1.0	3	B	$K 459$ $K 461$	5N174	693.00 693.00	420.00 420.00	36.0 38.0
2	1725	145 T	TEFC	208-230/460	6.1-6.2/3.1	1.0	6	B	K464	SN176	798.00	483.75	38.0
-6	3xaxy	$\begin{array}{r} 2 \\ 0 \\ \hline \end{array}$				ENO	ASE				"\%>"		**
$1 / 2$	1725	56 C	TEFC	230/460	2.4/1.2	1.0	3	B	K457	$5 N 167$	523.00	317.00	31.0
$3 / 4$	1725	56 C	TEFC	230/460	3.011 .5	1.0	3	B	K460	5N168	611.00	370.25	34.0
1	1725	143TC	TEFC	230/460	3.8/1.9	1.0	3	B	K462	5N169	706.00	428.00	37.0
2	1725	145TC,	TEFC	208-230/460	6.1-6.2/3.1	1.0	6	B	K466	5 N 170	813.00	492.75	47.0

3-PHASE TEFC MOTORS

NEMA service factor of 1.25 with Class B temperature rise provides increased safety margin for intermittent overloading or fluctuating (high/low) voltage conditions

- Dual voltage
- NEMA Design B
- Oversize conduit box
- 143T/145T frame motors include Cface at no additional cost
- Mounting feet can be repositioned for NEMA C-face installation (with optional kit) or removed for footless installation on 182T frame and above - C-face, canopy cap, and brake kits, available below, increase mechanical flexibility

Typical Uses: Cooler, more efficient performance on pumps, blowers, air compressors, and farm equipment operating in noncombustible dusty, dirty areas.
Bearings: Double-shielded, prelubricated ball
Mounting: Rigid removable base on 180 frame and above; rigid welded base on 140 frame
Insulation Class: \mathbf{F}
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray enamel
Brand: USEM

HP	Nameplate RPM	NEMA Frame	Yotts 60 Hz	Full-Cond Anpas at Nameplate Volts	Service Factor	NEMA Nominal Eficiency	Framet	USEM Model	Stock No.	List	Each	Shpg. W_{t}
1	1745 1145	143 TC 145 T	$\begin{aligned} & 230 / 460 \\ & 230 / 460 \end{aligned}$	$3.6 / 1.8$ $4.2 / 2.1$	1.25	80.0 ,	RS	F029	$\begin{aligned} & 3 N 509 \\ & 3 N 512 \end{aligned}$	$\$ 217.00$ 271.00	$\begin{array}{r} \$ 157.50 \\ 196.75 \end{array}$	30.0 35.0
$11 / 2$	3450 1730 1160	143 TC 145 TC 182 T	$230 / 460$ $230 / 460$ $230 / 460$	$4.2 / 2.1$ $5.0 / 2.5$ $5.8 / 2.9$	1.25 1.25 1.25	78.5 80.0 78.5	RS RS AL	F033 F036 A885	$3 N 513$ $3 N 510$ $3 N 517$	223.00 241.00 290.00	162.00 175.00 210.25	29.0 30.0 60.0
2 边	$\begin{aligned} & 3460 \\ & 1725 \\ & 1155 \end{aligned}$	145 TC 145 C 184 T	$230 / 460$ $230 / 460$ $230 / 460$	$5.4 / 2.7$ 6.23 .1 $7.2 / 3.6$	1.25 1.25 1.25	80.0 82.5 80.0	RS RS AL	F038 F041 A893	$3 N 514$ $3 N 511$ $3 N 518$	259.00 265.00 320.00	188.00 192.50 232.00	30.0 31.0 70.0
	3490 1750 1160	$\begin{aligned} & 182 \mathrm{~T} \\ & 182 \mathrm{~T} \\ & 213 \mathrm{~T} \end{aligned}$	$\begin{aligned} & 230 / 460 \\ & 230 / 460 \\ & 230 / 460 \end{aligned}$	8.6/4.3 9.0/4.5 10.6/5.3	$\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$	80.0 84.0 82.5	$\begin{array}{r} \mathrm{AL} \\ +\quad \mathrm{AL} \\ -\mathbf{~} \mathbf{I L} \end{array}$	$\begin{aligned} & \text { A896 } \\ & \text { A899 } \\ & \text { A901 } \end{aligned}$	$\begin{aligned} & 3 N 519 \\ & 3 N 515 \\ & 3 \times 523 \end{aligned}$	305.00 296.00 424.00	$\begin{aligned} & 221.50 \\ & 214.75 \\ & 307.25 \end{aligned}$	$\begin{aligned} & 49.0 \\ & 54.0 \\ & 86.0 \end{aligned}$
	3495 1740 1165	$\begin{aligned} & 184 \mathrm{~T} \\ & 184 \mathrm{~T} \\ & 215 \mathrm{~T} \end{aligned}$	$\begin{aligned} & 230 / 460 \\ & 230 / 460^{*} \\ & -230 / 460^{*} \end{aligned}$	$12.8 / 6.4$ $13.6 / 6.8$ $16.0 / 8.0$	1.25 1.25 1.25	$\begin{array}{r} 85.5 \\ -85.5 \\ 85.5 \end{array}$	AL AL AL	$\begin{aligned} & \text { A904 } \\ & \text { A907 } \\ & \text { A909 } \end{aligned}$	$\begin{aligned} & \text { 3N520 } \\ & \text { 3N516 } \\ & \text { 3N524 } \end{aligned}$	377.00 344.00 610.00	$\begin{aligned} & 273.50 \\ & 249.50 \\ & 442.25 \end{aligned}$	$\begin{array}{r} 70.0 \\ 63.0 \\ 133.0 \end{array}$
71/2	$\begin{aligned} & 3510 \\ & 1745 \end{aligned}$	2137 213 T	$\begin{aligned} & 230 / 460 \\ & 230 / 460 \end{aligned}$	$\begin{gathered} 19.2 / 9.6 \\ 20.6 / 10.3 \end{gathered}$	1.25 1.25	$\times 2$	${ }_{\text {AL }}^{\text {AL }}$	A912 A915	$3 N 525$ $3 N 521$	494.00 494.00	$\begin{aligned} & 358.25 \\ & 358.25 \end{aligned}$	$\begin{gathered} 85.0 \\ 100.0 \end{gathered}$
10	3500 1755	$\begin{aligned} & 215 \mathrm{~T} \\ & 215 \mathrm{~T} \end{aligned}$	$\begin{aligned} & 230 / 460 \\ & 230 / 460 \end{aligned}$	$\begin{aligned} & 24.4 / 12.2 \\ & 27.2 / 13.6 \end{aligned}$	1.25	$\begin{aligned} & 88.5 \\ & 87.5 \end{aligned}$	$\underset{\mathbf{A L}}{\mathbf{A L}}$	$\begin{gathered} \text { A920 } \\ \mathrm{A} 923 \end{gathered}$	$\begin{aligned} & \text { 3N526 } \\ & \text { 3N522 } \end{aligned}$	$\begin{aligned} & 592.00 \\ & 614.00 \end{aligned}$	$\begin{aligned} & 429.25 \\ & 445.25 \end{aligned}$	$\begin{aligned} & 130.0 \\ & 123.0 \end{aligned}$
15	1765	2547	230/460	39.2/19.6	1.25	89.5	AL	A933	3N762	811.00	588.00	202.0
20 \#	1765	256T	230/460	49.624 .8	1.25	89.5	AL	A939	3N763	1025.00	743.00	235.0
25	1765	284 T	230/460*	$63.0 / 31.5$	1.25	91.0	AL	B522	3N764	1230.00	891.50	258.0
30 ?	1765	2867	230/460*	76.2/38.1	1.25	91.0	AL	B530	$3 N 765$	1494.00	1084.00	270.0

O Operablezt 60 Hz only; all others are suitable for $190 / 380 \mathrm{~V}$ for 50 Hz operation at 1.0 service factor.
i) $\mathrm{R}=$ = Rofed Steel construction; $\mathrm{AL}=$ Aluminum construction

CONVERSION KITS FOR ABOVE MOTORS

NEMA Frame	C-FACE KITS				CANOPY CAP KITS			
	Stock No.	List	Each	Shpg. Wt.	Stack No.	List	Each	Shpg. Wt.
143T to 145T	-	-	-32.	0	14770	\$20.00	\$14.51	0.9
182T to 184T	14768	\$45.00	\$32.65	2.0	14771	25.00	18.14	1.1
213 T to 215T	14769	35.00	39.95	3.0	14772	30.00	21.76	1.4
254T to 256T	44329	80.00	58.05	9.0	-	-	-	-
2847 to 286T	44330	90.00	65.20	25.0	-	-	-	-

NOMINAL STATIC TORQUE BRAKES

For 143 T and 145 T frames. Manual release lever, $13^{\prime \prime}$ leads. $4^{7 / 16^{\prime \prime}}$ overall length, $65 / 8^{\prime \prime}$ diameter. Gray. Dayton brand.

| Nominal Static
 Torque ft.-Lbs. | Stock
 No. | List | Each | Shpg.
 WL. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3}$ | $\mathbf{3 M 3 6 0}$ | $\$ 253.00$ | $\mathbf{\$ 1 7 7 . 0 0}$ | 8.0 |
| $\mathbf{6}$ | $\mathbf{2 Z 8 7 I}$ | $\mathbf{3 2 5 . 0 0}$ | $\mathbf{2 2 7 . 2 5}$ | $\mathbf{8 . 0}$ |

CAUTION: Not for fans in unattended areas.
Refer to page 5 for UL507 Standard, proper thermal, protection, and other motor selection information.

iNDUSTRIAL

 MOTORS
HIGH EFFICIENCY CAPACITOR-START MOTORS

Rigid welded base

- Copper windings

- High efficiency

Typical Uses: General purpose applications including air compressors, conveyors, fans, blowers, machine tools, pumps, and other moderate to hard-starting equipment.

Type: Capacitor-start, capacitor-run
Bearings: Double-shielded ball
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: Dayton

PREMIUM EFFICIENCY vs. STANDARD EFFICIENCY

Annual Sovings $=0.746 \times H P \times L \times C \times N\left(\frac{100}{E_{1}}-\frac{100}{E_{2}}\right)$
HP = Motor Horsepower
L = Percent Load Divided by 100
C = Energy Cost, Dollars Per Kilowatt Hour
$\mathrm{N}=$ Running Time, Hours Per Year
$E_{1}=$ Efficiency $[\%$) of Standard Efficiency Motor
$E_{2}=$ Efficiency (\%) of Premium Efficiency Motor

Lower Operating Cost:

If you operate a 25 HP premium efficiency motor at full load for 24 hours a day (8760 hours per year) and your cost per kilowatt hour is 9 cents, you can save $\$ 532.00$ annually. This comparison is based on a premium efficiency motor with a 94.1 efficiency rating vs. a standard efficiency motor with a 91.0 efficiency rating.
Increased efficiency leads to lower operating temperatures, resulting in longer life.

WIDE SELECTION OF MOTORS IN THIS CATALOG

Including capacitor-staart, split-phase, three-phase, PSC and shaded pole, belt-drive fan and blower, direct-drive fan and blower, farm duty, and pump types. See Index under Motors.

3-PHASE OPEN DRIPPROOF PREMIUM EFFICIENCY MOTORS

- Premium efficiency motors qualify for utility rebate programs
- Increased efficiency leads to lower operating cost
- 100\% copper windings
- Motors run cool for increased life
- Two-year warranty
- 1.15 to 1.35 service factors provide a reserve margin for intermittent overloading or fluctuating (high/low) voltage conditions
Typical Uses: Premium efficiency performance on pumps, fans, blowers, and other moderate to hard-starting equipment.
Bearings: Double-shielded ball
Mounting: Rigid welded base
Thermal Protection: None
Windings: Copper
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continusus
Rotation: CW/CCW
Finistrigray
Brande-Dayton

$\begin{aligned} \text { HP } \\ \end{aligned}$	Nameplate RPM	NEMA Frame	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	NEMA Nominal Efficiency	Framet	Insulation Class	Stock No.	List	Each	Shpg. Wt
1/4**	1725	56	230/460	0.810 .4	1.35	77.0	RS	B	-3N639	\$149.00	\$113.90	21.0
$1 / 3=$	1725	56	230/460	1.10 .55	1.35	80.0	RS	B	-3N640	163.00	124.65	21.0 -
1/20-	1725	56	2301460	$1.6 \% 0.8$	1.25	81.5	RS	B	-3N641	191.00	146.05	24.0
3/4:	1725	56	230/460	2.3/1.15	1.25	81.5	$\ldots \mathrm{RS}$	B	-3N642	213.00	163.00	26.0
1 \%	1725	56	230/460	3.1/1.55	1.15	82.5	F $\mathrm{F} \mathrm{S}^{\circ}$		$\begin{array}{r} -3 N 643 \\ -5 N 300 \\ -5 N 301 \end{array}$	224.00	171.50	$\begin{aligned} & 29.0 \\ & 40.0 \\ & 45.0 \end{aligned}$
-	1750	1435	208-230/460	3.3-3.2/1.6	1.15	85.5	nS	B		211.00	145.60	
	. 1150	145 T	208-230/460	3.9-4.0/2.0	1.15	81.5	RS	B		271.00	187.25	
1420	1725	56H		$\begin{gathered} 4.2 / 2.1 \\ -4.8-4.6 / 2.3 \\ 5.02 .5 \end{gathered}$	$\begin{aligned} & 1.15 \\ & 1.15 \\ & 1.15 \end{aligned}$	85.5	IS	BBB	$\begin{array}{r} -3 N 644 \\ -5 N 302 \\ -5 N 303 \end{array}$	262.00	$\begin{aligned} & 200.75 \\ & 159.00 \\ & 205.75 \end{aligned}$	$\begin{aligned} & 36.0 \\ & 45.0 \\ & 80.0 \end{aligned}$
	1745.	145 T				$\begin{array}{r} 85.5 \\ -\quad 850.5 \end{array}$	RS			230.00		
\bigcirc	1170	182 T					RS			298.00		
2 \%	1725	66H	230/460	5.7/2.85	1.15	84.0	RS	B	$\begin{array}{r} -3 N 645 \\ -5 N 304 \\ -5 N 305 \end{array}$	264.00	$\begin{aligned} & 202.25 \\ & 175.50 \\ & 264.75 \end{aligned}$	$\begin{array}{r} 39.0 \\ 55.0 \\ 65.0 \\ \hline \end{array}$
	1735	145 T	208-230/460	6.1-5.8/2.9	1.15	86.5	RS	B		254.00		
	1170	$\therefore 184 \mathrm{~T}$	$230 / 460^{+}$	6.6\%.3	1.15	87.5	BS :	B		383.00		
3 桇	$\begin{aligned} & 1765 \\ & 1170 \end{aligned}$	$\begin{array}{r} 182 \mathrm{~T} \\ =213 \mathrm{~T} \end{array}$	$\begin{array}{ll} \because & 230 / 460^{*} \\ 230 / 460^{*} \end{array}$	$\begin{aligned} & 8.2 / 4.1 \\ & 9.2 / 4.6 \end{aligned}$	1.15	$\begin{aligned} & 90.2 \\ & 89.5 \end{aligned}$	RS	7	$=\frac{5 N 306}{5 N 307}$	$\begin{aligned} & 264.00 \\ & 514.00 \end{aligned}$	$\begin{aligned} & 182.25 \\ & 354.75 \end{aligned}$	$\begin{array}{r} 65.0 \\ 120.0 \end{array}$
					1.15							
5	3510	182T	230/460*	13.4/6.7	1.15	$\begin{aligned} & 89.5 \\ & 89.5 \\ & 89.5 \end{aligned}$	RS	B	$\begin{array}{r} -5 N 308 \\ -5 N 309 \\ -5 N 310 \end{array}$	$\begin{aligned} & 370.00 \\ & 370.00 \\ & 643.00 \end{aligned}$	$\begin{aligned} & 245.50 \\ & 245.50 \\ & 426.25 \end{aligned}$	$\begin{array}{r} 75.0 \\ 70.0 \\ 135.0 \end{array}$
	1755	1849	230/460*		1.15		RS	B				
	1165	215 T	230/460*	- 14.8/7.4	1.15		RS	B				
71/2	3495	184 T	230/460*	18.89 .4	1.15	89.5	RS	B	$\begin{array}{r} -5 N 311 \ddagger \\ -5 N 312 \\ -5 N 313 \uparrow \end{array}$	$\begin{aligned} & 533.00 \\ & 538.00 \\ & 839.00 \end{aligned}$	$\begin{aligned} & 353.50 \\ & 356.75 \\ & 556.50 \end{aligned}$	$\begin{array}{r} 80.0 \\ 115.0 \\ 220.0 \end{array}$
	1760	213 T	$230 / 460^{*}$	19.019 .5	1.15	91.7	RS	B				
	1180	254 T	230/460*	$20.2 / 10.1$	1.55	91.7	RS	B				
10	3500	213 T	$230 / 460^{*}$	$25.0 / 12.5$	1.15	90.2	RS	B	$\begin{array}{r} \text { 5N314 } \\ -5 N 315 \\ -5 N 316 \ddagger \end{array}$	665.00 650.00 981.00	$\begin{aligned} & 441.25 \\ & 431.00 \\ & 650.00 \end{aligned}$	$\begin{aligned} & 110.0 \\ & 140.0 \\ & 250.0 \end{aligned}$
	1755	215 T	230/460**	$\underline{25.4 / 12.7}$	1.15	91.7	RS	B				
	1175	256 T	230/460*	$26.0 / 13.0$	1.15	91.7	RS	B				
15	3490	215 T	230/460*-	36.8118.4	1.15	91.0	RS	B	$\begin{array}{r} -5 N 317 \\ -5 N 318 \\ -5 N 319 \end{array}$	$\begin{array}{r} 842.00 \\ 864.00 \\ 1263.00 \end{array}$	$\begin{aligned} & 558.50 \\ & 573.00 \\ & 837.50 \end{aligned}$	$\begin{aligned} & 135.0 \\ & 205.0 \\ & 295.0 \end{aligned}$
	1770	254 T	230/460*	38.0119 .0	1.15	93.0	RS	B				
	1180	284 T	$330 / 460^{*}$	$38.0 / 19.8$	1.15	92.4	RS	B				
20	3545	254 T	230/460*	$48.0 / 24.0$	1.15	92.4	RS	B	$\begin{aligned} & \text { 5N320 } \\ & \text { 5N321 } \\ & \text { 5N322 } \end{aligned}$	$\begin{aligned} & 993.00 \\ & 1055.00 \\ & 1549.00 \end{aligned}$	$\begin{array}{r} 658.50 \\ 699.50 \\ 1027.00 \end{array}$	$\begin{array}{r} 195.0 \\ 275.0 \\ 320.0 \end{array}$
	1770	2567	230/460*	49.6124 .8	1.15	93.6	RS	B				
	1180	286 T	$330 / 460^{*}$	50.0% 2.0	1.15	92.4	RS	B				
25	3545 -	2567	230/460*	59.0/29.3	1.15	93.0	RS	B	$\begin{aligned} & 5 N 323 \div \\ & -5 N 324 \\ & -5 N 325 \end{aligned}$	$\begin{aligned} & 1212.00 \\ & 1226.00 \\ & 1838.00 \end{aligned}$	$\begin{array}{r} 803.50 \\ 812.50 \\ 1218.00 \end{array}$	$\begin{aligned} & 240.0 \\ & 335.0 \\ & 460.0 \end{aligned}$
	1775	284 T	230/460*	60.0130 .0	1.15	94.1	RS	B				
	1180	324 T	$230 / 460^{*}$	$60.0 / 30.0$	1.15	93.6	RS	B				
30	3560	284TS	230/460*	69.4834 .7	1.15	936	RS	B	$\begin{array}{r} 5 N 326 \\ -5 N 327 \\ -5 N 328 \end{array}$	$\begin{aligned} & 1446.00 \\ & 1425.00 \\ & 2103.00 \end{aligned}$	$\begin{array}{r} 958.50 \\ 944.50 \\ 1395.00 \end{array}$	$\begin{aligned} & 335.0 \\ & 395.0 \\ & 505.0 \end{aligned}$
	1775	286 T	230/460*	$71.0 / 35.5$	1.15	94.1	- 8	B				
	1180	326 T	$230 / 460$	71.4/35.7	1.15	93.6	RS	B				
40	3565	286TS	230/460*	92.0/46.0	1.15	94.1	RS	B	$-5 N 329$$-5 N 330$$5 N 331$	$\begin{aligned} & 1850.00 \\ & 172.00 \\ & : 3091.00 \end{aligned}$	$\begin{aligned} & 1227.00 \\ & 1174.00 \\ & 2049.00 \end{aligned}$	$\begin{aligned} & 390.0 \\ & 450.0 \\ & 695.0 \end{aligned}$
	1775	324 T	230/460	94.0/47.0	1.15	945	RS	B				
	1190	364 T	460-	47.1	1.15	94.5	CI	B				
50		324 TS			1.15			B	$\begin{array}{r} \text { 5N332 } \\ -5 N 333 \\ -5 N 334 \end{array}$	$\begin{aligned} & 2199.00 \\ & 2066.00 \\ & 3610.00 \end{aligned}$	$\begin{aligned} & 1458.00 \\ & 1370.00 \\ & 2393.00 \\ & \hline \end{aligned}$	\square
	1775	325 T	230/460	117.0758 .5	1.15	94.5	RS	B				
	1185	365 T	460	58.9	1.15	94.5	CI	B				

[^4]
INDUSTR:AL MOTOKS

3-PHASE OPEN DRIPPROOF PREMIUM EFFICIENCY MOTORS

dAYton wattrimmer premium efficiency motors (Cont.)

HP	Nampplate RPM	NEMA Frame	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	NEMA Neminal Efficiency	Framat	Insulation Class	Stock No.	List	Each	Shpg. $\mathbf{W L}$.
60	3555	326 TS	230/460	140.0770.0	1.15	94.1	RS	B	-5N335	\$2500.00	\$1657.00	545.0
	1780	364 T	$230 / 460$	142.0/71.0	1.15	95.4	CI	B	-5N336	2532.00	1678.00	665.0
	1185	404 T	460	70.2	1.15	96.0	CI	B	-5N337	4212.00	2791.00	960.0
75	3560	364 TS	230/460	176.0/88.0	1.15	94.1	CI	B	-5N338	3333.00	2210.00	625.0
	1785	365 T	230/460	174.0/87.0	1.15	95.0	CI	B	-5N339	3084.00	2044.00	755.0
	1185	405 T	460	87.7	1.15	95.0	CI	B	-5N340	5015.00	3324.00	1035.0
100	3560	3657 S	$230 / 460$	230.01115 .0	1.15	94.5	CI	B	-5N341	4378.00	2903.00	700.0
	1780	404 T	$230 / 460$	230.01115 .0	1.15	95.8	Cl	B	-5N342	3933.00	2606.00	955.0
	1185	444 T	460	124.0	1.15	95.4	CI	B	-5N343	6352.00	4210.00	1395.0
125	3560	404 TS	460	140.0	1.15	96.0	Cl	B	-5N344	5447.00	3611.00	930.0
	1780	405 T	460	141.0	1.15	95.4	Cl	B	-5N345	4709.00	3121.00	1065.0
	1185	445 T	460	155.0	1.15	95.4	Cl	B	5N346	7800.00	5170.00	1530.0
150	3555	405 TS	460	168.0	1.15	94.5	CI	B	-5N347	6626.00	4393.00	975.0
	1785	444T	460	172.0	1.15	96.2	CI	B	$-51348 \pm$	6801.00	4508.00	1395.0
	1185	445 T	460	190.0	1.15	95.8	Cl	${ }_{B}$	-5N349	8647.00	5731.00	1670.0
200	3555	444 TS	460	234.0	1.15	95.0	CI	B	-5N350	10307.00	6835.00	1290.0
	1780	. 445 T T	460	237.0	1.15	96.2	Cl	B	-5N351	8592.00	5696.00	1525.0
	1185	-447T	460	250.0	1.15	95.4	Cl	B	-5N352	10608.00	7032.00	1940.0
250	3560	445 TS		288.0	1.15	95.4	Cl	B	-5N353	12323.00	8172.00	1380.0
	1780	447 T	460	293.0	1.15	96.2	CI	B	-5N354	12701.00	8420.00	2095.0

(\dagger) RS $=$ Rolled Steel construction; CI = Cast-Iron construiction. (\ddagger) NEMA design A; all others are NEMA design B.

GE BRAND, PREMIUM EFFICIENCY

(*) Average efficiency, not NEMA nominal efficiency.
(7) Usable on 200 V at 1.0 service factor. (\ddagger) $\mathrm{RS}=$ Rolled Steel construction.

3-PHASE OPEN DRIPPROOF PREMIUM EFFICIENCY MOTORS

GE PREMIUM EFFICIENCY MOTORS (Cont.)

HP	Nameplate RPM	NEMA Frame	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Sarvice Factor	NEMA Nominal Efficiency	Frame \ddagger	Base	GE Stock Ho.	Stock No.	List	Each	$\begin{gathered} \text { Sheg } \\ \mathrm{m} \end{gathered}$
71/2	3450	184 T	2301460	18.09.0	1.15	88.5	CI	Rigid	E823	- 3N907	\$609.00	\$378.50	87.0
	1755	213 T	230/460	18.49 .2	1.15	91.0	CI	Rigid	E830	-3N891	564.00	380.50	145.0
	1755	213 T	200	21.2	1.15	91.0	Cl	Rigid	E8729	- 4 N8622	615.00	380.50	148.0
	1755	213 T	675	7.4	1.15	91.0	Cl	Rigid	E8640	- 5N624	615.00	364.25	112.0
	1165	254 T	$230 / 460$	20.010 .0	1.15	89.5	CI	Rigid	E8013	- 3N926	878.00	592.50	268.0
10	3490	213 T	$230 / 460$	24.0112 .0	1.15	90.2	CI	Bagid	E850	- 3N908	699.00	471.50	1520
	1750	215 T	230/460	23.6/11.8	1.15	91.0	CI	Ragid	E831	-3N892	682.00	460.00	156.0
	1750	$215 T$	200	27.1	1.15	91.0	Cl	Rigid	E8734	-44855	743.00	460.00	156.0
	1750	215 T	575	9.4	1.15	91.0	CI	Rigid	E8643	- 5 +627	743.00	440.50	1220
	1170	256 T	230/460	$26.4 / 13.2$	1.15	90.2	CI	Righd	E8014	-3N927	1121.00	695.00	280.0
15	3475	215 T	230/460	36.4/18.2	1.15	90.2	CI	Raigid	E851	-3×909	884.00	596.50	174.0
	1755	254 T	230/460	$35.6 / 17.8$	1.15	91.7	CI	Rigid	E832	-3N893	987.00	611.50	2920
	1755	254 T	200	40.9	1.15	- 91.7	Cl	Bigid	E8744	- 4 N856	987.00	611.50	292.0
	1755.	2547	575	14.2	1.15	-91.7	CI	Rtgid	E8646	- 5 N630	987.00	585.00	255.0
	1175	284 T	230/460	37.6/18.8	115	92.4	CI	Rigid	E8015	- 3N928	1471.00	895.50	426.0
20	3520	2545	-230/460	45.622.8' ${ }^{\prime}$	- 1.15	- 91.0	CI	Pigid	E852	- 30910	1135.00	702.50	258.0
	1755	$256 \mathrm{~T}^{4}$	2301460	46.6233 .3	1.15	- 924	Cl	Rigid	E833	-34894	1206.00	747.50	320.0
	1755	256 T .	200	53.6-	116:	- 824	CI	Rigid	E8754	-448857	1206.00	747.50	318.0
	1765	${ }_{256 \mathrm{~T}}{ }_{\text {i }}$	$\cdots 576$	18.6	1.15	- 7 - 924	CI	Rigid	E8649	- 54633	1206.00	747.50	307.0
	1175	2867	2301460	49.6/24.8-2	1.15	ceige		Rigid		-3N929	1627.00	1098.00	471.0
25	1/ 3525	256 T	2301460	56.02800^{-1}	1.15	-92.4	CI	Rigid	E853	- 3N911	1385.00	859.00	298.0
	-	$284 \mathrm{~T}^{2}$	2301460	59.629 .8 .	4,15	- 83.6	Cl	Rigid	E834	-3N895	1401.00	868.00	4300
	≤ 1760	2845	200	68.5	1.15	-93.6	CI	Rigiod	E8757	- 4 H8558	1401.00	868.00	426.0
	细 1760	284		23.8	1.15	93.6	Cl	Rigid	E8852	-5N636	1401.00	868.00	-395.0
	- 1175	324 T	$230 / 460$	67.6×33.8	1.15	93.6	CI	Rigid	E9019	-5N920	2371.00	1521.00	600.0
30	\% 3540	2845	230/460	67.0133.5	-1.16\%	93.0	CI	Bigid	E854	- 3N912	1653.00	1024.00	.406,0
	- 1765	$2867{ }^{\text {2 }}$	230/460	70.6/35.3	1.15*	93.6	Cl	Rigid	E835	-3N896	1629.00	1010.00	430.0
	= 1765	286 T	200	81.2	1.15	93.6	CI	Rigid	E8763	- 448859	1629.00	1010.00	4280.
	浱 1765	286 T	575	28.2	1.15	93.6	CI	Rigid	E8654	-5N638	1629.00	1010.00	450.0
	1mer 1180	326 T	230/460	80.6/40.3	1.15	93.6	Cl	Eigid	E9022	-5N921	2704.00	1734.00	610.0
40													
	$\begin{array}{r} 3040 \\ 1755 \end{array}$	324 T	$230 / 460$	98.0449 .0	1.15	- 95.0	CL	-2id	E936	-5N922	2289.00	1467.00	610.0
	\%. 1185	364 T	${ }_{460}$	52.5	1.15	94.5	$\mathrm{Cl}^{\text {c }}$	Rigid	E9024	-5N923	3709.00	2377.00	10000
50													
	$\begin{array}{r} 2745 \\ 170 \end{array}$	326 T	2301460	122.661 .3	1.15	98	Cl	RRigid	E33t	- 5N925	2597.00	1666.00	6150
	58. 1185	365 T	460	65.7	1.15	94.5	$\pm \mathrm{Cl}$	Rigid	E9026	-5N926	4126.00	2647.00	840.0
60	HF 3540			143.471 .7	1.15					- 5N927	3214.00	2062.00	
	- 1780	364 T	$230 / 460$	145.6728	1.15	95.4	CI	Rigid	E9381	-5N928	3443.00	2208.00	890.0
	. 1190	$404 \mathrm{~T}^{\prime}$	460	18.4	1.15	95.0	CI	Rigid	E9029	-5N929	5054.00	3239.00	1490.0
75	* 3555	364 TS	230/460	181.4/90.7	1.15	95.0	Cl	Rigid	E958	-5N930	4285.00	2748.00	910.0
		365 T	230/460	180.890 .4	1.15	95.4	CI	Rigid	E9391	-5N931	3877.00	2486.00	885.0
	H. 1190.	405 T	460	85.5	1.15	95.4	Cl	Rigid	E9032	-5N932	6018.00	3860.00	1250.0
100	3550	365 TS	230/460	234.0/117.0	1.15	95.0	CI	Rigid	E959	- 5N933	5179.00	3322.00	940.0
	$=1790$	404 T	$230 / 460$	$226.0 / 113.0$	1.15	95.4	CI	Rigid	E9401	-5N934	5097.00	3268.00	12940
	1790	404 TS	$230 / 460$	226.01113 .0	1.15	95.4	CI	Rigid	E9257	- 5 N935	5250.00	3365.00	1286.0
	1190	444 T	460	112.0	1.15	95.4	Cl	Rigid	E9034	-5A936	7622.00	4885.00	1980.0
125	3570	404 TS	460	137.0	1.15	95.0	CI	Pigid	E9501	-5N937	6941.00	4451.00	1470.0
	1780	405 T	460	134.0	1.15	95.4	CI	Rigid	E941	-5N938	5920.00	3797.00	1250.0
	1490	445 T	460	140.0	1.15	95.4	CI	Bigid	E9036	-5N939	9360.00	6002.00	2050.0
150	3565	405 TS	460	165.0	1.15	94.5	Cl	Rigid	E 9502	- 5 N940	8519.00	5465.00	1470.0
	1790	444 T	460	168.0	1.15	96.2	CI	Rigid	E942	-5N941	7889.00	5057.00	2020.0
	1790	444 TS	460	168.0	1.15	96.2	CI	Rigid	E9259	-5N942	8142.00	5219.00	2020.0
	1190	445 T	460	171.0	1.15	95.8	Cl	Rigid	E9039	-5N943	106.3 .00	6845.00	2080.0
200	3575	444 TS	460	217.0	1.15	95.0	CI	Rugid	50503	-5N944	14724.00	9449.00	1990.0
	1785	445 T	460	215.0	1.15	95.8	Cl	Rigid	E943	-5N945	10384.00	6660.00	2050.0
	1190	445 T	460	232.0	1.15	95.4	CI	Rugrd	E0042	-5N946	13357.00	8570.00	2060.0
250	3575 1790	${ }_{4}^{449 T S}$	460 460	278.0 274.0	1.15 1.15	95.4 96.2	$\stackrel{\mathrm{Cl}}{\mathrm{CI}}$	Rigid Rigid	20504	-5N947	17604.00 16148.00	11299.00 10358.00	$\begin{aligned} & 1980.0 \\ & 2830.0 \end{aligned}$

(\ddagger) Usable on 200 V at 1.0 service factor.
(\ddagger) $\mathrm{RS}=$ Rolled Steel construction; $\mathrm{CI}=$ Cast-Iron construction.

Modifications \& Service
Available at Most Locations

INDUSTRIA: MOTORS

3-PHASE TEFC PREMIUM EFFICIENCY MOTORS

Premium efficiency motors qualify for utility rebate programs

- Increased efficiency leads to lower operating cost
- Motors rún cooler resulting in increased life
- 100\% copper windings
- Two-year warranty

Typical Uses: Premium efficiency performance on air compressors, conveyors, fans, blowers, machine tools, pumps, and other moderate to hard-starting equipment. For use in noncombustible, dusty, dirty environments where 3 -phase power is available.
Bearings: Double-shielded ball on 56 thru 360 frame. Open ball with filler caps on 400 thru 440 frame. Regreasable 180 thru 440 frame:
Mounting: Rigid welded or solid base
Thermal Protection: None
Windings: Copper
Andient: $40^{\circ} \mathrm{C}$
Dufy: Continuous
Finish: Gray
Bröind: Dayton

$\begin{aligned} & =8 \\ & 0 \end{aligned}$	Nameplate RPM	NEMA Frame	RotationFacing Shatt	Volts 60 Hz	Full-Load Ampps at Nameplates	Service Factor	NEMA Efficiency	Frame\#	ins. Class	Stock No.	List	Each	Shpg. Wt
13	1725	56	CW/CCW	230/460	1.1/0.65	1.0	$80.0 \pm$	RS	B	- 3N694 \dagger	\$184.00	\$140.65	23.0
$1 / 2$	1725	56	CW/CCW	230/460	1.60 \%	1.0	$81.5 \pm$	RS	B	-3N695	217.00	166.25	25.0
374	1725	56	CW/CCW	230/460	2.3/1.15	1.0	. $31.5 \ddagger$	RS	B	-3N696 ${ }^{+}$	234.00	179.25	27.0
5	1725	56 H	CW/CCW -	230/460	3.11.55	1^{n}	82.5	RS	B	-3N697 ${ }^{+}$	244.00	187.00	32.0
\%	1740	143 T	CW/CCW	208-230/460	3.23.011.5	Tw	86.5	RS	F	-5N293	286.00	204.00	40.0
-	1150	145 T	CW/CCW	208-230/460	4.0-3.911.95	1.15	82.5	RS	F	-5N242	356.00	253.75	40.0
T17	3500	${ }^{1437}$	CW/CCW	$\begin{gathered} 208-230 / 460 \\ 230 / 460 \\ 208-230 / 460 \\ 230 / 460^{*} \end{gathered}$	$\begin{gathered} 4.5-4.0 / 2.0 \\ 4.2 / 2.1 \\ 4.8-4.5 / 2.25 \\ 5.02 .5 \end{gathered}$	1.15	84.0$85.5+$86.587.5	RSRSRSAL	F	$\begin{array}{r} 5 N 243 \\ 3 N 698 \\ 5 N 294 \\ 5 N 244 \end{array}$	$\begin{aligned} & 293.00 \\ & 260.00 \\ & 315.00 \\ & 380.00 \end{aligned}$		35.034.040.060.0
	1740	56H	CW/CCW			1.0			B				
	1740	145 T	CW/CCW			1.15			F				
	1170.	182T	CW/CCW			1.15			F				
$\begin{aligned} & 2^{4} \\ & y \end{aligned}$	3495	${ }^{145 T}$	CW/CCW CW/CCW CW/CCW	$\begin{gathered} 200-230 / 440 \\ 208-2304460 \\ -230 / 460^{\circ} \end{gathered}$	$\begin{gathered} 5.6-5.02 .5 \\ 6.3-58.5 \\ 6.63 .3 \end{gathered}$	$\begin{aligned} & 1.15 \\ & 1.15 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 86.5 \\ & 86.5 \\ & 87.5 \end{aligned}$	$\begin{aligned} & \text { RS } \\ & \text { RS } \\ & \text { AL } \end{aligned}$	FFF	$\begin{array}{r} 5 N 245 \\ -5 N 295 \\ -5 N 246 \end{array}$		243.25	40.045.070.0
	1730	145T											
	1170	184 T									$\begin{aligned} & 342.00 \\ & 420.00 \end{aligned}$	299.25	
$3{ }^{3}$	3535	182 T	CW/CCW CW/CCW CW/CCW	$\begin{aligned} & 230460^{*} \\ & 230 / 460^{\circ} \\ & 230 / 460^{*} \end{aligned}$	$\begin{aligned} & 8.04 .0 \\ & 8.14 .05 \\ & 9.44 .7 \end{aligned}$	1.15	$\begin{aligned} & 88.5 \\ & 89.5 \\ & 89.5 \end{aligned}$	$\begin{aligned} & \mathrm{AL} \\ & \mathrm{AL} \\ & \mathrm{AL} \end{aligned}$	$\stackrel{\text { F }}{\text { F }}$	$\begin{array}{r} 5 N 247 \\ -5 N 296 \\ -5 N 248 \end{array}$	$\begin{aligned} & 400.00 \\ & 393.00 \\ & 559.00 \end{aligned}$	285.25280.25398.25	60.060.0110.0
	1760	182T				1.15							
	1170	213T				1.15							
5	3515	184 T	CW/CCW CW/CCW CW/CCW	$\begin{aligned} & 230 / 460^{*} \\ & 230 / 460^{*} \\ & 230 / 460^{*} \end{aligned}$	$\begin{aligned} & 12.6 / 6.3 \\ & 13.2 / 6.6 \\ & 14.87 .4 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.15 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 89.5 \\ & 90.2 \\ & 90.2 \end{aligned}$	$\begin{aligned} & \mathrm{AL} \\ & \mathrm{AL} \\ & \mathrm{AL} \end{aligned}$	$\stackrel{\mathrm{F}}{\mathrm{F}} \mathrm{F}$	$\begin{array}{r} \text { 5N249 } \\ \text { 5N2997 } \\ \hline 5 N 250 \end{array}$	$\begin{aligned} & 495.00 \\ & 448.00 \\ & 822.00 \end{aligned}$	$\begin{aligned} & 352.75 \\ & 319.25 \\ & 586.00 \end{aligned}$	70.070.0135.0
	1750	184T											
	1165	215 T											
71/2	3525	$213 T$	CW/CCW	$\begin{aligned} & 2304460^{*} \\ & 230040^{*} \\ & 230 / 460^{*} \end{aligned}$	$\begin{gathered} 18.699 .3 \\ 19.09 .5 \\ 20.210 .1 \end{gathered}$	$\begin{aligned} & 1.15 \\ & 1.15 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 91.7 \\ & 91.7 \\ & 91.7 \end{aligned}$	$\begin{aligned} & \mathrm{AL} \\ & \mathrm{AL} \end{aligned}$	$\underset{\mathrm{F}}{\mathrm{F}}$	$\begin{aligned} & -5 N 251 \\ & -5 N 298 \\ & 5 N 252 \end{aligned}$	$\begin{array}{r} 647.00 \\ 647.00 \\ 1110.00 \end{array}$	$\begin{aligned} & 461.00 \\ & 461.00 \\ & 791.00 \end{aligned}$	122.0110.0200.0
	1760	213 T	CW/CCW										
	1175	254 T	CW/CCW										
10	3515	215 T	CW/CCW	$230 / 460^{*}$$230 / 460^{*}$$230 / 460^{*}$	$\begin{aligned} & 24.6 / 12.3 \\ & 24.812 .4 \\ & 25.212 .6 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.15 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 91.7 \\ & 91.7 \\ & 91.7 \end{aligned}$	$\begin{aligned} & \mathrm{AL} \\ & \mathrm{AL} \\ & \mathrm{AL} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \text { - } 5 \mathrm{~N} 253 \\ & -5 N 299 \\ & -5 N 254+4 \end{aligned}$	$\begin{array}{r} 763.00 \\ 780.00 \\ 1304.00 \end{array}$	$\begin{aligned} & 544.00 \\ & 556.00 \\ & 929.00 \end{aligned}$	$\begin{aligned} & 125.0 \\ & 13.0 \\ & 250.0 \end{aligned}$
	1755	215 T	CW/CCW										
	1170	256T	CW/CCW										
15	3545	254 T	CW/CCW	$\begin{aligned} & 230 / 460^{*} \\ & 230 / 40^{*} \\ & 230 / 460^{*} \end{aligned}$	$\begin{aligned} & 36.2 / 18.1 \\ & 38.019 .0 \\ & 39.0 / 19.5 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.15 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 91.7 \\ & 93.0 \\ & 92.4 \end{aligned}$	$\begin{aligned} & \mathrm{AL} \\ & \mathrm{AL} \\ & \mathrm{CI} \end{aligned}$	F$\underset{F}{\text { F }}$	$\begin{array}{r} -5 N 255+\dagger \\ -5 N 256+1 \\ -5 N 257+1 \end{array}$	$\begin{aligned} & 1047.00 \\ & 1042.00 \\ & 1730.00 \end{aligned}$	$\begin{array}{r} 746.00 \\ 7442.50 \\ 1232.00 \end{array}$	$\begin{aligned} & 1850.0 \\ & 240.0 \\ & 420.0 \end{aligned}$
	1770	254 T	CW/CCW										
	1175	284 T	CW/CCW										
20	3545	256 T	CW/CCW	$\begin{aligned} & 230 / 460^{*} \\ & 230 / 40^{*} \\ & 230 / 460^{*} \end{aligned}$	47223.6 49.0/24.5 51.625 .8	$\begin{aligned} & 1.15 \\ & 1.15 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 92.4 \\ & 93.0 \\ & 92.4 \end{aligned}$	$\begin{aligned} & \mathrm{AL} \\ & \mathrm{AL} \\ & \mathrm{CI} \end{aligned}$	FFF	$\begin{aligned} & =5 N 258 \\ & =5 N 259 \\ & 5 N 260 \end{aligned}$	$\begin{aligned} & 1262.00 \\ & 1268.00 \\ & 2105.00 \end{aligned}$	$\begin{array}{r} 899.00 \\ 903.00 \\ 1500.00 \end{array}$	$\begin{aligned} & 220.0 \\ & 240.0 \\ & 410.0 \end{aligned}$
	1770	256T	CW/CCW										
	1175	286 T	CW/CCW										
25	3560	2847 S	CW/CCW	$\begin{aligned} & 230 / 460^{*} \\ & 230 / 460^{*} \\ & 230 / 460 \end{aligned}$	61.430 .7 60.430.2 60.430 .2	$\begin{aligned} & 1.15 \\ & 1.15 \\ & 1.15 \end{aligned}$	$\begin{array}{r} 9.4 \\ \mathbf{9 8 . 6} \\ 93.6 \end{array}$	$\begin{aligned} & \mathrm{CI} \\ & \mathrm{CI} \\ & \mathrm{CI} \end{aligned}$	FFF	$\begin{aligned} & =5 N 261 \\ & -5 N 262 \\ & 5 N 263 \end{aligned}$	$\begin{aligned} & 1574.00 \\ & 154200 \\ & 2555.00 \end{aligned}$	$\begin{aligned} & 1121.00 \\ & 1099.00 \\ & 1819.00 \end{aligned}$	$\begin{aligned} & 360.0 \\ & 395.0 \\ & 586.0 \end{aligned}$
	1775	284 T	CW/CCW										
	1180	324T	CW/CCW										
30	3550	286 TS	CW/CCW	$\begin{aligned} & 230 / 460^{*} \\ & 230 / 460^{*} \\ & 230 / 460 \end{aligned}$	$69.6 / 34.8$ 71.0135 .5 71.4/35.7	$\begin{aligned} & 1.15 \\ & 1.15 \\ & 1.16 \end{aligned}$	$\begin{aligned} & 92.4 \\ & 94.1 \\ & 93.6 \end{aligned}$	$\begin{aligned} & \mathrm{Cl} \\ & \mathrm{CI} \\ & \mathrm{Cl} \end{aligned}$	FFF	$\begin{aligned} & \text { FN264 } \\ & 5 N 2665 \\ & 5 N 266 \end{aligned}$	$\begin{aligned} & 1861.00 \\ & 1824.00 \\ & 2928.00 \end{aligned}$	$\begin{aligned} & 1326.00 \\ & 1299.00 \\ & 2086.00 \end{aligned}$	$\begin{aligned} & 415.0 \\ & 450.0 \\ & 663.0 \end{aligned}$
	1775	286 T	CW/CCW										
	1180	326 T	CW/CCW										

(*) Usable on 200 V at 1.0 Service Factor. (\dagger) TENV, all others are TEFC. (\ddagger) High efficiency.
(\#) RS = Rolled Steel construction; $\mathrm{AL}=$ Aluminum construction; $\mathrm{Cl}=$ Cast-Iron construction.
(\dagger) NEMA design A; all others are NEMA design B.

3-PHASE TEFC PREMIUM EFFICIENCY MOTORS

NEW Product Offering
GE PREMIUM EFFICIENCY MOTORS (Cont.)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline HP \& Namaplata APM \& NEMA Frame \& \begin{tabular}{l}
Volts \\
60 Hz
\end{tabular} \& Full-Load Amps at Namaplate Volts \& Servica Factor \& NEMA Nominal Efficiency \& Framet \& Ips. Class \& Base \& GE Stock No. \& Stock No. \& List \& Each \& \begin{tabular}{l}
Stipg. \\
W.
\end{tabular} \\
\hline \multirow[t]{6}{*}{5} \& 3480 \& 1847 \& 230/460 \& 11.4/5.7 \& 1.15 \& 89.5 \& Cl \& F \& Ragid \& E828 \& -2G675 \& \$547.00 \& \$351.25 \& 106.0 \\
\hline \& 3480 \& 184 T \& 575 \& 4.6 \& 1.15 \& 89.5 \& CI \& F \& Rigid \& E8659 \& -2G677 \& 547.00 \& 351.50 \& 106.0 \\
\hline \& 1750 \& 184 T \& 230/460 \& 12.3/6.2 \& 1.15 \& 89.5 \& CI \& F \& Rigid \& E829 \& -2G679 \& 495.00 \& 317.75 \& 114.0 \\
\hline \& 1750 \& 184 T \& 575 \& 4.9 \& 1.15 \& 89.5 \& CI \& F \& Rigrd \& E8809 \& -2G681 \& 495.00 \& 317.75 \& 114.0 \\
\hline \& 1155 \& 215 T \& \(230 / 460\) \& 13.3/6.7 \& 1.15 \& 89.5 \& CI \& F \& Rigid \& E8212 \& -2G683 \& 908.00 \& 583.00 \& 165.0 \\
\hline \& 1155. \& 215 T \& 575 \& 5.3 \& 1.15 \& 89.5 \& Cl \& F \& Rigid \& E8721 \& -2G685 \& 908.00 \& 583.00 \& 165.0 \\
\hline \multirow[t]{6}{*}{7.5} \& 3510 \& 2137 \& 2304460 \& 17.4/8.7 \& 1.15 \& 91.0 \& CI \& F \& Rigid \& E880 \& -2G687 \& 715.00 \& 458.75 \& 156.0 \\
\hline \& 3510 \& 213 T \& 575 \& 7.0 \& 1.15 \& 91.0 \& Cl \& F \& Rigid \& E8810 \& -2G689 \& 715.00 \& 458.50 \& 156.0 \\
\hline \& 1755 \& 213 T \& 230/460 \& 18.0/9.0 \& 1.15 \& 91.7 \& CI \& F \& Rigid \& E860 \& -2G691 \& 715.00 \& 458.25 \& 167:0 \\
\hline \& 1755 \& 2137 \& 575 \& 7.2 \& 1.15 \& 91.7 \& CI \& F \& Rigid \& E8727 \& -2G693 \& 715.00 \& 458.25 \& 167.0 \\
\hline \& 1170 \& 254 T \& 2304460 \& 19.09 .5 \& 1.15 \& 91.7 \& CI \& F \& Rigid \& E8213 \& -2G695 \& 1227.00 \& 787.50 \& 257.0 \\
\hline \& 1170 \& 254 T \& 575 \& 7.6 \& 1.15 \& 91.7 \& CI \& F \& Rigid \& E8660 \& -2G697 \& 1227.00 \& 787.50 \& 259.0 \\
\hline \multirow[t]{6}{*}{10} \& 3510 \& 215 T \& 230/460 \& 23.011 .5 \& 1.15 \& 91.7 \& CI \& F \& Rigid \& E881. \& -2G699 \& 857.00 \& 550.00 \& 183.0 \\
\hline \& \(3510^{-}\) \& 215 T \& \(575-\) \& 9.2 \& 1.15 \& 91.7 \& CI \& F \& Rigid \& E8850 \& -2G701 \& 857.00 \& 550.00 \& 183.0 \\
\hline \& 1755 \& 215 T \& 230/460 \& 23.5111 .8 \& 1.15 \& 91.7 \& CI \& \(F\) \& Rigid \& E861 \& -2G703 \& 861.00 \& 552.50 \& 189.0 \\
\hline \& 1755 \& 215 T \& 575 \& 9.4 \& 1.15 \& 91.7 \& CI \& F \& Rigid \& E8739 \& -2G705 \& 861.00 \& 553.00 \& 189.0 \\
\hline \& 1170 \& 256 T \& 2301460 \& \(25.4 / 12.7\) \& 1.15 \& 91.7 \& Cl \& F \& Rigid \& E8214 \& -2G707 \& 1441.00 \& 925.00 \& 295.0 \\
\hline \& 1170 \& 256 T \& 575 \& \(\cdots 10.2\) \& 1.15 \& 91.7 \& CI \& F \& Rigid \& E8670 \& -2G709 \& 1441.00 \& 925.00 \& 295.0 \\
\hline \multirow[t]{2}{*}{15} \& 3525 \& 254 T \& 230/460 \& \(38.3 / 16.7\) \& 1.15 \& 91.7 \& CI \& F \& Rigid \& E882 \& -2G711 \& 1176.00 \& 754.50 \& 282.0 \\
\hline \& 3525 \& 254 T \& 575 \& \(\rightarrow 13.3\) \& 1.15 \& 91.7 \& CI \& F \& Rigid \& E8811 \& 2 Z 713 \& 1176.00 \& 754.50 \& 282.0 \\
\hline \& 1765 \& \(254 T\) \& 230/460 \& 34.5/17.3 \& 1.15 \& 92.4 \& CI \& F \& Rigid \& E862 \& -2G715 \& 1152.00 \& 739.00 \& 288.0 \\
\hline \% \& 1765 ; \& 2547 \& 575 \& - 13.8 \& 1.15 \& 92.4 \& CI \& F \& Rigid \& E8747 \& 2G717 \& 115200 \& 739.00 \& 288.0 \\
\hline ? \& 1175 \& 2847 \& -2301460 \& 37.0118.5 \& 1.15 \& 91.7 \& CI \& F \& Rigid \& E8215 \& -2G719 \& 1911.00 \& 1227.00 \& 414.0 \\
\hline 5 \& 1175 \& 2847 \& 575 \& 14.8 \& 1.15 \& 91.7 \& CI \& F \& Rigid \& E8690 \& -2G721 \& 1911.00 \& 1227.00 \& 414.0 \\
\hline 20 \& 3520 \& \({ }^{2565}\) \& 230/460 \& - 44.5/22.3 \& 1.15 \& 92.4 \& Cl \& F \& Rigid \& E883 \& -2G723 \& 1415.00 \& 908.00 \& 315.0 \\
\hline \& 3520 \& 256 T \& \({ }^{575}\) \& \({ }^{17.8}\) \& 1.15 \& 92.4 \& CI \& \(\underset{\mathrm{F}}{\mathrm{F}}\) \& Rrigid \& E8812 \& -2G725 \& 1415.00 \& 908.00 \& 315.0 \\
\hline \% \& 1765
1765 \& \({ }_{256 \mathrm{~T}}\) \& 230/460 \& 45.512.22. \& 1.15 \& 93.0 \& Cl \& F \& Rigid \& E8756 \& -2G727 \& 1401.00 \& 899.00 \& 332.0
332.0 \\
\hline = \& 1170 \& 286 T \& \(230 / 460\) \& 49.0124 .5 \& 1.15 \& 92.4 \& CI \& F \& Rigid \& E8217 \({ }^{\text {\% }}\) \& -2G731 \& 2326.00 \& 1493.00 \& 473.0 \\
\hline \% \& 1170 \& 2867 \& 575 \& 19.6 \& 1.15 \& 92.4 \& Cl \& F \& Rigid \& E8692 \& -2G733 \& 2326.00 \& 1493.00 \& 473.0 \\
\hline 25 \& 3545 \& 284 TS \& 230/460 \& 55.5/27.8 \& 1.15 \& 93.0 \& CI \& F \& Rigid \& E884 \& -2G735 \& 1771.00 \& 1137.00 \& 418.0 \\
\hline \% \& 3545
1765 \& 284TS \& 575 \& \({ }_{58.0+29.0}\) \& 1.15 \& \(9^{9 n}\) \& \& \(\underset{\mathrm{F}}{\mathrm{F}}\) \& Rigid \& E8813 \& \(2 G 737\)
\(-2 G 739\) \& 1771.00 \& 1137.00 \& 418.0 \\
\hline 1 \& 1765
1765 \& \({ }_{284 \mathrm{~T}}^{284 \mathrm{~T}}\) \& 230/460 \& 58.0r29.0 \& 1.15
1.15 \& 93.6 \& \({ }_{\mathrm{Cl}}^{\mathrm{Cl}}\) \& \(\stackrel{F}{F}\) \& Rigid \& E88762 \& \(2 G 739\)
\(-2 G 741\) \& 1704.00
1704.00 \& 1094.00 \& 429.0
429.0 \\
\hline \% \& 1180 \& 324 T \& 230/460 \& 60.4/30.2 \& 1.15 \& 83.0 \& CI \& \({ }^{2}\) \& Rigid \& E9219. \& -5N976 \& 3169.00 \& 2033.00 \& 595.0 \\
\hline \multirow[t]{2}{*}{30} \& 3545 \& \(286 T \mathrm{TS}\) \& 230/460 \& 67.0133 .5 \& 1.15 \& \multirow[t]{5}{*}{93.0
\(\cdots \quad 93.0\)
93.6

93.6
93.0} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{$=\mathrm{CI} \times \mathrm{F}$}} \& Rigid. \& E885 \& \multirow[t]{2}{*}{-2G743} \& 2093.00 \& 1343.00 \&

\hline \& 3545 \& 286TS \& 575 \& 26.8 \& 1.15 \& \& \& \& Rugid \& E8814 \& \& 2093.00 \& 1343.00 \& 455.0 b

\hline Etr \& 1765 \& ${ }^{2865}$ \& 230/460 \& 69.0734.5 \& 1.15 \& \& \& $\stackrel{F}{F}$ \& Rigid \& E865 \& -2G747 \& 2016.00 \& 1294.00 \& 475.0

\hline $=$ \& 1765 \& 286 T \& 575 \& 27.6 \& 1.15 \& \& \multirow[t]{2}{*}{$$
\stackrel{C}{\mathrm{CI}}
$$} \& F \& Rigid \& -E8815 \& 2G749 \& 2016.00 \& 1294.00 \& 475.0

\hline \% \& 1180 \& 326 T \& 230/460 \& 72.4/36.2 \& 1.15 \& \& \& F \& Rigid \& E9222 \& -5N977 \& 3648.00 \& 2340.00 \& 740.0

\hline \multirow[t]{2}{*}{40} \& 3560
1780 \& 32475 \& $230 / 460$

230460 \& 94.8847.4 \& 1.15 \& 94.1 \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \mathrm{CI} \\
& \mathrm{CI} \\
& \mathrm{CI} \\
& \mathrm{CI}
\end{aligned}
$$} \& F \& Rigid \& E986 \& -5N978 \& 2864.00 \& 1837.00 \& 570.03 s

\hline \& 1780 \& 324 T \& 575 \& 38.7 \& 1.15 \& 94.5 \& \& F \& Rigid \& E9819 \& -5N980 \& 2741.00 \& 1758.00 \& 620.0

\hline \% \& 1185 \& 364 T \& 460 \& 46.5 \& 1.15 \& 94.1 \& \& F \& Rigid \& E9224 \& -5N981 \& 5165.00 \& 3312.00 \& 1040.0

\hline \multirow[t]{2}{*}{505} \& 3560 \& 3267 TS \& $230 / 460$ \& $115.4 / 57.7$ \& 1.15 \& 94.5 \& CI \& F \& Rigid \& E987 \& -5N982 \& 3612.00 \& 2318.00 \& 565.0

\hline \& 1780 \& 326 T \& 2301460 \& 121.060 .5 \& 1.15 \& 94.5 \& Cl \& F \& Rigid \& E967 \& 5N983 \& 3223.00 \& 2068.00 \& $605: 0^{3}$

\hline \multirow[t]{2}{*}{\%} \& 1775 \& 326 T \& 575 \& 48.4 \& 1.15 \& 94.5 \& CI \& F \& Rigid \& E9822 \& -5N984 \& 3223.00 \& 2068.00 \& 610.0 -

\hline \& 1185 \& 365 T \& 460 \& 58.5 \& 1.15 \& 93.6 \& CI \& F \& Eigid \& E9226 \& -5N985 \& 6026.00 \& 3865.00 \& 1080.0. $=$

\hline \multirow[t]{4}{*}{60} \& 3560 \& $364 T \mathrm{~S}$ \& $230 / 460$ \& 138.4/69.2 \& 1.15 \& 95.0 \& CI \& F \& \& \& \& \& \& 810.0

\hline \& 1780 \& 364 T \& 230/460 \& 141.870 .9 \& 1.15 \& 95.0 \& CI \& F \& Rigid \& $$
E 9681
$$ \& -5N987 \& 4793.00 \& 3075.00 \& $905.0{ }^{\circ}$

\hline \& 1780 \& 364 T \& 575 \& 56.7 \& 1.15 \& 95.0 \& Cl \& F \& Rigid \& E9824 \& -5N988 \& 4793.00 \& 3074.00 \& 1030.0 -

\hline \& 1190 \& 404 T \& 460 \& 68.8 \& 1.15 \& 94.5 \& CI \& F \& Rigid \& E9228 \& -5N989 \& 6971.00 \& 4471.00 \& 1490.0.

\hline \multirow[t]{4}{*}{75} \& 3560 \& 366 TS \& 230/460 \& \& 1.15 \& 95.4 \& CI \& \& Rigid \& E989 \& \& 6412.00 \& \& 835.0

\hline \& 1780 \& 365 T \& 230/460 \& 177.2/88.6 \& 1.15 \& 95.0 \& CI \& F \& Rigid \& E9691 \& 5N991 \& 6283.00 \& 4032.00 \& 905.0

\hline \& 1780 \& $365 T$ \& 575 \& 70.9 \& 1.15 \& 95.0 \& Cl \& F \& Rigid \& E9826 \& -5N992 \& 6283.00 \& 4031.00 \& 1070.0

\hline \& 1190 \& 405 T \& 460 \& 85.9 \& 1.15 \& 95.0 \& Cl \& F \& Rigid \& E9231 \& -5N993 \& 8531.00 \& 5472.00 \& 1550.0

\hline \multirow[t]{5}{*}{100} \& 3570 \& 405 TS \& $230 / 460$ \& $218.0 / 109.0$ \& 1.15 \& 93.6 \& \& \& Rigid \& \& \& 8137.00 \& 5221.00 \&

\hline \& 1790 \& 405 T \& $230 / 460$ \& $226.0 / 113.0$ \& 1.15 \& 95.0 \& CI \& $\stackrel{F}{F}$ \& Rigid \& E9701 \& -5N995 \& 7486.00 \& 4803.00 \& 1304.0

\hline \& 1790 \& 405 TS \& 230/460 \& 226.0/113.0 \& 1.15 \& 95.0 \& CI \& F \& Rigid \& E9358 \& -5N996 \& 7711.00 \& 4946.00 \& 1560.0

\hline \& 1790 \& 405 T \& 575 \& 91.6 \& 1.15 \& 95.0 \& CI \& F \& Rigd \& E9827 \& -5N997 \& 7486.00 \& 4801.00 \& 1560.0

\hline \& 1190 \& 44 T \& 460 \& 113.0 \& 1.15 \& 95.0 \& CI \& F \& Rigid \& E9233 \& -5N998 \& 11387.00 \& 7304.00 \& 1980.0

\hline \multirow[t]{2}{*}{125} \& 3575 \& 444 TS \& 460 \& 135.0 \& 1.15 \& 94.5 \& CI \& F \& Rigid \& E9506 \& -5N999\# \& 11291.00 \& 7243.00 \& 1990.0

\hline \& 1785 \& 444 T \& 460 \& 134.0 \& 1.15 \& 95.4 \& Cl \& F \& Rigid \& E971 \& -6N032 \& 10532.00 \& 6755.00 \& 2050.0

\hline \multirow[t]{4}{*}{150} \& 3575 \& 415 TS \& \& \& \& \& \& \& \& \& \& 14102.00 \& 9049.00 \&

\hline \& 1790 \& 445 T \& 460 \& 168.0 \& 1.15 \& 95.8 \& CI \& F \& Rigd \& E972 \& -6N035 \& 12291.00 \& 7886.00 \& 2020.0

\hline \& 1790 \& +45TS \& 460 \& 168.0 \& 1.15 \& 95.8 \& Cl \& F \& Rigid \& E9371 \& -6N036 \& 12659.00 \& 8122.00 \& 2020.0

\hline \& 1190 \& 1497 \& 460 \& 168.0 \& 1.15 \& 95.8 \& CI \& P \& Rigd \& E9237 \& -6N037 \& 16047.00 \& 10293.00 \& 2790.0

\hline \multirow[t]{3}{*}{200} \& 3570 \& 45 TS \& 460 \& 219.0 \& 1.0 \& 94.1 \& $\widetilde{\widetilde{ }}$ \& F \& Rigud \& E9508 \& -6N038 \& 18418.00 \& 11822.00 \& 1990.0

\hline \& 1785 \& 445 T \& 460 \& 216.0 \& 1.15 \& 95.4 \& $\stackrel{C}{C l}$ \& F \& Rigid \& E9373 \& - 6 N039 \& 15031.00 \& 19645.00 \& 2050.0

\hline \& 1190 \& 449 T \& 460 \& 225.0 \& 1.15 \& 95.4 \& CI \& F \& Rigid \& E9239 \& -6N040 \& 19889.00 \& 12762.00 \& 2820.0

\hline \multirow[t]{2}{*}{250} \& 3575 \& H49TS \& 460 \& 267.0 \& 1.0 \& 95.0 \& Cl \& F \& \& \& \& 23117.00 \& 14837.00 \& 2630.0

\hline \& 1785 \& 449 T \& 460 \& 282.0 \& 1.15 \& 96.2 \& CI \& F \& Rigid \& E9380 \& -6N042 \& 18532.00 \& 11890.00 \& 2830.0

\hline
\end{tabular}

(\dagger) $\mathrm{CI}=$ Cast-Iron construction. (\#) CCW rotation (facing shaft) only.

3-PHASE TEFC PREMIUM EFFICIENCY MOTORS

DAYTON WATTRIMMER PREMIUM EFFICIENCY MOTORS (Cont.)

HP	Namaplate BPM	NEMA Frame	Rotation Facing Shaft	Yolts 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	nema Nominal Efficioncy	Frame\#	\ln. Class	Stock No.	List	Each	Shag. Wt.
40	3565	324 TS	CW/CCW	230/460	94.6/47.3	1.15	93.6	Cl	F	-5N267t	\$2412.00	\$1718.00	585.0
	1775	324 T	CW/CCW	230/460	95.0/47.5	1.15	94.1	Cl	F	-5N268	2340.00	1668.00	576.0
	1185	364 T	CW/CCW	460	48.0	1.15	94.5	Cl	F	-5N269	4155.00	2960.00	803.0
50	3545	326 TS	CW/CCW	$230 / 460$	$115.0 / 57.5$	1.15	93.0	Cl	F	-5N270	3106.00	2212.00	644.0
	1775	326 T	CW/CCW	2304460	115.057 .5	1.15	94.1	Cl	F	-5N271	2881.00	2052.00	690.0
	1185	3655	CW/CCW	460	60.0	1.15	94.5	Cl	F	-5N272	4848.00	3453.00	877.0
60	3560	364 TS	CW/CCW	$230 / 460$	139.2/69.6	1.15	93.6	CI	F	-5N273	4227.00	3011.00	790.0
	1780	$364 T$	CW/CCW	$2380 / 460$	145.0/72.5	1.15	95.0	CI	F	-5N274	4284.00	3051.00	773.0
	1185	404 T	CW/CCW	460	72.5	1.15	94.5	Cl	F	-5N275	5739.00	4086.00	1210.0
75	3560	365 TS	CW/CCW	230/460	171.6885	1.15	94.1	CI	F	-5N276	5324.00	3792.00	835.0
	1780	365 T	CW/CCW	2304460	172.0/86.0	1.15	95.4	Cl	F	-5N277	5520.00	3932.00	900.0
	1185	405 T	CW/CCW	460	90.0	1.15	95.0	CI	F	-5N278	6863.00	4887.00	1300.0
100	3565	405 TS	CW/CCW	$230 / 460$	226.0/113.0	1.15	94.1	CI	F	-5N279 \dagger	7115.00	5068.00	1240.0
	1780	405 T	CW/CCW	2301460	232.0/116.0	1.15	95.4	CI	F	-5N280	6775.00	4825.00	1300.0
	1185	444 T	CW/CCW	460	127.0	1.15	95.4	Cl	F	-5N281	9607.00	6842.00	1715.0
125	3570	444 TS	CCW	480	147.5	1.15	94.5	Cl	F	-5N282	10263.00	7309.00	1750.0
	1775	444 T	CW/CCW	460	144.0	1.15	95.4	Cl	F	-5N283	9531.00	6787.00	1790.0
	1185	445 T	CW/CCW	460	150.0	1.15	95.8	CI	F	-5N284	11056.00	7874.00	1925.0
150	3655	4457 S	CCW	460	174.0	1.15	94.5	CI	F	-5N285	12329.00	8782.00	18150
	1780	445 T	CW/CCW	460	170.0	1.15	95.8	Cl	F	-5N286	11123.00	7922.00	1845.0
	1185	447 T	CW/CCW	460	178.0	1.15	96.2	Cl	F	-5N287	12909.00	9193.00	2310.0
200	3560	$447 T \mathrm{~T}$	CW/CCW	460	226.0	1.15	95.0	CI	F	-5N288	15596.00	11109.00	2145.0
	1780	447 T	CW/CCW	460	224.0	1.15	96.2	Cl	F	-5N289	13369.00	9521.00	22000
	1185	449 T	CW/CCW	. 460	226.0	1.15	95.8	Cl	F	-5N290	16000.00	11395.00	2500.0
250	3570	4497 S	CCW	460	269.0	1.15	95.4	CI	F	-5N291	19925.00	14194.00	2600.0
	1785	4497	CCW	460	275.0	1.15	96.2	CI	F	-5N292	16771.00	11945.00	2600.0

(\#) GFA Cast-Iron construction. (\dagger) NEMA design A; all others are NEMA design B.

\#
y

- Qualify for efficiency rebates
- Two-year warranty

Typical Uses: Premium efficiency perfor mance on air compressors, conveyors, fans, blowers, machine tools, pumps, and othe moderate to hard-starting equipment in nancombustible dusty, dirty environmeits where 3 -phase power is available.
Bearings: Ball
Mounting: Rigid
Themial Protection: None
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW (except Nos. 5 N999 and 6N034 are CCW facing shaft)
Finish: Beige or gray
Brand: GE

GE BRAND, PREMIUN:'rrFICIENCY

HP	Nameplate RPM	NEMA frame	Voits 60 Hz	Full-Load Anps at Nameplate Voits	Service Factor	NEMA Nominal Elficiancy	Frame**	Ins. Class	Base	GE Stock No.	Slock No.	List	Each	Shpg. W.
1	1725	$\begin{aligned} & 56 \\ & 437 \end{aligned}$	$208-230 / 460$ 2082304	$32.3 .0 / 1.5$	1.15 1.15	78.3 * 84.0	RS	B	Rigid	E1OFI E1OF2	$-3 N 940$	$\$ 368.00$ 372.00	\$223.25	39.0 40.0
11/2	1725	145 T	208-230/460	4.6-4.2/2.1	1.15	84.0	RS	B	Rigid	E15Fl	- 3N942	408.00	247.50	34.0
	1170	182\%	$230 / 460$	4.912 .5	1.15	86.5	Cl	F	Rigid	E824	-26655	420.00	269.25	90.0
	1170	182T	575	1.8	1.15	86.5	Cl	F	Rigid	E8605	- 2G657	420.00	269.25	90.0
2	3450	145 T	208-230/460	5.8-5.4/2.7	1.15	86.5	RS	R	Rigid	E20F2	-3N961	471.00	285.75	36.0
	1725	145 T	208.230/460	6.2-5.8/2.9	1.15	84.0	RS	B	Rigid	E20F1	- 3N943	427.00	258.75	48.0
	1165	184T'	230/460	6.3/3.2	1.15	87.5	${ }_{0}$	F	Rigid	E825	- $2 \mathrm{G659}$	464.00	298.00	101.0
	1165	184 T	575	2.5	1.15	87.5	OI	F	Rigid	E8657	- 26661	464.00	298.00	101.0
3	8520	182 T	230/460	7.213 .6	1.15	87.5	$\overline{\mathrm{Cl}}$	F	Rigid	E826	- 2G663	442.00	283.75	90.0
	1765	182 T	230/460	7.63 .8	1.15	88.5	Cl	F	Rigid	E827	- 26667	455.00	292.50	95.0
	1765	182 T	575	3.0	1.15	88.5	Cl	F	Rigid	E868	- 26669	455.00	292.50	95.0
	1175	2137	2301460	8.3/4.2	1.15	88.5	CI	F	Rigid	E8211	- 26671	618.00	396.50	139.0
	1175	$213 T$	575	3.3	1.15	88.5	Cl	F	Rigig	E8709	- 2G673	618.00	396.50	139.0

[^5]
3-PHASE PREMIUMEFFICIENCY SEVERE DUTY MOTORS

Designed to meet or exceed 1997 federally legislated efficiency levels

- For use in high humidity, acidic, alkali, or dirty, non-explosive conditions
- Complete cast-iron construction on 180 frame and above
- 100\% copper windings
- Bearing caps supplied on 180 frame and above
- Suitable for $40^{\circ} \mathrm{C}$ ambient at 1.15 service factor and $65^{\circ} \mathrm{C}$ ambient at 1.0 service factor
Three-year warranty

Typical Uses: Pumps, fans, blowers, compressors, conveyors, and other industrial equipment used in chemical and processing industries.
Bearings: Regreasable double-shielded ball Mounting: Rigid welded on 140 frame; cast feet on 180 frame and above
Enclosure: TEFC
Thermal Protection: None
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Finish: Gray.
Brand: Dayton

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline HP \& Nampolate APM \& \begin{tabular}{l}
NEMA \\
Frama
\end{tabular} \& Rotation Facing Shaft \& Volts 60 Hz \& Full-Load
Naps at
Nameplate Volts \& Service Factor \& Nomizal Efficiency \& lus. \& Stack No. \& List \& Each \& Shpg. \\
\hline 1 \& \[
\begin{aligned}
\& 1740 \\
\& 1150
\end{aligned}
\] \& \[
\begin{aligned}
\& 143 \mathrm{~T} \\
\& 145 \mathrm{~T}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { CW/CCW } \\
\& \text { CW/CCW }
\end{aligned}
\] \& \[
\begin{aligned}
\& 230 / 460 \\
\& 230 / 460
\end{aligned}
\] \& \[
\begin{aligned}
\& 3.0 / 1.5 \\
\& 3.9 / 1.05
\end{aligned}
\] \& \[
\begin{aligned}
\& 1.15 \\
\& 1.15
\end{aligned}
\] \& \[
\begin{aligned}
\& 85.5 \\
\& 82.6
\end{aligned}
\] \& \[
\bar{F}
\] \& \[
\begin{array}{r}
5 N 795 \\
-5 N 796
\end{array}
\] \& \[
\begin{array}{r}
\$ 362.00 \\
449.00
\end{array}
\] \& \[
\begin{array}{r}
\$ 266.50 \\
\mathbf{3 3 0 . 2 5}
\end{array}
\] \& \[
=76.0
\] \\
\hline 11/2 \& \[
\begin{aligned}
\& 3500 \\
\& 1740 \\
\& 1170
\end{aligned}
\] \& \[
\begin{aligned}
\& 143 \mathrm{~T} \\
\& 145 \mathrm{~T} \\
\& 182 \mathrm{~T}
\end{aligned}
\] \& CW/CCW CW/CCW CW/CCW \& \[
\begin{aligned}
\& 230 / 460 \\
\& 230460 \\
\& 230 / 460
\end{aligned}
\] \& \[
\begin{aligned}
\& 4.0 / 2.0 \\
\& 4.5 / 2.25 \\
\& 5.0 / 2.5
\end{aligned}
\] \& \[
\begin{aligned}
\& 1.15 \\
\& 1.15 \\
\& 1.15
\end{aligned}
\] \& \[
\begin{aligned}
\& 84.0 \\
\& 86.5 \\
\& 86.5
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline \mathbf{F} \\
\& \mathbf{F} \\
\& \mathbf{F}
\end{aligned}
\] \& \[
\begin{array}{r}
5 N 797 \\
-5 N 798 \\
-5 N 799 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& \begin{array}{l}
887.00 \\
402.00 \\
557.00
\end{array}
\end{aligned}
\] \& \[
\begin{aligned}
\& 285.00 \\
\& 296.00 \\
\& 373.00
\end{aligned}
\] \& \[
\begin{array}{r}
65.0 \\
70.0 \\
.100 .0
\end{array}
\] \\
\hline 2 \& \[
\begin{aligned}
\& 3490 \\
\& 1730 \\
\& 1170
\end{aligned}
\] \& \[
\begin{aligned}
\& 145 \mathrm{~T} \\
\& 145 \mathrm{~T} \\
\& 184 \mathrm{~T}
\end{aligned}
\] \& CW/CCW CW/CCW CW/CCW \& \[
\begin{aligned}
\& 230 / 460 \\
\& 230 / 460 \\
\& 230 / 460
\end{aligned}
\] \& \[
\begin{aligned}
\& 5.22 .6 \\
\& 5.82 .9 \\
\& 6.6 / 3.3
\end{aligned}
\] \& \[
\begin{aligned}
\& 1.15 \\
\& 1.15 \\
\& 1.15
\end{aligned}
\] \& \[
\begin{aligned}
\& 86.5 \\
\& 86.5 \\
\& 87.5
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline F \\
\& F \\
\& F
\end{aligned}
\] \& \[
\begin{array}{r}
5 N 800 \\
=5 N 801 \\
5 N 802
\end{array}
\] \& \[
\begin{aligned}
\& \begin{array}{l}
663.00 \\
442.00 \\
566.00
\end{array}
\end{aligned}
\] \& \[
\begin{aligned}
\& 340.75 \\
\& 325.25 \\
\& 416.50
\end{aligned}
\] \& \[
\begin{array}{r}
70.0 \\
70.0 \\
110.0
\end{array}
\] \\
\hline \[
8
\] \& \[
\begin{aligned}
\& 3530 \\
\& 1760 \\
\& 1175
\end{aligned}
\] \& \[
\begin{aligned}
\& 182 \mathrm{~T} \\
\& 182 \mathrm{~T} \\
\& 213 \mathrm{~T}
\end{aligned}
\] \& CW/CCW CW/CCW CW/CCW \& \[
\begin{aligned}
\& 230 / 460 \\
\& 230 / 460 \\
\& 230 / 460
\end{aligned}
\] \& \[
\begin{aligned}
\& 8.04 .0 \\
\& 8.1 / 4.05 \\
\& 9.4 / 4.7
\end{aligned}
\] \& \[
\begin{aligned}
\& 1.15 \\
\& 1.15 \\
\& 1.15
\end{aligned}
\] \& \[
\begin{aligned}
\& 88.5 \\
\& 89.5 \\
\& 89.5
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline F \\
\& F \\
\& F
\end{aligned}
\] \& \[
\begin{array}{r}
5 N 803 \\
-5 N 804 \\
-5 N 805
\end{array}
\] \& \[
\begin{aligned}
\& 522.00 \\
\& 490.00 \\
\& 691.00
\end{aligned}
\] \& \[
\begin{aligned}
\& 384.00 \\
\& 360.25 \\
\& 508.50
\end{aligned}
\] \& \[
\begin{aligned}
\& 100.0 \\
\& 100.0 \\
\& 110.0
\end{aligned}
\] \\
\hline 5

$=$ \& \[
$$
\begin{aligned}
& 3515 \\
& 1750 \\
& 1165
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 184 \mathrm{~T} \\
& 184 \mathrm{~T} \\
& 215 \mathrm{~T}
\end{aligned}
$$

\] \& CW/CCW CW/CCW CW/CCW \& \[

$$
\begin{aligned}
& 230 / 460 \\
& 230 / 460 \\
& 230 / 460
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12.6 / 6.3 \\
& 13.06 .5 \\
& 15.077 .5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.15 \\
& 1.15 \\
& 1.15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 89.5 \\
& 90.2 \\
& 90.2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline F \\
& \mathrm{~F} \\
& \mathrm{~F}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5 N 806 \\
& 5 N 807 \\
& 5 N 808
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 646.00 \\
& 573.00 \\
& 973.00 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 475.25 \\
& 421.50 \\
& 716.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 110.0 \\
& 110.0 \\
& 135.0
\end{aligned}
$$
\]

\hline $$
7^{2 / 2}
$$ \& \[

$$
\begin{aligned}
& 3525 \\
& 1760 \\
& 1175
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 213 \mathrm{~T} \\
& 213 \mathrm{~T} \\
& 254 \mathrm{~T}
\end{aligned}
$$

\] \& CW/CCW CW/CCW CW/CCW \& \[

$$
\begin{aligned}
& 230 / 460 \\
& 230 / 460 \\
& 230 / 460
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 18.69 .3 \\
& 19.09 .5 \\
& 20.210 .5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.15 \\
& 1.15 \\
& 1.15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 91.7 \\
& 91.7 \\
& 91.7
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline \underset{F}{F} \\
& \underset{F}{ }
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
5 N 809 * \\
-5 N 810 \\
-5 N 811 *
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
781.00 \\
776.00 \\
1293.00
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 574.50 \\
& 570.50 \\
& 951.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 160.0 \\
& 160.0 . \\
& 220.0
\end{aligned}
$$
\]

\hline $$
\begin{aligned}
& 10 \\
& 7 \%
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 3510 \\
& 1755 \\
& 1170
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 215 \mathrm{~T} \\
& 215 \mathrm{~T} \\
& 256 \mathrm{~T}
\end{aligned}
$$

\] \& CW/CCW CW/CCW CW/CCW \& \[

$$
\begin{aligned}
& 230 / 460 \\
& 230 / 460 \\
& 230 / 460
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 24.6 / 12.3 \\
& 24.8 / 12.4 \\
& 25.212 .6
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.15 \\
& 1.15 \\
& 1.15
\end{aligned}
$$
\] \& . ${ }^{92}$

91.7 \& $$
\begin{aligned}
& \hline \mathbf{F} \\
& \vec{F} \\
& \mathbf{F}
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
5 N 812 \\
-5 N 813 \\
5 N 814 *
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
913.00 \\
935.00 \\
1580.00
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
672.00 \\
688.00 \\
1162.00 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 150.0 \\
& 150.0 \\
& 360.0
\end{aligned}
$$
\]

\hline 15 \& $$
\begin{aligned}
& 3545 \\
& 1770 \\
& 1180 \\
& \hline
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 254 \mathrm{~T} \\
& 254 \mathrm{~T} \\
& 284 \mathrm{~T}
\end{aligned}
$$

\] \& CW/CCW CW/CCW CW/CCW \& \[

$$
\begin{aligned}
& 230 / 460 \\
& 230 / 460 \\
& 230 / 460
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 36.2 / 18.1 \\
& 38.019 .0 \\
& 39.019 .5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& .15 \\
& 1.15 \\
& 1.15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 91.7 \\
& 91.7 \\
& 92.4
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline \mathbf{F} \\
& \mathbf{F} \\
& \mathbf{F}
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
5 N 815 \\
-5 N 816 \\
-5 N 817 * \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 1254.00 \\
& 1232.00 \\
& 2096.00
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
92250 \\
906.00 \\
1542.00
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 300.0 \\
& 300.0 \\
& 380.0
\end{aligned}
$$
\]

\hline $$
20
$$ \& \[

$$
\begin{aligned}
& 3545 \\
& 1770 \\
& 1175
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 256 \mathrm{~T} \\
& 256 \mathrm{~T} \\
& 286 \mathrm{~T}
\end{aligned}
$$

\] \& CW/CCW CW/CCW CW/CCW \& \[

$$
\begin{aligned}
& 230 / 460 \\
& 230460 \\
& 230 / 460
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 47.2 / 23.6 \\
& 49.024 .5 \\
& 51.625 .8
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.15 \\
& 1.15 \\
& 1.15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 92.4 \\
& 93.0 \\
& 92.4
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline \mathbf{F} \\
& \mathbf{F} \\
& \mathbf{F}
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
5 N 818^{*} \\
-5 N 819^{\circ} \\
-5 N 820^{*}
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 1553.00 \\
& 153.00 \\
& 2554.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1142.00 \\
& 1130.00 \\
& 1879.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 360.0 \\
& 360.0 \\
& 410.0
\end{aligned}
$$
\]

\hline 25 \& $$
\begin{aligned}
& 3560 \\
& 1775 \\
& 1180
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 284 \mathrm{TS} \\
& 384 \mathrm{~T} \\
& 324 \mathrm{~T}
\end{aligned}
$$

\] \& CW/CCW CW/CGW CW/CCW \& \[

$$
\begin{aligned}
& 460 \\
& 460 \\
& 460
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 30.7 \\
& 30.2 \\
& 30.2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.15 \\
& 1.15 \\
& 1.15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 92.4 \\
& 93.6 \\
& 93.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline \mathbf{F} \\
& \mathbf{F} \\
& \mathbf{F}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5 N 821^{\circ} \\
& -5 N 822 \\
& -5 N 23
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1914.00 \\
& 1828.00 \\
& 3096.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1408.00 \\
& 1345.00 \\
& 2277.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 380.0 \\
& 380.0 \\
& 575.0
\end{aligned}
$$
\]

\hline 30, \& $$
\begin{aligned}
& 3550 \\
& 1775 \\
& 1180
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 286 \mathrm{TS} \\
& 286 \mathrm{~T} \\
& 326 \mathrm{~T}
\end{aligned}
$$

\] \& CW/CCW CW/CCW CW/CCW \& \[

$$
\begin{aligned}
& 460 \\
& 460 \\
& 460^{\circ}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 34.8 \\
& 35.5 \\
& 35.7
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.15 \\
& 1.15 \\
& 1.15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 92.4 \\
& 94.1 \\
& 93.6
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline \mathbf{F} \\
& \mathbf{F} \\
& \mathbf{F}
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
\mathbf{5 N 8 2 4} \\
-5 N 825 \\
5 N 826
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 2235.00 \\
& 2125.00 \\
& 3566.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1644.00 \\
& 2562.00 \\
& 2622.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 410.0 \\
& 625.0 \\
& 625.0
\end{aligned}
$$
\]

\hline 40 \& $$
\begin{aligned}
& 3565 \\
& 1775 \\
& 1185
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 324 \mathrm{TS} \\
& 324 \mathrm{~T} \\
& 364 \mathrm{~T}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{CW} / \mathrm{CCW} \\
& \mathrm{CW} / \mathrm{CCW} \\
& \mathrm{CW} / \mathrm{CWW}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 460 \\
& 460 \\
& 460 \\
& 460
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 47.3 \\
& 47.5 \\
& 48.0 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.15 \\
& 1.15 \\
& 1.15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 93.6 \\
& 94.1 \\
& 94.5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline \mathbf{F} \\
& \mathbf{F} \\
& \mathbf{F}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5 N 827^{\circ} \\
& -5 N 828 \\
& -5 N 829 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2948.00 \\
& 2823.00 \\
& 4833.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2168.00 \\
& 2076.00 \\
& 3554.00 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 625.0 \\
& 575.0 \\
& 800.0
\end{aligned}
$$
\]

\hline 50 \& $$
\begin{aligned}
& 3545 \\
& 1775 \\
& 1185
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 326 \mathrm{TS} \\
& 326 \mathrm{~T} \\
& 365 \mathrm{~T}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { CW/CCW } \\
& \text { CW/CCW } \\
& \text { CW/CCW }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 460 \\
& 460 \\
& 460 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 57.7 \\
& 57.5 \\
& 60.0 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.15 \\
& 1.15 \\
& 1.15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 93.0 \\
& 94.1 \\
& 94.5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline \mathbf{F} \\
& \mathbf{F} \\
& \mathbf{F}
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
5 N 830 \\
\mathbf{5 N 8 3 1} \\
5 N 832
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 3814.00 \\
& 3467.00 \\
& 5549.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2805.00 \\
& 2550.00 \\
& 4080.00 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 625.0 \\
& 625.0 \\
& 910.0
\end{aligned}
$$
\]

\hline 60 \& $$
\begin{aligned}
& 3560 \\
& 1780 \\
& 1185
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 364 \mathrm{TS} \\
& 364 \mathrm{~T} \\
& 404 \mathrm{~T}
\end{aligned}
$$

\] \& CW/CCW CW/CCW CW/CCW \& \[

$$
\begin{aligned}
& 460 \\
& 460 \\
& 460
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 69.6 \\
& 72.5 \\
& 72.5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.15 \\
& 1.15 \\
& 1.15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 93.6 \\
& 95.0 \\
& 94.5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{F} \\
& \mathrm{~F} \\
& \mathrm{~F}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { SN833 } \\
& \text { SN834 } \\
& \text { SN835 }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5017.00 \\
& 4974.00 \\
& 6502.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3689.00 \\
& 3658.00 \\
& 4781.00
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
800.0 \\
800.0 \\
1160.0
\end{array}
$$
\]

\hline 75 \& $$
\begin{aligned}
& 3565 \\
& 1780 \\
& 1185
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 365 \mathrm{TS} \\
& 365 \mathrm{~T} \\
& 405 \mathrm{~T}
\end{aligned}
$$

\] \& CW/CCW CW/CCW cW/CCW \& \[

$$
\begin{aligned}
& 460 \\
& 460 \\
& 460
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 85.8 \\
& 86.0 \\
& 90.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.15 \\
& 1.15 \\
& 1.15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 94.1 \\
& 95.4 \\
& 95.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline \mathbf{F} \\
& \mathbf{F} \\
& \mathbf{F}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5 N 836{ }^{\circ} \\
&-5 N 837 \\
& 5 N 838
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6300.00 \\
& 6305.00 \\
& 7655.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4634.00 \\
& 4637.00 \\
& 5629.00
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
910.0 \\
910.0 \\
1300.0 \\
\hline
\end{array}
$$
\]

\hline 100 \& $$
\begin{aligned}
& 3565 \\
& 1780 \\
& 1185 \\
& \hline
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 405 \mathrm{TS} \\
& 405 \mathrm{~T} \\
& 444 \mathrm{~T} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { CW/CCW } \\
& \text { CW/CCW } \\
& \text { CW/CCW }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 460 \\
& 460 \\
& 460
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 113.0 \\
& 116.0 \\
& 121.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.15 \\
& 1.15 \\
& 1.15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 94.1 \\
& 95.4 \\
& 95.4
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline \underset{F}{F} \\
& \underset{F}{2}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5 N 839^{*} \\
&-5 N 840^{\prime} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
8442.00 \\
7790.00 \\
10462.00
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 6208.00 \\
& 5728.00 \\
& 7693.00 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1300.0 \\
& 1300.0 \\
& 1675.0
\end{aligned}
$$
\]

\hline 125 \& $$
\begin{aligned}
& 3570 \\
& 1775 \\
& 1185 \\
& \hline
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 444 \mathrm{TS} \\
& 444 \mathrm{~T} \\
& 445 \mathrm{~T}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{CW} \\
\mathrm{CW} / \mathrm{CCW} \\
\mathrm{CW} / \mathrm{CCW}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 460 \\
& 460 \\
& 460 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 147.5 \\
& 144.0 \\
& 150.0 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.15 \\
& 1.15 \\
& 1.15 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 94.5 \\
& 95.4 \\
& 95.8 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline \underset{F}{F} \\
& \underset{F}{ }
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
5 N 842 \\
5 N 843 \\
5 N 844 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 11035.00 \\
& 10255.00 \\
& 12850.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 8115.00 \\
& 7541.00 \\
& 9448.00 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1675.0 \\
& 1675.0 \\
& 2120.0
\end{aligned}
$$
\]

\hline 150 \& $$
\begin{aligned}
& 3555 \\
& 1780 \\
& 1185
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 445 \mathrm{TS} \\
& 445 \mathrm{~T} \\
& 447 \mathrm{~T}
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 460 \\
& 460 \\
& 460
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 174.0 \\
& 170.0 \\
& 185.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.15 \\
& 1.15 \\
& 1.15 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 94.5 \\
& 9.8 \\
& 96.8 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{F} \\
& \mathrm{~F} \\
& \mathrm{~F}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& -5 N 845 \\
& \sim 5 N 846 \\
& 5 N 847 * \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 13257.00 \\
& 11922.00 \\
& 14377.00
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
9749.00 \\
8766.00 \\
10572.00
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 2120.0 \\
& 2120.0 \\
& 2350.0
\end{aligned}
$$
\]

\hline 200 \& $$
\begin{aligned}
& 3560 \\
& 1780 \\
& 1185
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 447 \mathrm{TS} \\
& 447 \mathrm{~T} \\
& 449 \mathrm{~T}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { CW/CCW } \\
& \mathrm{CW} / \mathrm{CWW} \\
& \mathrm{CW} / \mathrm{CWW}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 460 \\
& 460 \\
& 460
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 226.0 \\
& 224.0 \\
& 225.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.15 \\
& 1.15 \\
& 1.15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 95.0 \\
& 96.2 \\
& 95.8
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline F \\
& \mathrm{~F} \\
& \mathrm{~F}
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
5 N 848 \\
-5 N 849 \\
5 N 850
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 16770.00 \\
& 14501.00 \\
& 17600.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12334.00 \\
& 10664.00 \\
& 12944.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2120.0 \\
& 2120.0 \\
& 2350.0
\end{aligned}
$$
\]

\hline 250 \& $$
\begin{aligned}
& 3570 \\
& 1785
\end{aligned}
$$ \& \[

{ }_{449 \mathrm{TS}}^{449 \mathrm{~T}}

\] \& \[

$$
\begin{aligned}
& \mathrm{CCW} \\
& \mathrm{CCW}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 460 \\
& 460
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 269.0 \\
& 275.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.15 \\
& 1.15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 95.4 \\
& 96.2
\end{aligned}
$$

\] \& \[

\bar{F}

\] \& \[

$$
\begin{aligned}
& =5 N 851^{*} \\
& =5 N 852^{\circ}
\end{aligned}
$$
\] \& 21159.00

18192.00 \& $$
\begin{aligned}
& 15557.00 \\
& 13379.00
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 2350.0 \\
& 2350.0
\end{aligned}
$$
\]

\hline
\end{tabular}

(*) NEMA design A; all others are NEMA design B.
CAUTIONE Not for fans in unattended areas.
Refor fop page 5 for ULSOT Stantardyproper therinal profection, ond ofher motor selection information.

INDUSTRIA： MOTORS

3－PHASE PREMIUM EFFICIENCY SEVERE DUTY MOTORS

－Energy \＄aver premium efficiency designs
－Suitable for $40^{\circ} \mathrm{C}$ ambient－at 1.15 ． service factor and $65^{\circ} \mathrm{C}$ at 1.0 service foctor
－Designed for high humidity，acidic， alkali，or dirty（nonexplosive）condi－ tions
－Cast－iron frámes and endshields on 182T frame：and up
－Qualify for efficiency rebates．，
－Supplied with grease fittings．
－Three－year warranty
Typical Uses：Pumps，fans，blowers，air compressors，conveyors，machinery，and other industrial equipment．
Bearings：Ball
Mounting：Rigid base
Enclosure：TEFC
Thermal Protection：None
Ambient： $40^{\circ} \mathrm{C}$ ：
Duty：Continuouis
Finish：Gray or beige
Brand：GE．

$\begin{aligned} & \text { Iै } \\ & \text { EX } \end{aligned}$	Nampiplate 	NEMA Frame	Rotation Faciag Shatt	Voltis部	Frill－Load Amps at Nameplate Volts	Service Factar	NEMA Nominal Efficiency	Ins： Class		Stock No．	List	Each	Shpg Ht
至澵。	870.	1827	CW／COW	2304460	$4.0 / 2.0$	1.15	80.0	F	E9871	－5N017	\＄714．00	\＄458．25	116.0
F	870^{-}	182 T	CW／CCW	460	2.0	1.15	80.0	F	E9887	－5N019	714.00	458.25	100.0
Hz	870	182\％	CW／CCW	． 675	1.6	1.15	80.0	F	E9872	－5N018	714.00	458.25	116.0
142	1170	182 T	CW／CCW	$230 / 450$	4．6／2．3	1.15	87.3	F	9702E	－4N893	560.00	359.00	138.0
8	1170	182 T	CW／CCW	－ 460	2.3	1.15	27.5	F	9943 E	－5N024	560.00	359.25	110.0
－等	1170	182 T	CW／CCW	－ 675	1.8	1.15	$\cdots \times 1.5$	$\cdot \mathrm{F}$	9703E	－5N023	560.00	359.00	134.0
等	860 ．${ }^{\text {an }}$	184 T	CW／CCW	$230 / 460$	5．6／2．8	1.15	81.5	F	E9873	－5N020	844.00	542.00	126.0
2	860 in	184 T	CW／CCW	； 450	2.8	1%	－ 81.5	F	E9888	－5N022	844.00	542.00	124.0
	860	184 T	CW／CCW	575	2.3	1.15	81.5	F	E9874	－5N022	844.00	542，00	124.0
2	1165	184 T	CW／CCW	$230 / 460+$	$5.8 / 2.9$	1.15	87.5	F	9074 E	－5N028	626.00	401.50	136.0
爫	1165	184 T	CW／CCW	460	2.9	1.15	875	F	9944E	－SN030	626.00	401.50	132.0
	1105．	184T	CW／CCW	575	2.4	1.15	87.5	F	9706 E	－5N029	626.00	401．50	134.0
3	875	2137	CW／CCW	230／460 ${ }^{\circ}$	$7.0 / 3.5$	1.15	86.5	F	E9875	－5N026	1089.00	699.00	171.0
	875	2137	CW／CCW	－ 460.	3.5	1.15	86.5	F	E9705	－5N025	1089.00	698.50	214.0
涼奚	875	218 T	CW／CCW	575	2.8	115	86.5	F	E9876	－5N027	1089．00	699.00	186.0
34	$3515 \sim 7$	182 T	CW／CCW	230／460 ${ }^{\circ}$	7．4／3．7	1.15	88.5	F	9713E	－5N070	594.00	381.25	126.0
	3515	182 T	CW／CCW	460	3.7	1.15	88.5	F	9939 E	－5N0727	594.00	381.25	120.0
\％	3520	182T	CW／CCW	575	3.0	1.15	88.5	F	9715 E	－5N071	594.00	381.25	124.0
	1765	1887	CW／CCW	230460%	$8.0 / 4.0$	1.15	89.5	F	2 H 1 E	－5N034	541.00	347.00	126.0
－	1765	1827	CW／CCW	$\cdot 460$	4.0	1.15	89.5	F	9941 E	－5N036	541.00	347.00	118.0
	1765	182 T	CW／CCW	575	3.2	1.15	89.5	F	9711 E	－5N035	541.00	347．00	126.0
	1175	$213 T$	CW／CCW	$230 / 460$	8．4／4．2	1.15	89.5	F	9142E	－5N038	764.00	490．00	200.0
	1175	213T	CW／CCW	460	4.2	1.15	89.5	F	9111 E	－5N037	764.00	489.75	221.0
	1175	2135	CW／CCW	575	3.4	1.15	89.3	F	9712 E	－5N039	764.00	490.00	192.0
	870	215 T	CW／CCW	$230 / 460{ }^{+}$	10．4／5．2	1.15	86.3	F	E9847	－ 51032	1403.00	901.00	206.0
	870	$215 T$	CW／CCW	－ 460	5.2	1.15	86.5	F	E9708	－5N031	1403.00	900.50	210.0
5	870	215 T	CW／CCW	575	4.1	1.15	86.5	F	E9878	－5N033	1403.00	900.50	214.0
	3515	$184 T$	CW／CCW	230／460＊	12．0／6．0	1.15	89.3	F	240 E	－5N043	714.00	458.00	139.0
，	3515	184T	CW／CCW	460	6.0	1.15	89.5	F	99.40 E	－5N045	714.00	458.00	138.0
1	3515	184 T	CW／CCW	575	4.8	1.15	89.5	F	9729 E	－5N044	714.00	458.00	141.0
	1755	184 T	CW／CCW	$230 / 460{ }^{+}$	（12．6／6．3）	1.5	$90 \div$	F	512E	－5N046	633.00	406.00	138.0
	${ }^{1755}$	184 T	CW／CCW	460	7 $6.3>$	1.15	90.3	F	9042E	－5N048	633.00	406．00	138.0
	1755	184 T	CW／CCW	575	5.1	1.15	90.2	F	9718 E	－5N047	633.00	406.00	140.0
	1170	215 T	CW／CCW	230／460t	13．8／6．9	1.15	89.5	F	9143 E	－5N050	1075.00	689.50	226.0
	1170	$215 T^{\text {T }}$	CW／CCW	450	6.9	1.15	89.3	F	9112 E	－5N049	1075.00	689.50	224.0
	1170	215 T	CW／CCW	575	5.6	1.15	89.5	F	9717 E	－5N051	1075.00	689.50	224.0
	880	2547	CW／CCW	230／460 \dagger	14．877．4	1.15	99．5	F	E8879	－5N041	1937.00	1244.00	313.0
	880	254 T	CW／CCW	460	7.4	1.15	84.3	F	E9719	－5N040	1937.00	1244.00	323.0
	880	2547	CW／CCW	576	6.1	1.15	89.3	F	E9880	－5N042	1937.00	1243.00	336.0

（ \dagger ）Usable on 200 V at 1.0 service factor．（ \ddagger ）TENV．

CAUTION: Not for fans in unattended areas.
Refer to page 5 for UL507 Standard, proper thermal profection, and other motor selectian information.
CAN'T FIND A PRODUCT? CHECK OUR INDEX AT THE BACK OF THE CATALOG.

INDUSTRIAL MOTORS

3-PHASE PREMIUM EFFICIENCY SEVERE DUTY MOTORS

GE 3-PHASE PREMIUM EFFICIENCY SEVERE DUTY MOTORS (Cont.)

HP	Nameplate RPM	NEMA Frame	Rotation Facing Shatit	Voits 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	NEMA Nominal Eficiency	Ins. Class	$\begin{aligned} & \text { GE } \\ & \text { Stock } \\ & \text { No. } \end{aligned}$	Stock No.	List	Each	Shpg.
40	3565	324 TS	CW/CCW	230/460 .	87.4/43.7	1.15	93.0	F	E9162	-4N918	\$3303.00	\$2119.00	$685.0{ }^{-}$
	3565	324 T	CW/CCW	460	43.7	1.15	93.0	F	E9820	-4N928	3303.00	2119.00	660.0
	3565	324 TS	CW/CCW	460	43.7	1.15	93.0	F	E996	-4N945	3303.00	2119.00	660.0
	3565	324 TS	CW/CCW	575	35.0	1.15	93.0	F	E9829	-4N931	3303.00	2119.00	685.0
	1780	324 T	CW/CCW	230/460	91.0/45.5	1.15	94.1	F	E9163	-4N954	3174.00	2036.00	675.0
	1780	324 T	CW/CCW	460	45.5	1.15	94.1	F	E9915	-4N972	3174.00	2036.00	690.0
	1780	324 TS	CW/CCW	460	45.5	1.15	94.1	F	E9916	-4N973	3269.00	2097.00	692.0
	1780	324 T	CW/CCW	575	36.4	1.15	94.1	F	E9768	-4N962	3174.00	2036.00	695.0
	1185	364T	CW/CCW	460	46.5	1.15	94.1	F	E9124	-4N995	5620.00	3606.00	927.0
	1185	364 T	CW/CCW	575	37.2	1.15	94.1	F	E9835	-5N014	5620.00	3606.00	925.0
	890	365 T	CW/CCW	460	53.3	1.15	93.0	F	E9770	-4N902	8034.00	5157.00	914.0
	890	365 T	CW/CCW	575	42.6	1.15	93.0	F	E9534	-5N671	8034.00	5157.00	925.0
50	3555	326 TS	CW/CCW	230/460	109.4/54.7	1.15	93.0	F	E9164	-4N919	4193.00	2691.00	664.0
	3555	326 T	CW/CCW	460	54.7	1.15	93.0	F	E9823	-4N929	4193.00	2691.00	665.0
	3555	326 TS	CW/CCW	460	54.7	1.15	93.0	F	E997	-4N946	4198.00	2691.00	655.0
	1780	326 T	CW/CGW	2301460	115.0557.5	1.15	94.1	F	E9165	-4N955	3898.00	2501.00	710.0
	1775	326 T	CW/CCW	460	57.5	1.15	94.1	F	E9917	-4N974	3898.00	2501.00	686.0
	1775	326 TS	CW/CCW	460	57.5	1.15	94.1	F	E9918	-4N975	4015.00	2577.00	697.0
	1775	326 T	CW/CCW	575	46.0	1.15	94.1	F	E9765	-4N961	3898.00	2501.00	710.0
	1185	365 T	CW/CCW	460	58.5	1.15	93.6	F	E9126	-4N996	6407.00	4112.00	990.0
	1185	365 T	CW/CCW	575	46.8	1.15	93.6	F	E9775	-5N015	6407.00	4112.00	960.0
	890	404 T	CW/CCW	460	59.6	1.15	93.6	F	E9773	-4N903	9664.00	6202.00	1342.0
\%	890	404 T	CW/CCW	575	47.6	1.15	93.6	F	E9535	5N672	9664.00	6204.00	980.0
-60	3565	364 TS	CW/CCW	460	65.2	1.15	94.1	F	E998	-4N947	568200	3646.00	950.0
\%	1785	364 T	CW/CCW	460	68.7	1.15	95.0	F	E9919	-4N976	5428.00	3482.00	954.0
	1785	364 TS	CW/CCW	460	68.7	1.15	95.0	F	E9921	-4N977	5592.00	3588.00	965.0
=	1785	364 T	CW/CCW	575	55.0	1.15	95.0	F	E9776	-4N963	5428.00	3482.00	1000.0
=	1190	404 T	CW/CCW	460	68.8	1.15	94.5	F	E9128	-4N997	7562.00	4851:00	1285.0
	1190	404 T	CW/CCW	575	65.7	1.15	94.5	F	E9837	-5N674	7562.00	4853.00	980.0
	885.	405 T	CW/CCW	460	71.8	1.15	93.6	F	E9778	-4N904	11169.00	7169.00	1389.0
	885	405 T	CW/CCW	575	57.5	1.15	93.6	F	E9536	-5N673	11169.00	7167.00	1600.0
775	3565	365 TS	CW/CCW	460	81.1	1.15	94.5	F	E999	-4N948	7083.00	4545.00	990.0
	3565.	365 TS	CW/CCW	575	64.9	1.15	945	F	E9830	-4N932	7083.00	4545.00	1025.0
5	1785	365 T	CW/CCW	460	86.9	1.15	95.0	F	E9922	-4N978	6793.00	4359.00	1010.0
	1785	365 TS	CW/ecw	460	86.9	1.15	95.0	F	E9923	-4N979	6996.00	4490.00	964.0
:	1785	365 T	CW/CCW	575	69.5	1.15		F	E9781	-4N965	6793.00	4359.00	1025.0
	1190	405T	CW/CCW	460	85.9	1.15		F	E9131	-4N998	9029.00	5793.00	1420.0
-	1190	405 T	CW/CCW	575	68.7	1.15	- 0	F	E9868	-5N675	9029.00	5792.00	1600.0
	885	444 T	CW/CEW	460	90.0	1.15	94.1	F	E9780	-4N905	14875.00	9547.00	1856.0
$\stackrel{7}{5}$	885	444 T	CW/CCW -	575	72.0	1.15	94.1	F	E9537	-5N676	14875.00	9547.00	1750.0
\% 100	3570	405 TS	CW/CEW	460	109.0	1.15	93.6	F	E9510	-4N920	9492.00	6091.00	1389.0
	3565	405 TS	CW/CCW	575	87.4	1.15	93.6	F	E9831	-4N933	9492.00	6090.00	1600.0
	1790	405 T	CW/CCW	460	113.0	1.15	95.0	F	E9924	-4N980	8759.00	5619.00	1455.0
	1790	405 TS	CW/CCW	460	113.0	1.15	95.0	F	E9925	-4N981	9021.00	5788.00	1435.0
$\underline{8}$	1790	405 T	CW/CCW	575	91.6	1.15	95.0	F	E9779	-4N964	8759.00	5618.00	1600.0
-	1190	444 T	CW/CCW	460	113.0	1.15	95.0	F	E9133	-4N999	12081.00	7751.00	1854.0
	1190	444 T	CW/CCW	575	90.6	1.15	95.0	F	E9846	-5N677	12081.00	7752.00	17480
	885	445 T	CW/CCW	460	121.0	1.15	94.1	F	E9782	4N906	18711.00	12012.00	1846.0
125													
	3575	444 TS	CW/CCW	460	138.0	1.15	92.4	F	E9843	-4N938	12407.00	7962.00	1750.0
	3575	444 TS	CW/CCW	575	108.0	1.15	94.5	F	E9538	-5N678	12407.00	7962.00	1750.0
	1785	444 T	CW/CCW	460	135.0	1.15	95.4	F	E9926	-4N982	11530.00	7398.00	1746.0
	1785	444 TS	CW/CCW	460	135.0	1.15	95.4	F	E9927	-4N983	11876.00	7621.00	1698.0
	1785	444 T	CW/CCW	575	108.0	1.15	95.4	F	E9832	-5N679	11530.00	7398.00	1750.0
	1190	445 T	CW/CCW	460	141.0	1.15	95.0	F	E9135	-5N001	14448.00	9272.00	2000.0
	885	449 T	CW/CCW	460	148.0	1.15	94.5	F	E9784	-4N907	21708.00	13932.00	2650.0
150	3575	445 TS	CCW	460	162.0	1.0	94.5	F	E9512	-4N922	14978.00		2000.0
	3575	445 TS	CW/CCW	460	164.0	1.15	93.0	F	E.9844	-4N939	14978.00	9612.00	2000.0
	1790	445 T	CW/CCW	460	168.0	1.15	95.8	F	E9928	-4N984	13108.00	8411.00	2000.0
	1790	445 TS	CW/CCW	460	168.0	1.15	95.8	F	E9929	-4N985	13503.00	8664.00	2000.0
	1790	445 T	CW/CCW	575	134.0	1.15	95.8	F	E9854	-5N680	13108.00	8411.00	2000.0
	1190	449 T	CW/CCW	460	168.0	1.15	95.8	F	E9137	-5N002	16601.00	10651.00	2566.0
	1190	449 T	CW/CCW	575	134.0	1.15	95.8	F	E9869	-5N681	16601.00	10650.00	2650.0
	885	449 T	CW/CCW	460	178.0	1.15	94.5	F	E9785	-4N908	24527.00	15744.00	2536.0
200	3570	445 TS	CW/CCW	460	219.0	1.0	94.1	F	E9513	-4N923	18438.00	11836.00	2000.0
	1785		CW/CCW	460	216.0	1.15	95.4	F	E9931	-4N986	16344.00	10490.00	1910.0
	1785	445 T	CW/CCW	575	173.0	1.15	'5.4	F	E9833	-4N966	16344.00	10490.00	1914.0
	1190	449 T	CW/CCW	460	226.0	$1.1{ }^{\text {c }}$	95.4	F	E9139	-5N003	19788.00	12698.00	2650.0
	1190	449 T	CW/CCW	575	179.0	1.15	95.4	F	E9845	-5N682	19788.00	12698.00	2650.0
250	3575	4497 S	CW/CCW	460		1.0	95.4	F	E9514	-4N924	23838.00	15302.00	2428.0
	1785	449 T	CW/CCW	460	275.0	1.15	96.2	F	E9933	-4N987	19448.00	12480.00	2650.0

[^6]Modifications \& Service
Available at Most Locations

Typitiol Uses: Designed to provide variable speed operation on standard AC threephase motors used to power pumps, fans, blowers, conveyors, and other industrial equipment. Not for use in combustible, dusty, or wet environments.
Both feature a 32 -bit digital processor which allows fast and easy programming as well as providing built-in self-protection, operational, and fault diagnostics.
Nos. 50181 thru 50191 are compact, economical, low horsepower inverters excellent for use where relatively simple speed control is desired. Twenty selectable functions provide flexibility for more efficient operation.
Nos. SU192 thru 50201 offer 79 programmable fuxictions for more advanced applicationstin higher horsepowers while still offeritg simple programmability.

Enclosure: NEMA 1
Protection: All Units
Stall
Overcurrent
Overvoltage
Undervoltage
Instantaneous power failure
Inverter overheating (extr fault-over load relay trip)
Voltage Requi, ments:
Nos. 54181 thru 50 Res
Input: Single-phase, $300-240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Output: Three-phase, 3 -wire, $200-240 \mathrm{~V}$
Nos. 50186 thru 50191
Input: Three-phase, $200-240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ Output: Three-phase, 3 -wire, $200-240 \mathrm{~V}$
Nos. 5 U 192 thru 5 S 201
Input: Three-phase, $400-460 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ Output: Three-phase, 3-wire, $400-460 \mathrm{~V}$

Selectable Functions: All Units
Operating Method/Frequency Setting Selection
Base and Top Frequency
Maximum Output Voltage
Maximum Output Frequency
Torque Boost
Fault Memory
DC Braking
Accelerator/Decelerator
Multi-Frequency Settings
Additional Functions: Nos. 5Ü192 thru 5 U201
Slip Compensation
Current Limiting
Jump Frequency
Automatic/Deceleration Time Selection
2-Wire/3-Wire Control Selection
Automatic Pattern Operation
Terminal Link
Removable Keypad

INDUSTRIAL MOTORS

3-PHASE OPEN DRIPPROOF AND TEFC INVERTER-DUTY MOTORS

- Inverter-grade insulation systems provide dielectric strength to withstond wave form stress
- High performance matches speed/torque requirements for increased system flexibility
- Incorporates premium efficiency designs
- Meets latest NEMA MG1 Part 31 requirements for inverter-duty motors
- 10:1 speed range, variable torque
- 100\% copper windings
- Two-year warranty

Typical Uses: Used in adjustable speed applications found in pumps and other air moving devices.
Bearings: Double-shielded ball
Mounting: Open dripproof rigid welded, TEFC cast feet
Theringl Protection: Thermostat
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finishegray
Brand Dayton

	Namoplate RPM	NEMA Frame	Volts 60 Hz	$\begin{gathered} \text { Full-Load } \\ \text { Amps it } \\ \text { Hameplate Volts } \end{gathered}$	RPM Range	It ractor	NEMA Nominal Efficiency	Frama*	Insulation Class	Stock No.	List	Each	Shpge Wh.
1 \%	1765	143T	230460	3.3/1.6	1800-180	1.15	84.0	RS	F	5N784	\$426.00	\$ $\$ 362.00$	40.0
11/2:	1745	145 T	$230 / 460$	$4.6 / 2.3$	1800-180	1.15	85.5	RS	F	$5 N 785$	445.00	378.25	34.0
	1745	145 T	230/460	6.1/3.1	1800-180	1.15	86.5	RS	F	5N786	469.00	398.50	45.0
3	1760	182T	230/460	8.6/4.3	1800-180	1.15	86.5	RS	F	$5 N 787$	488.00	414.75	50.0
5 5\%	1740	184I	2301460	13.8/6.9	1800-180	1.15	87.5	RS	F	$5 N 788$	595.00	50 m 50	60.0
71/2	1765	213 T	230/460	20.0/10.0	1800-180	1.15	90.7	RS	F	$5 N 789$	795.00	675.50	90.0
103	1755	215 T	2301460	26.4/13.2	1800-180	1.15	90.2	RS	F	$5 N 790$	907.00	770.50	100.0
15 m	1750	254 T	230/460	39.8/19.9	1800-180	1.15	90.2	RS	F	5N791	1160.00	984.50	220.0
20**	1760	2565	230/460	61.0/25.5	1800-180	1.15	91.0	RS	F	5N7\%2	1350.00	1147.00	230.0
25	1775	284 T	230/460	60.0130 .0	1800-180	1.15	98.6	RS	F	$5 N 793$	1586.00	1347.00	350.0
30	1775	286 T	230/460	72.0/36.0	1800-180	1.15	94.1	RS	F	5N794	1783.00	1514.00	350.0
Y,													
1	1740	$143 T$	230/460	2.9/1.5	1800-180	1.15	85.5	RS	F	$5 N 773$	564.00	479.25	50.0
11/2	1740	145 T	$230 / 460$	4.42 .2	1890-180	1.15	85.5	RS	F	$5 N 774$	583.00	495.25	46.0
2	1730	145 T	230/460	5.882.9	1800-180	1.15	85.5	RS	F	5N775	605.00	514.00	50.0
3	1760	182 T	$230 / 460$	$8.4 / 4.2$	1800-180	1.15	87.5	CI	F	$5 N 776$	657.00	558.50	95.0
5	1745	184 T	230/460	13.26.6	1800-180	1.15	88.5	Cl	F	5N777	719.00	611.00	100.0
71/2	1760	213 T	230/460	19.29 .6	1800-180	1.15	91.0	CI	F	$5 N 778$	848.00	720.50	110.0
10	1755	$215 T$	230/460	25.0/12.3	1800-180	1.15	91.0	CI	F	5N779	979.00	832.00	125.0
15	1770	2545	230/460	38.6119 .3	1800-180	1.15	92.4	Cl	F	SN780	1412.00	1200.00	230.0
20	1770	2565	$230 / 460$	$50.0 / 25.0$	1800-180	1.15	93.0	Cl	F	$5 N 781$	1581.00	1343.00	230.0
25	1770	2847	230/460	63.0131 .5	1800-180	1.15	93.0	Cl	F	5N782	1893.00	1608.00	290.0
30	1770	2867	$230 / 460$	$72.0 / 36.0$	1800-180	1.15	93.6	CI	F	$5 N 783$	2188.00	1859.00	290.0

$\frac{\left.{ }^{*}\right) \mathrm{PS}=\text { Rolled Steel construction; } \mathrm{CI}=\text { Cast-Iron construction. }}{\text { 为 }}$

MANY BRANDS OF POWER TRANSMISSION EQUIPMENT AVAILABLE

AC INVERTERS

Typicaflyses: Variable speed operation of standard three-phase motors on pumps, fans, blowers, conveyors, machine tools, and other industrial equipment. Not for use in combustible, dusty, or wet environments.
Compä́ct, economical and factory set for easy keypad operation. High speed digital signal processor control combined with immediate output current and voltage detection allow the inverter to attain powerful starting torque (over 150\%); and quick response current limiting. This quick rësponse allows impact or load fluctuationnuisance trips to be avoided.

Y

$\begin{aligned} & \text { Motor } \\ & \text { Oxtput } \\ & H P \end{aligned}$	$\begin{aligned} & \text { Maximumun } \\ & \text { Output } \\ & \text { Amps } \end{aligned}$	H	$\underset{W}{\text { asions }}$	0	Stock No.	List	Each	Shpg. We
1/3	1.5	65/8	$61 / 4$	$3^{1 / 8}$	$1 \times \mathrm{C93}$	\$415.00	\$404.75	3.3
1/2	3.0	65/8	$61 / 4$	4	$1 \times \mathrm{C94}$	450.00	438.75	4.4
1	5.0	65/8	$61 / 4$	$41 / 2$	$1 \times \mathrm{css}$	525.00	512.00	5.1
2	8.0	$\pi / 8$	$61 / 4$	65/8	$1 \times \mathrm{C96}$	685.00	668.50	8.1
5	11.0	77/8	$61 / 4$	$65 / 8$	$1 \times \mathrm{Cg}$	750.00	731.00	9.0
5	17.0	77/8	61/4	65/8	$1 \times \mathrm{c} 98$	965.00	941.00	8.5
NTPUTIHREEPHASE, 380-460YOLTSAC, 60/50 Hz								
1	2.5	$11^{7 / 8}$	$63 / 8$	65/8	2 N 526	1100.00	1044.00	12.0
2	3.7	117\%	$63 / 8$	$65 / 8$	24527	1210.00	1135.00	13.0
3	5.5	111/8	$63 / 8$	$65 / 8$	2 m 528	1350.00	1266.00	13.0
5	9.0	117/8	$63 / 8$	$65 / 8$	2 N 529	1650.00	1545.311	13.0
$71 / 2$	13.0	15	$91 / 2$	$81 / 2$	2M530*	2010.00	1886.00	27.0
10	18.0	15	$91 / 2$	$81 / 3$	24531*	2500.00	2348.00	27.0
15	24.0	173/4	105/8	85/3	2M532*	3150.00	2950.00	36.0
20	30.0	$173 / 4$	105/8	$85 / 8$	2M533*	4000.00	3752.00	36.0
25	39.0	215\%8	105/8	8/8	24534*	4860.00	4563.00	44.0
30	45.0	$215 / 8$	105/8	85/8	2M535*	5830.00	5472.00	44.0

(*) Ground fault protection for inverter.
Digital display on Nos. 1 XC 03 thru íXC98 monitors frequency (spit ${ }^{-}$, diagnostic information, or nrogramming' information and data codes.
The liquid crystiva and IED display on Nos. 2 M 526 thru 2M535 μ vidé display for running, referrence frequency, output current, output voltage, motor synchronous speed or machine speed.
The keypad on Nos. 1XC93 thru 1XC98 features 5 keys: PRG (program), up and down arrows, run, and stop.
The keypad on Nos. 2M526 thru 2M535 features 8 keys: PRG (program), shift, set, rest, run, stop, and up and down arrows.

Output Volts: Three-phase, output volts are same as voltage input; Hz adjustable with 60 Hz factory preset limit.
Enclosure: NEMA 1

Protaction: All Units

Stall
Overcurrent
Overvoltage
Undervoltage
Instantaneous Power Failure
Inverter Heatsink Overheating
External Alarm
Short-circuit for Output Terminal
Nos. 2M526 thru 2M535 only:
Motor Overload (electronic thermal or relay trip)
Digital Signal Processing Error
Advanced Programming: All Units
Output Hz
Volts/Hz
Torque Boost
Accel/Decel Time
Output Volt Limit
DC Braking
Auto Restart
Bias Control
Multi-frequency Settings
Input Signal Following
Output Signal Following
Nos. 2M526 thru 2M535 only:
Slip Compensation
Current Limiting
Jump Frequency
Automatic Accelerator/Decelerator 2-Wire/3-Wire Control Selection Automatic Pattern Operation
Two S-curve Accel/Decel Patterns

mDUSTRIAI hOTORS

CAPACITOR-START U-FRAME MOTORS

CAPACITOR-START OPEN DRIPPROOF U-FRAME MOTORS

Rigid welded base

- Copper windings

Typical Uses: Air compressors; machinery, pumps, blowers, and other heavy-duty hard-starting equipment.
Type: Capacitor-start
Bearings: Ball
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: Dayton

HP	Nameplate RPM	NEMA Frame	Thermal Protection	Volts 60 Hz	$\begin{gathered} \text { Full-Load } \\ \text { Amps at } \\ \text { Nameplate Votts } \end{gathered}$	Service Factor	Insulation Class	Stack No.	List	Each	Shpg. Wt.
	1740	182	None	115/230		1.0	A	5K485	\$277.00	\$251.25	49.0
11/2	1740	184	None	115230	18.49 .2	1.0	A	5K486	350.00	317.50	56.0
2	1740	213	None	115/230	24.0/12.0	1.0	A	$5 K 487$	473.00	429.00	80.0
3	1730	215	None	115230	33.6/16.8	1.0	A	5K488 \dagger	643.00	583.50	100.0
5	1745	215	None	230	20.0	1.0	A	5K489 ${ }^{+}$	832.00	754.50	120.0

CHOOSE FROM MANY BRANDS OF INDUSTRIAL PUMPS
Including Little Gianí, Alldos,
 Ingersoll-Rand, Hale and Teel

ARO
FUSI

- NEMA design B

Typical Uses: Pumps, blowers, machine tools, air compressors, and other moderate to hard-starting applications where 3-phase power is available.

3-PHASE OPEN DRIPPROOF U-FRAME MOTORS

Bearings: Double-shielded ball
Mounting: Rigid welded; 250U
frames have removable castiron base
Thermal Protection: None
Windings: Copper
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: Dayton

${ }^{*}$) 50 Hz operational at rated voltage and 190/380V:

m
"荅

- NEMA design B

Typicat Uses: Cool and efficient perfothance on pumps, blowers, air compressors, machine tools, conveyors, and other equipment operating in noncombustible dusty, dirty areas.

3-PHASE TEFC U-FRAME MOTORS
Bearings: Double-shielded ball
Mounting: Rigid welded; 254 U
frames have removable base
Thermal Protection: None
Windings: Copper
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: Dayton

HP	Nameplate RPM	NEMA Frame	Volts 60 Hz	$\begin{gathered} \text { Full-Load } \\ \text { Amps at } \\ \text { Nameplate Volts } \end{gathered}$	Service Factor	Nominal Efficiency	Frame*	Insulation Class	Stock No.	List	Each	Shpg. Vit.
1	1755	182	208-220/440	3.7-3.6/1.8	1.0	78.5	RS	A	$2 N 933$	\$345.00	\$259.00	45.0
1	1155	184	208-220/440	$4.14 .0 / 2.0$	1.0	77.0	RS	A	2N941	388.00	291.25	45.0
11/2	3510	182	208-220/440	4.9-4.8/2.4	1.0	78.5	RS	A	2N946	359.00	269.50	45.0
11/2	1750	184	208-220/440	5.1-5.0/2.5	1.0	80.0	RS	A	2N934	386.00	289.75	50.0
11/2	1140	184	208-220/440	5.6-5.4/2.7	1.0	77.0	2 S	A	2N942	396.00	297.25	50.0
2	3500	184	208-220/440	6.3-6.0/3.0	1.0	800	RS	A	$2 N 947$	386.00	289.75	50.0
2	1760	184	208-220/440	6.4-6.2/3.1	1.0	825	RS	A	2N935	421.00	316.25	60.0
2	1145	213	208-220/440	7.3-7.2/3.6	1.0	80.0	RS	A	2 NP 43	470.00	352.75	64.0
3	3510	184	208-220/440	8.9-8.6/4.3	1.0	82.5	RS	A	2N948	337.00	253.00	60.0
3	1755	213	208-220/440	9.2-9.0/4.5	1.0	84.0	RS	A	2N936	321.00	391.25	62.0
3	1170	215	208-220/440	10.7-10.6/5.3	1.0	84.0	RS	A	2N944	500.00	375.00	80.0
5	3490	213	208-220/440	14.2-13.46.7	1.0	85.5	RS	A	2N949	589.00	442.00	69.0
5	1760	215	208-220/440	14.7-14.47.2	1.0	86.5	RS	1	$2 N 937$	575.00	431.50	98.0
5	1165	254 U	208-220/440	17.0-16.6/8.3	1.0	86.5	RS	A	2N945	944.00	708.50	132.0
71/2	1760	254 U	208-220/440	21.0-20.2/10.1	1.0	88.5	RS	1	2N938	667.00	500.50	137.0

[^7]
INDUSTRIAI MOTORS

3-PHASE PREMIUM EFFICIENCY U-FRAME AUTOMOTIVE DUTY MOTORS

Super U-frame designs offer the highest efficiencies available today

- Meats General Motors 7EQ, 7EHQ, Ford EMI, and Chrysler NPEM 100 automotive duty specifications
- Motors are designed to operate well below insulation system limits, resulting in increased life expectancy
- Low noise and vibration levels
- Meet "special" balance limits for cutomotive industry levels
- Cast-iron construction on 180 frame and above
- Two-year warranty

CAUTION:

Not for fans in unattended areas.
Refer to page 5 for UL507 Standard, proper thermal protection, and other motor selection information.

Typical Uses: For a wide variety of applications where change-out to T-frame motors is cumbersome and difficult. Efficiency ratings will qualify for many rebate programs while not requiring added conversion costs.
Designed to meet automotive manufacturers' specifications, these motors feature rugged construction and advanced electrical design. Ideal for use in industrial, commercial, and institutional applications that need U-frame dimensions.
Bearings:-Double-shielded ball
Mounting: Rigid base
Enclosure: TENV and TEFC
Thermal Protection: None
Ambient: $65^{\circ} \mathrm{C}$
Duty: Continuous
finish: Gray
Brand: Dayton

$\left(^{*}\right)$ RS $=$ Rolled Steel construction; $\mathrm{Cl}=$ Cast-Iron construction. (\dagger) TENV.

3-PHASE PREMIUMEFEICIENCY U-FRAME AUTOMOTIVE DUTY MOTORS

DAYton 3-PHASE PREMIUM EFFICIENCY U-FRAME MOTORS (Cont.)

HP	Nameplate RPM	NEMA Frame	Rotation	Volts 60 Hz	$\begin{gathered} \text { Full-Load } \\ \text { Mamps at } \\ \text { Msmeplate Volts } \end{gathered}$	Servica Factor	NEMA Nominal Efficiency	Frame*	lasulation Class	Stock No.	List	Each	Shipg. W.
20	3540	286 U	CW/CCW	460	23.5	1.0	89.5	CI	B	-5U903	\$1216.00	\$1062.00	400.0
	1775	286 U	CW/CCW	460	22.8	1.0	93.6	CI	B	-5U904	1756.00	1535.00	400.0
	1175	326 U	CW/CCW	460	23.5	1.0	93.0	CI	B	-5U905	2513.00	2196.00	600.0
	880	364 U	CW/CCW	460	26.4	1.0	90.2	CI	B	-5U906	2894.00	2528.00	800.0
25	3535	324US	CW/CCW	460	29.9	1.0	91.0	CI	B	-5U907	1560.00	1363.00	560.0
	1775	324 U	CW/CCW	460	28.3	1.0	94.1	CI	B	-5U908	2198.00	1920.00	560.0
	1190	364U	CW/CCW	460	28.9	1.0	94.1	CI	B	-5U909	3034.00	2651.00	800.0
	880	365 U	CW/CCW	460	33.0	1.0	90.2	CI	B	-54910	3392.00	2964.00	880.0
30	3550	326US	CW/CCW	460	35.2	1.0	91.0	CI	B	-54911	1882.00	1644.00	600.0
	1780	326 U	CW/CCW	460	33.7	1.0	94.5	CI	B	-5U912	2568.00	2245.00	600.0
	1185	365 U	CW/CCW	460	34.6	1.0	94.5	CI	B	-54913	3433.00	2999.00	880.0
F'	890	404 U	CW/CCW	460	40.3	1.0	91.7	CI	B	-5U914	4016.00	3509.00	1100.0
40	3535	364US	CW/CCW	460	46.4	1.0	91.7	CI	B	-50915	2456.00	2145.00	800.0
	1785	364 U	CW/CCW	460	45.1	1.0	95.0	CI	B	-54916	3386.00	2959.00	800.0
	1185	404 U	CW/CCW	460	46.0	1.0	94.5	CI	B	-5U917	4422.00	3864.00	1100.0
	890	405 U	CW/CCW	460	52.9	1.0	92.4	CI	B	-54918	4916.00	4295.00	1250.0
50	3550	365US	CW/CCW	460									
	1780	365 U	CW/CCW	460	56.1	1.0	95.0	CI	B	-5U920	3972.00	3471.00	880.0
	1190	405U	CW/CCW	460	58.0	1.0	94.5	CI	B	-5U921	5108.00	4462.00	1250.0
60	3545	405US	CW/CCW	460	69.4	1.0	92.4	Cl	B	-5U922	3688.00	3221.00	1250.0
	1780	405U	CW/CCW	460	67.5	1.0	95.0	CI	B	-5U923	4932.00	4309.00	1250.0
	1185	444 U	CW/CCW	460	$68.0{ }^{-}$	1.0	94.5	CI	B	-50924	5997.00	5240.00	1450.0
$\frac{14}{4}$	1780	444 U	CW/CCW	460	82.3	1.0	95.0	CI	B	-5U925	6083.00	5315.00	1450.0
	1185	445 U	CW/CCW	460	84.1	1.0	95.0	Cl	B	54926	7111.00	6213.00	1550.0
100\%	1780	445U	cw/ccw	460	111.0	1.0	95.4	CI	B	-5U927	7561.00	6607.00	1550.0
125	1185	5004G	CW/CCW	460	147.0	1.0	93.0	Cl	B	-5U928	13310.00	11630.00	2700.0
$15{ }^{\circ}$	1785 1185	${ }^{5004 \mathrm{G}}$	CW/CCW	460 460	168.0 175.0	1.0	94.5 93.6	$\stackrel{\mathrm{Cl}}{\mathrm{CI}}$	B	-5U929	12740.00 14410.00	11132.00 12592.00	2700.0 2700.0
200	1785	5004 G	CW/CCW	460	231.0	1.0	94.5	Cl	B	-5U931	14740.00	12881.00	2700.0
2505	1780	5008G	CW/CCW	460	275.0	1.0	94.5	CI	B	-5U932	17930.00	15669.00	3000.0

(*) Cl ${ }^{\text {B Cast-Iron eonstruction. }}$
\Rightarrow

CAUTION:

Not for fans in unattended areas.
Refer to page 5 for UL 507 Standard, proper thermal protection, and other motor selection information.

Modifications \& Service Available at Most Locations

GRAINGER STOCKS A BROAD LINE OF DAYTON AND GE MOTORS

Top Performance. Dayton motors are built to exceed industry standards such as NEMA (National Electrical Manufacturers Association). Used as a replacement motor in a wide variety of applications, each Dayton motor must outperform the best motor it may be called upon to replace, hence "best of the best" performance. You can be confident that the Dayton motor will work as well as, or better than, the motor you are replacing.
Top Quality Verified by Engineers. Grainger's Engineering Dept., with its "state-of-the-art" test lab, confirms that Dayton motors consistently meet or exceed top performance standards. Engineering also confirms the motors have applicable agency approvals such as UL and CSA.
Clearly Identified. Dayton motors are clearly identified by full fact carton labels and nameplates with wiring diagrams. Maintenance and installation instructions appear in every motor carton.
Broad line Offering. Dayton offers one of the broadest lines of motors in the industry. One brand can be used for nearly all your motor replacement needs.
Time Proven Performance. Established in 1937, Dayton has grown to be one of the most dependable names in the motor industry.

Broad Line Offering. Grainger now offers over 2400 stock GE brand motors including AC and DC motors from 1/370 HP to 450 HP in Energy \$aver ${ }^{2}$ and standard efficiency designs including severe duty, explosion proof, farm duty, HVAC. and many others.
National Recognition. GE is considered the leading national brand motor with the largest installed customer base. The GE brand is widely known for quality and reliability.
Clearly Identified. GE motors are clearly identified by full fact carton labels and nameplates. Easy-to-read wiring diagrams are included.
Premium Efficiency Leader. GE has long been recognized as an industry leader in premium efficiency motors with a wide variety of ratings and types to suit many applications.
Heritage of Excellence. General Electric is one of the pioneers in the electrical industry with a proud 100 year history dating back to the time of founder Thomas Edison.

COMMERCA MOTC: 5

CAPACITOR-START OPEN DRIPPROOF MOTORS

Typical Uses: Fans, blowers, pumps, and commercial machinery
Bearings: All-angle sleeve or double-shielded ball
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuious
Rotation: CW/CCW
Finish: Gray.
Brand: Dayton

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{CAPACITOR-START OPEN DRIPPROOF MOTORS} \& \multicolumn{3}{|l|}{COMMERCIAI MOTORS} \\
\hline \multicolumn{14}{|l|}{DAYTON CAPACITOR-START OPEN DRIPPROOF MOTORS (Cont.)} \\
\hline HP \& \(\underset{\text { RPM }}{\substack{\text { Nameplate }}}\) \& NEMA \& Thermal \& Voits 60 Hz \& \[
\begin{gathered}
\text { Full-Load } \\
\text { Arpps at } \\
\text { Nampophate } \\
\text { Yots } \\
\hline
\end{gathered}
\] \& Service Factor \& Bearings \& \[
\begin{aligned}
\& \text { lazulation } \\
\& \text { Gatss }
\end{aligned}
\] \& Mouating \& Stock \& List \& Each \& \begin{tabular}{c}
Shpg. \\
\(\mathbf{W h}\) \\
\hline
\end{tabular} \\
\hline 1/2 \& \[
\begin{aligned}
\& 1725 \\
\& 1725 \\
\& 1725 \\
\& 1725 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 56 \\
\& 56 \\
\& 56 \\
\& 56 \\
\& \hline
\end{aligned}
\] \& Auto
Auto
None
Auto \& \[
\begin{aligned}
\& 115 / 230 \\
\& 115230 \\
\& 115230 \\
\& 115230
\end{aligned}
\] \& \[
\begin{aligned}
\& 9.04 .5 \\
\& 9.045 \\
\& 9.04 .5 \\
\& 9.044 .5
\end{aligned}
\] \& \[
\begin{aligned}
\& 1.25 \\
\& 1.25 \\
\& 1.25 \\
\& 1.25
\end{aligned}
\] \& \begin{tabular}{l}
Sleeve \\
Sleeve \\
Bal \\
Ball \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& \hline \mathrm{B} \\
\& \mathrm{~B} \\
\& \mathrm{~A} \\
\& \mathrm{~A}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Rigid } \\
\& \text { Cradle } \\
\& \text { Crade } \\
\& \text { Cradle }
\end{aligned}
\] \& \[
\begin{aligned}
\& 3 K 211 \\
\& 3 K 213 \\
\& 4 K 856 \\
\& 3 K 199
\end{aligned}
\] \& \[
\begin{array}{r}
\$ 185.00 \\
187.00 \\
185.00 \\
195.00
\end{array}
\] \& \[
\begin{array}{r}
\$ 141.40 \\
142.90 \\
141.40 \\
149.05
\end{array}
\] \& \[
\begin{aligned}
\& 20.0 \\
\& 20.0 \\
\& 22.0 \\
\& 21.0
\end{aligned}
\] \\
\hline \& \[
\begin{aligned}
\& 1725 \\
\& 1725 \\
\& 1725 \\
\& 1725 \\
\& 1725 \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
56 \\
56 \\
56 \\
56 \\
56 \\
\hline
\end{tabular} \& \begin{tabular}{l}
None \\
None \\
Auto \\
Manual \\
Auto \\
\hline
\end{tabular} \& \[
\begin{gathered}
115 \\
115230 \\
115 \\
115230 \\
115 \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
8.24 .1 \\
8.24 .1 \\
8.24 .1 \\
8.24 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 1.0 \\
\& 1.0 \\
\& 1.0 \\
\& 1.0 \\
\& 1.0 \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
Sleeve \\
Sleeve Sleeve Rall \\
Sleeve
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{A} \\
\& \mathrm{~A} \\
\& \mathrm{~A} \\
\& \mathrm{~A} \\
\& \mathrm{~A} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Rigid } \\
\& \text { Rivid } \\
\& \text { Rigidi } \\
\& \text { Rigid } \\
\& \text { Cradle }
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathbf{5 k 4 4 9} \\
\& 5 k 451 \\
\& 5 k 450 \\
\& 5 k 455 \\
\& 5 k 504
\end{aligned}
\] \& 164.00
156.00
172.00
181.00
174.00 \& 125.30
119.25
1314.45
138.30
132.95

1 \& 21.0
21.0
21.0
21.0
21.0

\hline \& $$
\begin{aligned}
& 1725 \\
& 1725 \\
& 17725 \\
& 1725 .
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
56 \\
56 \\
\hline 56 \\
\hline 56
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \text { Auto } \\
& \text { None } \\
& \text { None } \\
& \text { Auto }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 115,230 \\
& 115230 \\
& 115230 \\
& 115230
\end{aligned}
$$
\] \& 8.24 .1

8.24 .1
8.24 .1

8.24 .1 \& $$
\begin{aligned}
& 1.0 \\
& 1.0 \\
& 1.0 \\
& 1.0
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { Sleeve } \\
& \text { Sleeve } \\
& \text { Ball } \\
& \text { Ball }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{A} \\
& \mathrm{~A} \\
& \mathrm{~A} \\
& \mathrm{~A}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Cradle } \\
& \text { Crade } \\
& \text { Crade } \\
& \text { Cradide }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5 K 453 \\
& 55452 \\
& 56454 \\
& 6 K 397
\end{aligned}
$$
\] \& 184.00

158.00
173.00
183.00 \& 140.60
120.75
133.25

139.85 \& $$
\begin{aligned}
& 21.0 \\
& 21.0 \\
& 21.0 \\
& 21.0 \\
& 21.0
\end{aligned}
$$

\hline $3 / 4$ \& $$
\begin{aligned}
& 3450 \\
& 3450 \\
& 3450 \\
& 3450 \\
& 1725 \\
& 1725
\end{aligned}
$$ \& 48

48
56
.56
56
56 \& None Manual Auto Auto Auto \& 1152323
115230
115230
115230
115230
115230 \& 11.875 .9
11.85 .9
10.575 .3
9.84 .9
11.65 .8

11.665 .8 \& $$
\begin{gathered}
1.0 \\
1.0 \\
1.25 \\
1.25 \\
1.25 \\
1.25
\end{gathered}
$$ \& Sleeve

Sleve
Sleve
Bave
Sll
Sleve

Sleeve \& $$
\begin{array}{r}
A \\
A \\
-\quad B \\
-\quad A \\
\hline \quad B \\
\hline
\end{array}
$$ \& \[

$$
\begin{aligned}
& \text { Rigid } \\
& \text { Rigid } \\
& \text { Rigid } \\
& \text { Crade } \\
& \text { Rigid } \\
& \text { Cradle }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{5 K 6 8 4} \\
& \mathbf{6 K 3 7 0} \\
& 4 \times 130 \\
& 6 K 346 \\
& 3 \times 218 \\
& \mathbf{3 K 2 2 4}
\end{aligned}
$$
\] \& 143.00

153.00
770.00
727200
228.00
230.00 \& 109.30
116.95
129.95
139.95
174.50

176.00 \& $$
\begin{array}{r}
18.0 \\
19.0 \\
21.0 \\
.24 .0 \\
28.0 \\
28.0
\end{array}
$$

\hline \& $$
\begin{aligned}
& 1725 \\
& 1725 \\
& 1725 \\
& 1725 \\
& 1725 \\
& 1725 \\
& \hline
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 56 \\
& 56 \\
& 56 \\
& 56 \\
& 56 \\
& 36 \\
& \hline
\end{aligned}
$$

\] \& | None |
| :--- |
| Auto |
| None |
| None |
| Auto |
| Auto | \& \[

$$
\begin{gathered}
115 / 230 \\
115230 \\
115 \\
115230 \\
115 \\
116 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
11.45 .7 \\
11.45 .7 \\
11.6 \\
11.658 \\
11.8 \\
11.6 \\
\hline 1
\end{gathered}
$$

\] \& | 1.25 |
| ---: |
| $\therefore 1.25$ |
| 1.0 |
| 1.0 |
| 1.0 |
| 1.0 | \& \[

$$
\begin{aligned}
& \text { Ball } \\
& \text { Ball } \\
& \text { Sleeve } \\
& \text { Sleve } \\
& \text { Sleve } \\
& \text { Ball } \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { A } \\
& \text { A } \\
& \text { A } \\
& \text { A }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Cradle } \\
& \text { Cridle } \\
& \text { Rigid }
\end{aligned}
$$
\] \& 46859

65376
$5 K 456$
55457
56982

6×236 \& | 228.00 |
| :--- |
| 238.00 |
| 199.00 |
| 207.00 |
| 203.00 |
| 211.00 | \& | 174.50 |
| :--- |
| 182.00 |
| 152.25 |
| 158.25 |
| 155.25 |
| 161.50 |
| | \& | 27.0 |
| :--- |
| 26.0 |
| 26.0 |
| 24.0 |
| 24.0 |
| 24.0 |

\hline \& | 1725 |
| ---: |
| 1725 |
| 1725 |
| $\square 1725$ |
| 1725 | \& \[

$$
\begin{aligned}
& \hline 56 \\
& 56 \\
& 56 \\
& 56 \\
& 56 \\
& \hline
\end{aligned}
$$
\] \& None

Manual
None
Auto -
Auto \& 115230
115230
115230
115230
115230 \& 11.655 .8
11.65 .8
11.658
11.658 .8

11.65 .8 \& $$
\begin{aligned}
& 1.0 \\
& 1.0 \\
& 1.0 . \\
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
$$ \& \& A

A
A
A \& Rigid
Rigid
Cradle
Cradfe

Cradle \& $$
\begin{aligned}
& 66519 \\
& 5 K 460 \\
& 5 K 458 \\
& 5 K 459 \\
& 6 K 759 \\
& \hline
\end{aligned}
$$ \& .215 .00

.22500
.209 .00
22500

223.00 \& | 164.50 |
| :--- |
| 172.25 |
| 160.00 |
| 164.50 |
| 170.50 | \& 24.0

24.0
24.0
25.0
26.0
250

\hline \& 3450
3450
$=3450$
3450
-1725

1725 \& \[
$$
\begin{aligned}
& 56 \\
& 56 \\
& 56 \\
& 56 \\
& 66 \\
& 56 \\
& \hline
\end{aligned}
$$

\] \& | Auto |
| :--- |
| Adto |
| Aoto |
| Maneal |
| Aunal |
| Auto |
| None | \& \& $13.8 / G .9$

1788.9
15.97 .5
15.07 .5
13.676 .8

13.666 .8 \& $$
\begin{aligned}
& 1.25 \\
& 1.25 \\
& 1.0 \\
& 1.0 \\
& 1.0 \\
& 1.25
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { Sleeve } \\
& \text { Ball } \\
& \text { adi; }
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{B} \\
\mathrm{~B} \\
\mathrm{~A} \\
\mathrm{~A} \\
\mathrm{~A}
\end{gathered}
$$
\] \& Rigid Cradle Rigid Rigid Cradle \& 41129

6×347
662323
$6 K 385$
$4 K 996$
$5 K 922$ \& 198.00
192.00
180.00
190000
339.00
233.00 \& 151.50
144.70
137.50
145.20
243.75

178.25 \& $$
\begin{aligned}
& 25.0 \\
& \begin{array}{l}
25.0 \\
31.0 \\
30.0 \\
33.0 \\
33.0
\end{array}
\end{aligned}
$$

\hline \& | 1725 |
| ---: |
| $=1725$ |
| $=1725$ |
| $=1725$ |
| $=1725$ | \& \[

$$
\begin{aligned}
& 56 \\
& 56 \\
& 56 \\
& 56 \\
& 56 \\
& 56 \\
& 56 \\
& \hline
\end{aligned}
$$

\] \& | Auto |
| :--- |
| Aune |
| Aunto |
| Alone |
| Auto |
| Auto | \& \[

$$
\begin{aligned}
& 115 / 230 \\
& 115230 \\
& 115230 \\
& 115230 \\
& 115230 \\
& 115 / 230 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 13.6 / 6.8 \\
& 14.87 .4 \\
& 14.87 .4 \\
& 14.87 .4 \\
& 14.87 .4 \\
& 14.87 .4 \\
& \hline
\end{aligned}
$$

\] \& | 1.25 |
| :--- |
| 1.0 |
| 1.0 |
| 1.0 |
| 1.0 |
| 1.0 | \& | Ball |
| :--- |
| Sleeve |
| Ball |
| Sleeve |
| Sleeve |
| Ball | \& \[

$$
\begin{aligned}
& \text { B } \\
& \text { A } \\
& \text { A } \\
& \text { A }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Cradle } \\
& \text { Rigid } \\
& \text { Rigid } \\
& \text { Cradle } \\
& \text { Cradle } \\
& \text { Cradle }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6 K 321 \\
& 5 K 431 \\
& 6 K 437 \\
& 5 K 432 \\
& 6 K 246 \\
& 6 K 760
\end{aligned}
$$
\] \& 235.00

223.00
241.00
225.00
235.00
240.00 \& 195.00
170.50
184.25
172.00
179.75

183.50 \& $$
\begin{aligned}
& 32.0 \\
& 30.0 \\
& 30.0 \\
& 31.0 \\
& 31.0 \\
& 32.0
\end{aligned}
$$

\hline \& 3450
3450
34450
$=3450$
1725

1725 \& $$
\begin{aligned}
& 56 \\
& 56 \\
& 56 \\
& 56 \\
& 56 \\
& 56 \\
& 56
\end{aligned}
$$ \& Auto

None
Manual
Manual
Mutal
Auto

None \& $115 / 230$ 115/230 115/230 $115 / 230$ 115/230 \& \[
$$
\begin{gathered}
17.58 .8 \\
19.69 .8 \\
19.69 .8 \\
10.88 .8 \\
20.410 .2 \\
20.010 .2
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1.15 \\
& 1.0 \\
& 1.0 \\
& 1.15 \\
& 1.0 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Ball } \\
& \text { Baall } \\
& \text { Ball } \\
& \hline
\end{aligned}
$$
\] \& B

A
A
B
B

B \& \[
$$
\begin{aligned}
& \text { Cradle } \\
& \text { Rigid } \\
& \text { Rigid } \\
& \text { Rigid } \\
& \text { Criadle } \\
& \text { Rigid } \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6 K 365 \\
& 6 K 284^{*} \\
& 6 \times 614^{*} \\
& \mathbf{5 K 2 4 2} \\
& 6 K 324 \\
& 6 K 162
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 251.00 \\
& 223.00 \\
& 229.00 \\
& 325.00 \\
& 312.00 \\
& 288.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 192.00 \\
& 170.50 \\
& 182.75 \\
& 248.75 \\
& 238.75 \\
& 220.25
\end{aligned}
$$
\] \& 28.0

32.0
32.0
35.0
38.0
38.0

\hline \& $$
\begin{aligned}
& 3450 \\
& 3450 \\
& 3450
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 56 \\
& 56 \\
& 56
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Auto } \\
& \text { None } \\
& \text { Manual }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 115 / 230 \\
& 115 / 230 \\
& 115 / 230
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 19.69 .8 \\
& \begin{array}{l}
23.011 .5 \\
22.011 .0
\end{array}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.15 \\
& 1.0 \\
& 1.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Ball } \\
& \text { Ball } \\
& \text { Ball }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{B} \\
& \mathrm{~A} \\
& \mathrm{~A}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Cradie } \\
& \text { Rigid } \\
& \text { Rigid }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6 K 805 \\
& 6 K 138 * \\
& 6 K 652^{*}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 322.00 \\
& 297.00 \\
& 313.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 251.75 \\
& \mathbf{2 2 2 7 . 2 5} \\
& \mathbf{2 3 9 . 5 0}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 37.0 \\
& 36.0 \\
& 36.0
\end{aligned}
$$
\]

\hline \multicolumn{14}{|l|}{") Side mourtted conduit box. (${ }^{\dagger}$) Rigid cradle base, sirutar to cradle base except does not have rubber rings on endstield.}

\hline \multicolumn{14}{|l|}{}

\hline \multicolumn{14}{|c|}{Prowing}

\hline \& \& \& \& \& \& \& | ONE ILABL |
| :--- |
| rins | \& II \& \& \& \& Mi \&

\hline
\end{tabular}

COMMERCIA: MOFORS

CAPACITOR-START OPEN DRIPPROOF MOTORS

Typical Uses: Fans, blowers, pumps, and commercial machinery.
Bearings: Sleeve or ball
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: GE

(t) Capacitorntart capacitor-run-

A.O. SMITH BRAND, OPEN DRIPPROOF

Typical Uses: Machinery, tools, fans, blowers, conveyors, and many other everyday applications where maximum HP load will not exceed nameplate rating.
Bearings: All-angle sleeve or prelubricated ball
Thermal Protection: None
Insulation Class: B
Ambiant: $40^{\circ} \mathrm{C}$
Duly: Continuous
Rotation: CW/CCW
Finish: Black epoxy
Brand: A.O. Smith

HP	Nomeplata RPM	$\begin{gathered} \text { NEMA } \\ \text { Frame } \end{gathered}$	Volts 60 Hz	Full-Lond Amps at Nameplate	Bearings	Senvice Factor	A.0. Smith Style No.	Stock Ne.	List	Each	$\frac{\text { stpg. }}{}$
1/3	1725	48	115	7.0	Sleeve	1.0	316 P 298	5K308	\$142.00	\$109.75	16.0
172	1725	56	$115 / 230$	8.8/4.4	Ball	1.25	317 P 063	6K085	200.00	154.25	19.0
13	1725/1140*	56	230	6.8	Sleeve	1.0	311 P 397	6×137	392.00	302.25	34.0

(*) $1 / 3$ HP at 1140 RPM

5ix

学
Typicöl Uses: Fans, blowers, pumps, and commercial machinery.
Bearings: Ball
Mounifing: Cradle
Ambient: $40^{\circ} \mathrm{C}$
Duty Continuous
Rotation: CW/CCW
Finishígray
Brant: Dayton and GE
nde

DAYTON AND GE BEEAND, TEFC

COMMERCIAL MOTORS

CAPACITOR-START HIGH EFFICIENCY MOTORS

Typical Uses: General purpose applications including pumps, blowers, air compressors, machinery, and other heavy-duty, hard-starting equipment.
Special Features: NEMA service factors provide a reserve margin for applications where intermittent overloading or fluctuating (high/low) voltage conditions may. occur. Dual capacitors.
Type: Capacitor-start, capacitor-run
Bearings: Ball
Mounting: Cradle
Enclosure: Open dripproof
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: Dayton

新	$\underset{\substack{\text { Namopelate } \\ \text { RPM }}}{ }$	NEMA Frame	Thermal	Volts 50 Hz	$\begin{gathered} \text { Fulli-Load } \\ \text { Amps at } \\ \text { Nameplate Voits } \\ \hline \end{gathered}$	Service Factor	Stock No.	List	Each	Shpg.
$1 / 4$	$\bigcirc \begin{array}{r}1725 \\ 1725\end{array}$	56 56	$\begin{aligned} & \text { None } \\ & \text { Auto } \end{aligned}$	115230 115230	2.811 .4 2.81 .4	${ }_{1}^{1.35}$	-4K700	$\$ 154.00$ 162.00	\$ $\mathbf{1 1 7 . 6 5} \mathbf{1 2 3 . 8 0}$	21.0 24.0
1/3	$\begin{aligned} & 1725 \\ & 1725 \end{aligned}$	56	None	115230	3.81 .9 3.81 .9	1.35	- $4 \times 7 \times 108$	182.00 190.00	139.10	23.0 25.0
12	1725	${ }_{56}^{56}$	$\begin{aligned} & \text { None } \\ & \text { Auto } \end{aligned}$	${ }_{115 / 230}$	5.582 .8	1.25	-4K715	210.00 218.00	160.75 166.75	28.0 28.0
38	1725	${ }_{56}^{56}$	$\begin{aligned} & \text { None } \\ & \text { Auto } \end{aligned}$	115230	8.24 .1	1.25	-4K750	257.00.	196.50	320 31.0
$\underline{1}$	1725	${ }_{56}^{56}$	None Auto	$115 / 230$	${ }_{9}^{9.244 .6}$	1.25	-4K757	277.00 285.00	212.00	37.0 38.0

Top Performance. Dayton motors are built to exceed industry standards such as NEMA (National Electrical Manufacturers Association). Used as a replacement motor in a wide variety of applications, each Dayton motor must outperform the best motor it may be called upon to replace, hence "best of the best" performance. You can be confident that the Dayton motor will work as well as, or better than, the motor you are replacing.
Top Quality Verified by Engineers. Grainger's Engineering Dept., with its "state-of-the-art" test lab, confirms that Dayton motors consistently meet or exceed top performance standards. Engineering also confirms the motors have applicable agency approvals such as UL and CSA.
Clearly Identified. Dayton motors are clearly identified by full fact carton labels and nameplates with wiring diagrams. Maintenance and installation instructions appear in every motor carton.
Broad line Offering. Dayton offers one of the broadest lines of motors in the industry. One brand can be used for nearly all your motor replacement needs.
Time Proven Performance. Established in 1937, Dayton has grown to be one of the most dependable names in the motor industry

Broad Line Offering. Grainger now offers over 2400 stock GE brand motors including AC and DC motors from $1 / 370$ HP to 450 HP in Energy \$aver ${ }^{\text {m }}$ and standard efficiency designs including severe duty, explosion proof, farm duty, HVAC, and many others.
National Recognition. GE is considered the leading national brand motor with the largest installed customer base. The GE brand is widely known for quality and reliability.
Clearly identified. GE motors are clearly identified by full fact carton labels and nameplates. Easy-to-read wiring diagrams are included.
Premium Efficiency Leader. GE has long been recognized as an industry leader in premium efficiency motors with a wide variety of ratings and types to suit many applications.
Heritage of Excellence. General Electric is one of the pioneers in the electrical industry with a proud 100 year history dating back to the time of founder Thomas Edison.

MANY BRANDS OF MAINTENANCE EQUIPMENT AVAILABLE

VACUUM CLEANERS

- NEMA 42 frame is supplied with a relay instead of centrifugal switch (relay mounting clip also included)
Typical Uses: Fans, blowers, conveyors, tools, pumps, reducers, and similar mod-erate-starting torque applications. NEMA 42 frame is more frequently used on business machines, vending machines, printing equipment, door openers, and. other applications where a small, compact motor is required.
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: Dayton
CAUTION:
Not for fans in unattended areas.
Refer to page 5 for UL507 Stañdard,
proper thermal protection, and other
motor selection information.

	Namppiata BPM	$\begin{aligned} & \text { NEMA } \\ & \text { FTarive } \end{aligned}$	Themal Protection	Volts 60 Hz	Full-Load Arpps at Nameplate Volts	Service Factor	Bearings	$\begin{gathered} \text { Lins. } \\ \text { Cless } \end{gathered}$	Mountion	$\begin{gathered} \text { Shaft } \\ \text { bimensions } \\ \text { Die. x Length } \end{gathered}$	Stock Ho.	List	Each	Shag: VL
1/123	1725 1725	42	None Auto	115	2.6	1.4	$\begin{aligned} & \text { Ball } \\ & \text { Ball } \end{aligned}$	$\underset{B}{B}$	Cradle	$3 / 8 \times 11 / 8^{n}$ $388 \times 11 / 4$	$\begin{aligned} & 6 \times 402 \\ & 4 K 133 \end{aligned}$	$\$ 114.00$ 114.00	$\begin{array}{r} \$ 82.20 \\ 79.00 \end{array}$	$\begin{aligned} & 8.8 \\ & 8.8 \end{aligned}$
1/6	1725	48	Anto	115	3.5	1.35	Sleeve	B	Cradle	$1 / 2 \times 11 / 2$	6K551	104.00	75.20	13.0
\%	1725	48	Auto	115/230	$3.6 / 1.8$	1.35	Ball	B	Cradle	$1 / 2 \times 11 / 2$	3K613	122.00	86.75	15.0
者	1140	56Z*	None	115	4.6	1.35	Sleeve	17	Cradle	$1 / 2 \times 11 / 2$	5K559\#	152.00	109.50	18.0
$1 / 4{ }^{3}$	1725	48	Auto	115/230	4.6/2.3	1.35	Ball	B	Cradle	$1 / 2 \times 11 / 2$	3K614	128.00	92.50	15.0
\%	1725	48	Auto	115	4.6	1.35	Sleeve	B	Cradle	$1 / 2 \times 11 / 2$	6K553	112.00	81.00	-15.0
=	1725	56\%*	None	115	5.4	1.0	Sleeve	A	Rigid	$1 / 2 \times 11 / 2$	5K279	98.00	70.65	15.0
	1725	48	None	115	5.4	1.0	\therefore jover	A	Rigid	$12 \times 11 / 2$	5K911	98.00	70.65	14.0
	1725	48	Auto	115	5.4	1.0	3 beeve	A	Rigid	$12 \times 11 / 2$	6×718+	106.00	7640	14.0
	1725	48	None	115	5.4	1.0	Sleeve	A	Cradle	$1 / 2 \times 1 / 2$	5.914\#	104.00	74.95	14.0
戓	1725	48	Auto	115	5.4	1.0	Sleeve	A	Cradle	$12 \times 14 / 2$	5×915	108.00	77.70	14.0
	1725	48	None	115	5.4	1.0	Ball	A	Cradle	12×142	6K716	112.00	80.70	14.0
-	1725	562*	Auto	115	5.4	1.0	Ball	A	Cradle	$1 / 2 \times 1 / 2$	6K722*	116.00	89.65 =	15.0
	1725.	- 56\%*	None	115	5.7	1.0	Ball	A	Cradle	$1 / 2 \times 142$	6×731	112.00	80.70	15,0
\%	1725.	$\therefore 567{ }^{*}$	Auto	115	5.4	1.0	Sleeve	A	Cradle	$1 / 2 \times 11 / 2$	5K220	108.00	78.05	15.0
\%	1725 .	562*	None	115	5.4	1.0	Sleeve	A	Cradle	$1 / 2 \times 142$	5K280*	104.00	74.95	15.0
$1 / 3$	3450	48	None	115	6.6	1.0	Sleeve	A	Rigid	$1 / 2 \times 11 / 2$	5K586	104.00	75.90	14.0
	1725	48	Auto	115	6.0	1.35	Sleeve	B	Cradle	$1 / 2 \times 14 / 2$	6×570	130.00	94.05	16.0
	1725	48	Auto	115/230	6.0/3.0	1.35	Ball	B	Cradle	$12 \times 11 / 2$	3K615	146.00	105.55	17.0
	1725	48	None	115	6.8	1.0	Sleeve	A	Rigid	$1 / 2 \times 11 / 2$	54916	110.00	79.25	14.0
	1725	48	Auto	115	6.0	1.0	Sleeve	A	Rigid	$1 / 2 \times 11 / 2$	5K601:	114.00	82.15	15.0
	1725	48	Auto	230	3.0	1.0	Sleeve	A	Rigid	$1 / 2 \times 11 / 2$	5K602	122.00	87.90	15.0
	1725	48	None	115	6.8	1.0	Bail	A	Rigid	$12 \times 11 / 2$	6K782-	118.00	85.05	15.0
	1725	48	None	115	6.8	1.0	Sleeve	A	Cradle	$12 \times 11 / 2$	5K917	112.00	80.70	14.0
	1725	48	Auto	115	6.8	1.0	Sleeve	A	Cradle	$1 / 2 \times 11 / 2$	5K918	116.00	85.25	14.0
	1725	48	None	115	6.8	1.0	Ball	A	Cradle	$12 \times 1 \%$	6 K 725	120.00	86.50	14.0
	1725	48	Auto	115	6.8	1.0	Ball	A	Cradie	12x $1 / 2$	$6 K 744$	124.00	96.95	15.0
	1725	56Z*	None	115	6.0	1.0	Sleeve	A	Rigad	$1.4 \times 1 / 2$	5K281	110.00	79.25	15.0
	1725	56Z*	Auto	115	6.0	1.0	Sleeve	4	Riged	$12 \times 1 / 2$	$6 K 768$	114.00	82.15	15.0
	1725	562*	Auto	115	6.0	1.0	Ball	A	Rugid	129 ${ }^{1 / 2}$	5K412	122.00	87.90	15.0
	1725	562*	None	115	6.0	1.0	Sleeve	A	Cradle	$12 \times 1 / 2$	5K282	112.00	80.70	17.0
	1725	$56 Z^{*}$	Auto	115	6.0	1.0	Sleeve	A	Cradle	$12 \times 11 / 2$	5K221-	116.00	85.65	18.0
	1725	56Z*	None	115	6.0	1.0	Ball	A	Cradle	$12 \times 11 / 2$	6K755	120.00	86.50	16.0
	1725	56Z*	Auto	115	6.0	1.0	Ball	A	Cradie	$1 / 2 \leq 11 / 2$	5K413	124.00	97.25	18.0
	1725	56Z*	None	115	6.0	1.0	Sleeve	-	Rigrd	$1 / 2 \times 11 / 2$	5K533	102.00	73.80	14.0
	1725	$56 Z^{*}$	None	115	6.0	1.0	Sleev:	A	Cradle	$1 / 2 \times 11 / 2$	5K534	106.00	76.40	14.0
1/2	3450	48	None	115	8.6	1.0	Sleer e	A	Rignd	$12 \times 11 / 2$	6K844:	134.00	97.40	16.0
	1725	48	Auto	115/230	7.6/3.8	1.25	Ball	B	Cradle	$12 \times 11 / 2$	3K616	198.00	143.15	20.0
	1725	48	Auto	115	7.4	1.25	Sleeve	B	Cradle	$1 / 2 \times 11 / 2$	$6 K 589$	182.00	131.55	19.0
	1725	48	None	115	8.8	1.0	Sleeve	A	Rigid	$1 / 2 \times 11 / 2$	5K984	137.00	98.70	18.0
	1725	48	None	115	8.8	1.0	Sleeve	A	Crade	$L 2 \times 11 / 2$	$6 K 763$	141.00	101.60	18.0
	1725	48	Auto	115	8.8	10	Sleeve	A	Cradle	U2 $\times 11 / 2$	$6 K 768$	145.00	106.30	18.0
	1725	48	Vone	115	8.8	1.0	Ball	4	Cradle	$45 \times 11 / 2$	6K764	151.00	108.80	18.0

(*) Have nonstandard $1 / 2^{n}$ diameter shaft with nat. (\dagger) Supplied with $5 / 8^{n}$ diameter shaft bushing
(\ddagger) Rigid cradle base; sumilar to cradle base except does not have rubber nngs on endshield.
continugn on next pagf

COMMERCIAL MOTORS

SPLIT-PHASE OPEN DRIPPROOF MOTORS

DAYTON SPITT-PHASE OPEN DRIPPROOF MOTORS (Cont.)

HP	Nameplate APM	NEMA Frume	Thermal Protection	Volts 60 Hz	Fulli-Lasd Amps at Nameplate Volts	Service Factor	Searings	Class	Mounting	Shaft Dimensions Dia \times length	Stack No.	List	Each	$\begin{aligned} & \text { Sbpg } \\ & \text { Wh } \end{aligned}$
1/2	1725	56	None	115	8.6	1.0	Sleeve	A	Rigid	$5 / 8 \times 179$	5×433	\$137.00	\$98.70	20.0
	1725	56	None	115	8.6	1.0	Ball	A	Rigid	$5 / 8 \times 17 / 5$	6K784	145.00	104.45	19.0
	1725	56	Manual	115	8.6	1.0	Ball	B	Rigid	688 $\times 1 \%$	5 K 597	155.00	111.70	20.0
	1725	56	None	115	8.6	1.0	Ball	A	Cradle	588 ${ }^{1 / 4}$	6 K 775	147.00	105.95	20.0
	1725	56	Auto	115	8.6	1.0	Ball	B	Cradle	$518 \times 1 \%$	6K780	150.00	117.85	20.0
	1725	56	None	115	8.6	1.0	Sleeve	A	Cradle	$58 \times 17 / 4$	$5 K 283$	141.00	101.60	20.0
	1725	56	Auto	115	8.6	1.0	Sleeve	B	Cradle	$5 / 8 \times 1 / 5$	$6 K 845$	145.00	106.30	20.0
	1725	56	None	230	4.6	1.0	Sleeve	A	Cradle	5/8×1\%	5K288	149.00	107.35	20.0
	1725	562*	None	115	8.1	1.0	Sleeve	A	Cradle	$1 / 2 \times 1: / 2$	4 K 913	1.41 .00	101.60	17.0
3/4	1725	56	Anto	1151230	11.45.7	1.25	Bail	B	Cradle	$58 \times 17 / 3$	3K617	238.00	170.25	23.0
12														
$\begin{aligned} & H P \text { at } \\ & { }^{172 S} \\ & R P M \end{aligned}$				Thermal Protaction		Survict Factor	Bearings	Cluss	Mountiang	Shat Dimemsions Dia. x Length	Stock No.	List	Eseh	Shyp Wh
1/4	$\begin{aligned} & 1725 / 1140 \\ & 17251140 \end{aligned}$		\square	None None	$\begin{aligned} & 5.5 / 4.0 \\ & 5.243 .6 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	Sleeve Sleeve	A	Cradle Cradle	$\begin{aligned} & 1 / 2 \times 11 / 2^{*} \\ & 1 / 2 \times 1 / 2 \end{aligned}$	$\begin{aligned} & \text { 54671\# } \\ & 5 \times 574 \# \end{aligned}$	$\begin{array}{r} \$ 138.00 \\ 138.00 \end{array}$	$\begin{array}{r} \mathbf{\$ 9 9 . 4 5} \\ \hline 95 \end{array}$	$\begin{aligned} & 17.0 \\ & 16.0 \end{aligned}$
1/3	- $172551140 \cdot 5624$			None	6.8/4.5	1.0	Sleeve	A	Cradle	$1 / 2 \times 1 / 2$	5K554\#	152.00	109.50	21.0
142	4 $1725 / 1140$		${ }_{56}^{56}$	None None	- $9.2 / 6.0$	1.0	Sleeve Sleeve	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { Cradle } \\ & \text { Cradle } \end{aligned}$	$\begin{aligned} & 5 / 8 \times 1^{1 / 8} \\ & 588 \times 1^{1 / 8} \end{aligned}$	$\begin{aligned} & 5 \times 423 \\ & 5 K 556 \end{aligned}$	$\begin{array}{r} 196.00 \\ 204.00 \end{array}$	$\begin{aligned} & 141.20 \\ & 147.00 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 23.0 \end{aligned}$
\%			- 4.663 .0		10									

(*) Have nonsstandard $1 / 22^{\prime}$ diarnetershaft with int
*) TNEMA 48 Y frame cradles are notched for mounting in place of 48 or 56 frame cradie.

(\#) Whas extended thrubbolts out shat endshesed for mounting fan guard.

A.O. SMITH BRAND, KIGID WELDED OR CRADLE BASE

Typical Uses: Fans and blowers; air circulators, farm and home workshopetools such as ${ }^{\circ} \mathrm{jig}$ sąws, grinders, and smalt drill pressesseAlso, other moderate-starting torque applications where HP load will not exeeed nameplate rating.
Engosure: Open dripproof
Apbient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Black epoxy
Brand: A.O. Smith

HP	Nameplate APM	NEMA Frame	Thermal Protaction	Volts 60 Hz	Fulll-Lood Amps at Nameplate Volts	Servic: Factor	Senirgs	Ins. Class	$\begin{aligned} & \text { A.O. Sraith } \\ & \text { Madel } \end{aligned}$	Stock No.	List	Each	Shpg. Wt.
$1 / 3$	1725	562*	Nohe	115	6.2	1.0	Ball	B	317 P 044	$6 \mathrm{K073}$	\$124.00	\$95.75	15.0
30									\because			Rn	
1/4	$\begin{aligned} & 1725 \\ & 1725 \end{aligned}$	$\begin{aligned} & 48 \\ & 48 \end{aligned}$	None None	115 115	5.8	1.0 10	Sleeve Ball	B	316 P 001 316 P 25	$\begin{aligned} & 4 K 6799^{\circ} \\ & 5 k 309 \end{aligned}$	102.00 118.00	$\begin{aligned} & 78.70 \\ & 91.10 \end{aligned}$	13.0 12.0
$1 / 3$	1725	48	None	115	5.9	1.35	Ball	B	316 P 246	5K304	139.00	98.85	15.0
$1 / 2$	1725	56	None	115	8.7	1.0	Ball	B	317P037	$6 \mathrm{K075}$	15700	121.10	17.0

[^8]
SPLIT－PHASE OPEN DRIPPROOF MOTORS

Typical Uses：Commercial fans，ventilation fans，blowers，and other belt－driven air－ moving applications．
Thermal Protection：None（No．5K594 is impedance protected）
Ambient： $40^{\circ} \mathrm{C}$
Duty：Continuous
Rotation：CW／CCW
Finish：Gray
Brand：GE

CAUTION：
Not for fans in unattended arsas．
Refer to page 5 for ULL507 Standard， proper thermal protection，and other motor selection information．

			20	4x6	ysex	58				18			Kixysuk	
HP	Mampplate RPM	nema Frame	Volts 60 Hz	Full－Load Aupss af Namsplate Volts	Service Factor	Boaring：	$\underset{\text { Class }}{\text { liss }}$	Mounting	$\begin{aligned} & \text { Shant } \\ & \text { Dimensions } \\ & \text { Dinim } \times \text { Langth } \end{aligned}$	$\begin{gathered} \text { GE } \\ \text { Stock } \\ \text { Mo. } \end{gathered}$	Stack No．	Lis	Ench	Sheg
1／1需	1725	42	115＊＊	2.1	1.0	Sleève	A	Crade	$38 \times 118{ }^{\prime \prime}$	－	516594	\＄174．00	\＄107．80	10.0
1／6	1725	48	115	3.9	1.35	Sleeve	B	Cradle	$1 / 2 \times 1 / 2$	4384	61×507	107.00	65.50	12.0
	1725	488	115	3.9	1.35	Ball	B	Cradeestud	$588 \times 17 / 8$	H156	$3 \mathrm{K115}$	123.00	75.30	12.0
－	1140	48	115	4.0	1.35	Sleeve	B	Crade	$588 \times 11 / 2$	H112	3 K 404	166.00	201.55	20.0
	1140	48	115	4.0	1.35	Sleeve	B	Cradlestud	$1 / 2 \times 11 / 2$	H695	$1 \mathrm{K085}$	168.00	102.80	23.0
管	1140	488	116	4.0	1.35	Ball	${ }_{8}^{\text {B }}$	Cradlestud	$12 \times 17 / 6$	H158	2 K 697	${ }^{183600}$	111.93	19.0
＋	850	66	116	6.1	1.35	Ball	B	CradleeStud	$588 \times 17 / 8$	H620	$2 \mathrm{K699}$	3336.00	205.75	29.0
1／4	1725	48	115	5.6	1.35	Aail	B	Rigid	$12 \times 14 / 2$	H289	$2 K 684$	128.00	78．35	14.0
	1725	48	115	5.1	1.35	Sleeve		Rigit	$12 \times 11 / 2$	4554	2 K 682	111.00	67.95	120
	1725	48	115	5.1	1.35	Sleeve	${ }^{\text {B }}$	Crame	1／2x $11 / 2$	4355	$6 K 569$	116.00	71.00	13.0
	1725	48	230	25	1.36	Sleeve	－${ }^{\text {B }}$	Cradie	1／2×11／2	4360	$2 k 690$	123.00	75.25	17.0
	1725	48	115	5.7	1.0	Sleev：	B	－Rigid	$12 \times 11 / 2$	4351	5K524	107.00	65.50	12.0
\％	1725	48	115	5.7	1.0	Sleeve	\％${ }^{\text {R }}$	Cradle	1／2×11／2	4352	5 K 25	11100	67.95	120
\％	1725	482．	115	5.1	1.35	Ball	27	CradleStud	$12 \times 1 / 8$	H160	3 K 118	131.00	80.15	14.0
耏	1725	${ }^{562}{ }^{*}$	115	5.7	1.0	Sleeve	$\frac{8}{8}$	cradle	$1 / 2 \times 11 / 2$	4359	3 K 086	113.00	69.15	13.0
mis	1140	56	115	6.6	1.35	Ball	B	Cradiestud	$58 \times 17 \%$	H162	$2 K 700$	240.00	146.85	27.0
为	850	56	115	6.9	1.25	Ball	B	CradleStud	$58 \times 17 / 8$	H2\％6	2K698	411.00	251.75	35.0
$1 / 3$	3450	48	115	5.6	1.35	Ball	B	Cradle	$12 \times 1 / 2$	H114	10078	123.00	74.05	$15.0 \cdot$
	1725	48	115	6.2	1.35	Ball	B	Cradle	$12 \times 11 / 2$	4370	10036	142.00	85.45	15.0
	1725	48	115	6.8	10	Ball	B	Rigid	$1 / 2 \times 11 / 2$	H229	$2 \mathrm{K683}$	135.00	82.60	15.0
	1725	48	115	6.2	1.0	Sleeve	B	Rigid	1／2×1／2	4368	6 K 185	117.00	71.60	14.0
	1725	48	115	6.2	1.0	Sheere	B	Cradle	1／2×11／2	4369	5 5 27	121.00	74.05	14.0
	1725	48	230	3.3	1.0	Sleeve	B	Figid	$12 \times 1 / 2$	4373	2 K 685	126.00	77．10	16.0
	1725	48	230	33	1.0	Sleeve	${ }^{8}$	Crade	$12 \times 11 / 2$	4371	51310	130000	79.55	15.0
	1725	48Z	115	6.2	1.35	Ball	B	CradleStud	$1 / 2 \times 17 / 8$	H164	$3 K 120$	153.00	93.65	16.0
	1725	482	230	3.3	1.35	Ball	B	CradleStud	12 $\times 17 / 8$	H166	$2 K 701$	160.00	97.90	16.0
	1725	482	115	6.2	1.0	Sleeve	B	Rigid	12×178	4376	$2 \mathrm{K686} \dagger$	123.00	75.25	15.0
	1725	$56 \mathrm{Z}^{*}$	115	6.2	1.0	Sleeve	B	Rigid	$12 \times 11 / 2$	4372	$3 \mathrm{K087}$	119.00	72.80	15.0
	1725	$56 \mathrm{Z}^{*}$	115	6.2	1.0	Sleeve	${ }^{\text {B }}$	Cradte	$12 \times 1 / 2$	4377	6K947	124.00	69.55 17050	14.0
	1140	56	115	7.0	1.36	Ball	B	CradleStud	$58 \times 1 / 1 / 8$	H168	$2 \mathrm{K702}$	278.00	170.50	31.0
1／2	1725	36	115	7.9	1.25	Ball	B	Cradle	538 31%	4390	$1 \mathrm{DO40}$	197.00	118.55	20.0
	1725	56	115	9.3	1.25	Ball	B	Cradle／Stud	$58 \times 1 / 8$	H2S6	3 K 122	209.00	127.90	18.0
	1725	56	115	8.3	1.0	Ball	B	Ragd	58×1\％	H230	$2 \mathrm{K687}$	168.00	102.80	17.0
	1785	56	115	8.3	1.0	Ball	B	Cradle	$58 \times 1 / 3$	4386	10038	161.00	96.90	18.0
	1725	56	230	4.2	1.0	Ball	B	Cradle	38 $\times 11^{1 / 4}$	$\underline{487}$	10039	169.00	101.75	18.0
3／4	1725	56	115	11.4	1.0	Ball	8	Crade	25×1－4	422	10043	197.00	118.55	31.0
T\％TAR		TWO SPEED，CRADLE BASE												
HP at ligh IPM RPM	Nameplate RPM	NEMA Frama	Vofts 60 Hz	Full－Load Amps at Nameplate Volts	Service Factor	Bearings	$\begin{aligned} & \text { lns. } \\ & \text { Class } \end{aligned}$	Mounting	Shaft Dimensions Dia． x Length	$\begin{gathered} \text { CE } \\ \text { Stock } \\ \text { No. } \end{gathered}$	Stock No．	List	Each	Shpg． Vit
$1 / 6$ $1 / 18$ 16 $1 / 18$	$1725 / 1140$ $1725 / 140$	$\begin{aligned} & 48 \\ & 482 \end{aligned}$	115	3.411 .9 3.41 .9	1.35 1.35	Sleeve Ball	${ }_{\text {B }}^{8}$	Cradle Cralle／ciud	Li／2 $\times 1 / 1 /{ }^{1 / 4}$	+329 $H 169$	$\frac{2 K 704}{2 K 705}$	$\begin{array}{r} \$ 141.00 \\ 159.00 \end{array}$	$\begin{array}{r} \$ 86.30 \\ \mathbf{9 7 . 3 0} \end{array}$	17.0 17.0
．14 $141 / 12$	172511140 1140850	$\frac{482}{56}$	$\stackrel{115}{115}$	$4.2 / 2.7$ 5.883 .6	1.35	$\begin{aligned} & \text { Ball } \\ & \hline \end{aligned}$	B	Cradle／Stud	$\frac{1 / 2 \times 17 / 8}{1 / 8}$	H171 H 300	2K706	183.00 353.00	111.95 216.25	19.0 33.0
13 $1 / 9$ 13 $1 / 9$	$1725 / 1140$	$\begin{aligned} & 48 \\ & 56 \end{aligned}$	115	$6.3 / 3.1$ $5.7 / 3.2$	$\begin{aligned} & 1.0 \\ & 1.35 \end{aligned}$	Sleeve Ball	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	Cradle／Stud Ccadle／Stud		$\begin{aligned} & \mathrm{H} 396 \\ & \mathrm{H} 173 \end{aligned}$	$\begin{aligned} & 2 K 708 \\ & 2 K 709 \end{aligned}$	$\begin{aligned} & 170.00 \\ & 232.00 \end{aligned}$	$\begin{aligned} & 104.05 \\ & 142.00 \end{aligned}$	19.0 25.0
$12 \quad 1 / 6$	1725／1140	56	115						． $88 \times 17 / 4$	H130	10080	218.00	131.20	
$12 \quad 1 / 6$	$1725 / 1140$	56	115	8.014 .2	1.25	Ball	8	Cradle／Stud	\％8×178	H170	2 K 711	293.00	179.50	29.0
$12 \quad 1 / 6$	1725／140	56	230	3.81 .1 .9	1.25	Ball	B	Cradle／Stud	\％ $8 \times 1 / 8$	H275	2×712	301.00	184.50	29.0

[^9]
COMAERCIAL MOTORS

SPLIT-PHASE TEFC MOTORS

DAYTON BRAND, SPLIT-PHASE TEFC MOTORS

- Large conduit box for easy wiring

Typical Uses: Dependable operation in noncombustible dusty, dirty areas on pumps, machinery, fans, blowers, conveyors, and other moderate-starting torque applications.

Bearings: All-angle sleeve or prelubricated ball Service Factor: 1.0
Thermal Protection: None
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: Dayton

$\begin{aligned} & 1765 \\ & \text { RPA } \end{aligned}$	$\begin{aligned} & 189 \\ & \text { RPM } \end{aligned}$	Nixakeplata RPM	NEMA Framio	Themal Protection	Voles 60 Hz	Full-Laad Aupp of Namoplate Yolts	Service Factor	Bearings	Ins. Class:	Mounting	Stock No.	List	Each	Shpg.
$\begin{aligned} & 1 / 4 \\ & 1 / 3 \end{aligned}$		1725 1725	48 48	None None	115	4.4 5.5	1.0	Sleeve	A	Cradle	6K517	$\$ 130.00$ 148.00	$\$ 93.65$ 106.65	17.0 20.0
1/2		1725	56	None	115	8.6	1.0	Ball	A	Rigid	5K596	212.00	152,75	23.0
\qquad														
$1 / 2$	1/4	1725/1140	56	None	115	8.3/6.3	1.0	Ball	A	Rigid	5K618	288.00	207.75	$26.0{ }^{\circ}$

3:PHASE AND PSC COMMERCIAL CONDENSER FAN AND BLOWER MOTORS

3-PHASE COMMERCIAL CONDENSER FAN MOTORS

Typical Uses: New and replacement use in 5 to 10 ton and larger commercial outdoor condensers.
Special Features: Shaft end is enclosed for shaft-up mounting. Dual voltage. Shaft has flat and keyway 90° apart to fit all commonly used fan blades. Water slinger on shaft.
Bearings: Double-sealed ball
Mounting: Fit into most existing OEM belly bands. Enclosed shaft endshield for shaftup mounting.
Enclosure: Open air-over
Service Factor: 1.0
Thermal Protection: Auto
Insulation Class: B
Ambient: Dayton $60^{\circ} \mathrm{C}$; $\mathrm{GE} 65^{\circ} \mathrm{C}$
Rotation: CW/CCW
Finish: Gray enamel
Brand: Dayton and GE

CAUTION: NoH for fans in unattended areas.

Referto page 5 for UL50 7 Standard, proper thermal protection, and other motor setection informafion.

SINGLE-PHASE 460 VOLT PSC COMMERCIAL BLOWER MOTORS

Typitid Uses: High efficiency performance in furnace blowers and other shaft-mounted air-over fan and blower equipment.
Special Features: 370 V capacitor kit included. $60 / 50 \mathrm{~Hz}$ operational.
Bearings: Ball
Mounting: $3 / 4^{\prime \prime}$ studs
Enclosure: Open air-over
Service Factor: 1.0
Thermal Protection: Auto
NEMA Frame: 48 YZ (GE 39 frame)
Insulation Class: A
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CW/CCW
Finish: Gray
Brand: GE

HEATING/COOLING MOTORS

SINGLE-PHASE COMMERCIAL PSC CONDENSER FAN MOTORS

DAYTON FEATURES

High Efficiency: Includes resilient rings for mounting in existing base and with studs for mounting from shaft endshield. Capacitor available separately.
Standard Efficiency: Internal conduit box for enclosed wiring connections.
Cradie Units feature capacitor mounting hardware, internal conduit box, and a shaft flat.

GE FEATURES

Includes resilient rings for mounting in existing base and with studs for mounting from shaft endshield. Shaft flat and keyway 90° apart. Capacitor available separately.
Typical Uses: New and replacement use in 5 ton or larger commercial outdoor condensers. Also used in commercial and industrial coolers, furnaces, and other shaft-mounted fan and blower equipment.
Special features: Dual voltage on most ratings. Water slinger on shaft. Drive end is ehclosed for shaft-up mounting. Shaft designed to fit all commonly used fan whades.
Bearings: Ball
Shaft: $1 / 2^{\prime \prime}$ dia. shafts have flat; $5 / 8^{\prime \prime}$ dia. shafts have flat and keyway 90° apart
Service Factor: 1.0
Thermal Protection: Auto
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Rotation: CW/CCW
Brand: Dayton and GE

CAUTION:	
	Nof for fans in unattended areas. Refer to page 5 for UL507 Standard, proper thermal protection, and other motor selection information.

GE BRAND, HIGH EFFICIEN $\%$ Y, $21 / 2^{1}$ RESIUENT RING MOUNT

HP	$\begin{aligned} & \text { Name- } \\ & \text { plate } \end{aligned}$	NEMA Frame	Enclosure	Yots 60 Hz	Full-Load Amps at 230 Voits	OC	Stuath Dimens. Dia. L	Length Less Shat	$\begin{gathered} \text { GE } \\ \text { Stock } \\ \text { No. } \end{gathered}$	Stuck No.	List	Each	Shpg. W.	Capacit Stock No.	Req'd. Each
1/2	$\begin{array}{r} 1075 \\ 825 \end{array}$	$\begin{aligned} & 56 \mathrm{Z} \\ & 56 \mathrm{Z} \end{aligned}$	$\begin{aligned} & \text { OPAO } \\ & \text { OPAO } \end{aligned}$	$\begin{gathered} 208-230 / 460 \\ 208-230 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 7 / 1 / 4 \\ & 7^{1 / 4} \end{aligned}$	$\begin{aligned} & 5 / 8 \times 6^{10} \\ & 5 / 8 \times 4 \end{aligned}$	$\frac{711 / 16^{4}}{71 / 16}$	$\mathrm{P}^{2}+2$	$\begin{array}{r} 4 M 124 \\ -4 M 125 \end{array}$	$\begin{array}{r} 3283.00 \\ 352.00 \end{array}$	$\begin{array}{r} \$ 196.50 \\ 237.25 \end{array}$	$\begin{array}{r} 26.0 \\ 25.0 \end{array}$	$\begin{aligned} & 6 \times 656 \\ & 6 \times 65 \% \end{aligned}$	$\begin{array}{r} 56.43 \\ 6.43 \end{array}$
3/4	$\begin{aligned} & 1075 \\ & 325 \end{aligned}$	$\begin{gathered} 562 \\ 562 \\ \hline \end{gathered}$	$\begin{aligned} & \text { OPAO } \\ & \text { OPAO } \end{aligned}$	$\begin{gathered} 208-230 / 460 \\ 208-230 \end{gathered}$	$\begin{aligned} & 3.8 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 31 / 4 \\ & 8 \end{aligned}$	$\begin{aligned} & 5 / 8 \times 6 \\ & 5 / 8 \times 6 \end{aligned}$	$\begin{aligned} & 71 / 10 \\ & 89 / t \mathrm{tb} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{2} 43 \\ & \mathrm{P}_{2} \end{aligned}$	$\begin{aligned} & -4 M 126 \\ & -4 M 127 \end{aligned}$	$\begin{aligned} & 311.00 \\ & 383.00 \end{aligned}$	$\begin{aligned} & 209.75 \\ & 258.00 \end{aligned}$	$\begin{aligned} & 29.0 \\ & 31.0 \end{aligned}$	$\begin{aligned} & \text { 6x656 } \\ & 6 \times 656 \end{aligned}$	$\begin{array}{r} 6.43 \\ 6.43 \\ \hline \end{array}$
1	1075	362	OPAO	208-230/460	; 20	8	518×6	8\%/6	P24	-4M128	345.00	232.25	34.0	6×657	7.73

COMMERCIAL AND RESIDENTIAL PSC CONDENSER/HEAF PUMP FAN MOTORS

- Quick reversing leads
- Water slinger on shaft
- Self-aligning sleeve or ball bearings - $60^{\circ} \mathrm{C}$ ambient on some standard efficiency models for high temperature environments
- Standard or high efficiency

Commercial Duty Motors: Feature higher starting torque than residential duty motors and offer universal replacement. Cooler running temperature ensures longer life performance.
Typical Uses: Outdoor air conditioner condensers, refrigeration condensers, and 2speed models used on heat pumps.

Shaft Position:

Shafi Up-Shaft endshield and shell are totally enclosed. $3 / 4^{n}$ studs on shaft endshield. Opposite endshield open.
Shaft Up/Down-Both endshields are totally enclosed with removable drain plugs on each endshield for maximum protection. $3 / 4^{n}$ studs on both endshields. Can be mounted vertically or horizontally.
Bearings: All-angle sleeve ö̀r prelubricated ball \square
Service:factor: 1.0
Thermat Protection: Auto
NEMA frame: 48 YZ (No. 3M295 is 56Z)
Body Dina.: $55 / 8^{n}$ (No. 3M295 is $63 / 4^{\text {n }}$)
Shaft Bia.: $1 / 2 \times 6^{\prime \prime}$ (No. 3M995 is $1 / 2 \times 5^{\prime \prime}$)
Ambieni: $40^{\circ} \mathrm{C}$ or $60^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rofation: CW/CCW
Capacitor: Required
Finishifray
Brands:Dayton

		Volts 60 Hz	Full-Lasd Amps at 230 Volts	Bearings	las. Class	Mounting Shaft Pesition	Mount Type	Length Less Shaft	Stock No.	List	Each	Shpg. Wt.	Cepacitor Req'd. Stack No. Each		
1/6	1075/2Spd	230	1.0	Sleeve	B	Up	Stud	$53 / 16^{\prime \prime}$	-3M839		\$96.00	\$73.40	11.0	5M003	\$4.25
1/4	1075/2-Spd	208-230	1.8	Ball	B	Up/Down	Stud	$41 / 2$	-4M060	118.00	90.20	12.0	5M003	4.25	
	1075/2-Spd	230	1.8	Sleeve	B	Up/Down	Stud	$4^{1 / 2}$	-3M927	102.00	77.95	12.0	5M003	4.25	
	1075/2-Spd	230	1.6	Ball	B	Up	Stud	57/76	-3M841	115.00	87.90	13.0	5 M 003	4.25	
	1075/2Spd	230	1.6	Sleeve	B	Up	Stud	$5^{7 / 16}$	-3n840	99.00	75.70	13.0	5M003	4.25	
	1075	230	1.7	Ball	B	Up/Down	Stud	45/8	-4M048	114.00	87.10	130	5M003	4.25	
	1075	230	1.7	Sleeve	B	Up/Down	Stud	$4^{5 / 8}$	-3M766	98.00	74.90	13.0	5 M 003	4.25	
	1075	230	1.9	Sleeve	B	Up	Cradle	$5^{7 / 16}$	-3M990	136.00	103.95	14.0	Incl		
	1075	230	1.7	Ball	A	Up	Stud	$5^{11 / 16}$	-4M051	111.00	84.85	15.0	$5 \mathrm{M004}$	4.99	
	1075	230	1.7	Sleeve	A	Up	Stud	$5^{11 / 16}$	-3M666	95.00	72.60	14.0	5 M 004	4.99	
1/3	1625	230	1.8	Ball	B	Up	Cradle	$5^{11 / 16}$	-3M989	151.00	115.40	15.0	Incl		
	1625	230	1.8	Sleeve	B	Up	Cradle	$5^{11 / 16}$	-3M988	135.00	103.15	16.0	Incl		
	1075/2-Spd	208-230	2.6 .	Ball	B	Up/Down	Stud	$4^{15 / 16}$	-4M061	123.00	94.00	16.0	5M005	5.36	
	1075/2-Spd	230	2.6 -	Sleeve	B	Up/Down	Stud	$4^{15 / 16}$	-3M928	107.00	81.75	17.0	5M005	5.36	
	1075/2-Spd	230	1.9	Ball	B	Up	Stud	$5{ }^{15 / 16}$	-3N843	120.00	91.70	16.0	5 M 005	5.36	
	1076/2-Spd	230	1.9	Sleeve	B	Up	Stud	$515 / 16$	-3M842	104.00	79.45	16.0	5 M 005	5.36	
	1075	230	2.1 --	Ball	B	Up/Down	Stud	$5{ }^{1 / 3}$	-4M049	119.00	90.95		5M005		
	1075	. 230	2.1	Sleeve	B	Up/Down	Stud	1/1/s	-3N767	103.00	78.75	16.0	5 M 005	5.36	
	1075	230	2.2	Ball	B	Up	Cradlf-	515/16	-3N992	156.00	119.25	16.0	Incl		
	1075	230	2.2	Sleeve	B	Up	Cradle	$5^{15 / 16}$	-3M991	142.00	108.55	17.0	Incl		
	1075	230	2.2	Sleeve	A	Up	Stud	$5^{15 / 16}$	-3M667	100.00	76.40	16.0	5M004	4.99	
	1075	230	2.2	Bail	A	Up	Stud	$5{ }^{13 / 16}$	-3n744	116.00	88.65	17.0	$5 \mathrm{M004}$	4.99	
	825	230	2.0	Sleeve	B	Up	Stud	$6^{3 / 16}$	-311764	145.00	110.80	16.0	5 M 005	5.36	

COMMERCIAL AND RESIDENTIAL PSC AND SHADED POLE CONDENSER FAN MOTORS

DAYTON CONDENSER/HEAT PUMP FAN MOTORS (Cont.)

HP	Nameplate RPM	Volts 60 Hz	Full-Load Amps at 230 Volts	Bearings	las. Class	Mounting Shaft Position	Mount Type	Length Less Shaft	Stock No.	List	Each	ShpgWt.	Capac Stock No.	leq'd. Each
, \% , COMMERCIAL DUTY, HIGHEFFICIENCY, 40 ${ }^{\circ} \mathrm{CAMBIENT}$, \%														
1/2	1075/2-Spd	230	3.9	Ball	B	Up/Down	Stud	$53 / 4{ }^{4}$	-4M062	\$136.00	\$103.95	20.0	5M006	\$6.41
	1075/2-Spd	230	3.9	Sleeve	B	Up/Down	Stud	$53 / 4$	-3M929	120.00	91.65	20.0	5 M 006	6.41
	1075/2-Spd	230	3.2	Ball	B	Up	Stud	67/16	-3M845	133.00	101.65	19.0	5M006	6.41
	1075/2Spd	230	3.2	Sleeve	B	Up	Stud	$67 / 16$	-3M844	117.00	89.40	19.0	5 M 006	6.41
	1075	208-230	2.5	Ball	B	Up/Down	Stud	55/8	-4M050	132.00	100.85	19.0	5M006	6.41
	1075	230	3.0	Sleeve	B	Up/Down	Stud	$55 / 8$	-3M768	116.00	88.65	18.0	5M006	6.41
	1075	230	3.1	Ball	B	Up	Cradle	$67 / 8$	-3M994	175.00	133.75	20.0	Included Included	
	1075	230	3.1	Sleeve	B	Up	Cradle	74/16	-3M993	147.00	112.30	20.0		
	1076	230	3.0	Ball	A	Up	Stud	61/16	-3M745	129.00	98.60	18.0	5M005	5.36
	1075	230	3.0	Sleeve	A	Up	Stud	$63 / 16$	-3M668	113.00	86.35	17.0	5M005	5.36
	825	230	2.8	Ball	B	Up	Stud	65/8	-3M765	172.00	131.45	20.0	5M007	7.72
$3 / 4$	$\begin{gathered} 1075 / 2 \mathrm{Spd} \\ 1075 \end{gathered}$	$\begin{aligned} & 230 \\ & 230 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 4.4 \end{aligned}$	$\begin{aligned} & \text { Ball } \\ & \text { Ball } \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \mathrm{Up} \\ & \mathrm{Up} \end{aligned}$	Stud Stud	$7 / 1 / 6$ $67 / 16$	-3M769 $-3 M 922$	147.00 143.00	112.30 109.30	$\begin{aligned} & 21.0 \\ & 19.0 \end{aligned}$	$\begin{aligned} & 5 \mathrm{MO} 08 \\ & 5 \mathrm{M} \end{aligned}$	9.45
$1 / 6$	1075	230	1.3	Sleeve	B	Up	Stud	$4^{15 / 16}$	6M151	70.00	45.45	10.0	5M001	4.25
1/4	1075 1075	$\begin{gathered} 230 \\ 208-230 \end{gathered}$	1.9	Sleeve Ball	A	Up	Cradle Stud	$\begin{aligned} & 511 / 16 \\ & 53 / 16 \end{aligned}$	$3 M 226$ 4×1242	136.00 78.00	103.95 57.10	14.0 13.0	$5 \mathrm{M} 003{ }^{\text {Mounted }} 4.25$	
1/3	1625	230	1.7	Sleeve	A	Up	Cradle	$511 / 16$	3M265	135.00	103.15	16.0	Mounted Included	
	1075	230	2.5	Sleeve	A	Up	Cradle	$5^{11 / 16}$	3M217	144.00	110.05	16.0		
	1075	208-230	2.4	Ball	B	Up	Stud	$511 / 16$	41243	83.00	60.75	15.0	5M005 5.36	
	825	230	2.3	Sleeve	B	Up	Cradie	7/16	3 M 995	157.00	119.95	20.0		
\%	825	230	2.3	Sleeve	A	Up	Cradle	7/16	3N224	157.00	119.95	20.0	Included Mounted	
1212	1075	230	3.3	Sleeve	A	Up	Cradle	$5^{15 / 16}$	3M221	160.00	122.25	17.0	$\begin{gathered} \text { Included } \\ 5 \mathrm{M} 006 \\ \text { Mounted } \end{gathered}$	
	1075	208-230	3.6	Ball	B	Up	Stud	-63/16	4N244	91.00	68.80	18.0		
$1 \times$	825	230	3.6	Ball	A	Up	Cradle	7/8	3M295	232.00	177.50	29.0		
$3 / 4$	1075	208-230	5.1	Ball	B	Up	Stud	615/16	4 M 245	107.00	81.60	23.0	5M006	6.41
$1 / 40$	825	208-230	0.9	Sleeve	B	Up/Down	Stud	43/8	4 M 223	107.00	78.30	12.0	5M001	4.25
18	825	208-230	1.0	Sleeve	B	Up/Down	Stud	45/8	4 M 224	109.00	79.75	13.0	5M003	4.25
$1 / 6$	${ }_{825}^{1075}$	$\begin{aligned} & 208-230 \\ & 208-230 \end{aligned}$	1.4	Sleeve	B	Up/Down UpDown	Stud Stud	43/8	4 4 4 H261	66.00 113.00	51.25 82.70	11.0 14.0	$\begin{aligned} & 5 \mathrm{M} 001 \\ & 5 \mathrm{M} 003 \end{aligned}$	4
1/4	1075	208-230	1.7	Sleeve	B	Up/Down	rud	45/8	4*205	81.00	51.40	13.0	$5 \mathrm{M003}$	4.25
1	825	208-230	2.0	Sleeve	B	Up/Down	Bnd	$47 / 8$	4W226	132.00	96.65	15.0	5 M 003	4.25
1/3	1075	208-230	2.1	Sleeve	B	UpMown	Stud	$5{ }^{1 / 8}$	4M206	87.00	52.75	13.0	5 M 005	5.36 ,
	825	208-230	2.1	Sleeve	B	UMDown	Stud	57/8	4 M 262	149.00	109.00	19.0	5M006	6.41
$1 / 2$	1075	208-230	2.9	Sleeve	B	Up/Down	Stud	$53 / 8$	4 M 207	95.00	61.50	18.0	5 M 005	5.36
-	825	208-230	2.8	Sleeve	B	Up/Down	Stud	$63 / 8$	4 M 263	176.00	128.75	22.0	5M007	7.72
$3 / 4$	1075	208-230	4.5	Sleeve	B	Up/Down	Stud	51/8	4 M 208	115.00	77.30	13.0	5M006	6.41
174	1075	. 208 -230	1.8	Sleeve	B	Up	Stud	$5^{1 / 26}$	4M172	77.00	45.90	13.0	5M003	4.25
13	1075	208-230	2.4	Sleeve	B	Up	Stud	511/16	$4 \mathrm{M173}$	84.00	49.80	15.0	5M005	5.36
172	1075	208-230	3.6	Sleeve	B	Up	Stud	$6^{3 / 15}$	4 M 174	92.00	58.00	18.0	5M006	6.41
3/4	1075	208-230	5.1	Sleeve	B	Up	Stud	$6^{15 / 16}$	4M175	112.00	69.90	23.0	5 M 006	6.41

CAUIION: Not for fans in unatended areas.
Refer to page sfor UL507 Standard, proper thermal protection, and other motor selection information.
SHADED POLE CONDENSER FAN MOTORS

Typical Uses: Refrigeration condensers and central air conditioning outdoor condensers; also suited for a wide variety of other air-moving applications such as unit heaters, ventilators, and blowers.
Special Features: Includes BX connector Bearings: All-angle, self-aligning sleeve Mounting: Cradle base Service Factor: 1.0
Enclosure: Open air-over

Thermal Protection: Auto
Insulation Class: B
NEMA Frame: 42
Body Diameter: 5"
Shaft Dimensions: $1 / 2 \times 21 / 2^{11}$
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CCW facing shaft
Finish: Gray enamel
Brand: Dayton

HP	Nameplate RPM	Volts 60 Hz	Full-Load Amps at Mameplate Votts	Resilient Base Mitg. Holes OC	Length Less Shaft	Stock No.	List	Each	Shpg. Wt.
$1 / 10$	1550	115	5.2	$111 / 16 \times 31 / 2^{n}$	$47 / 16^{7}$	6M028	\$91.00	\$66.30	7.9
$1 / 10$	\cdots - 1650	230	2.6	$11110 \times 31 / 2$	$47 / 16$	$4 \mathrm{MO17}$	92.00	70.35	8.0
$1 / 6$	1550	115	5.4	$11 / 10 \times 3 / 4$	5	$6 \mathrm{M029}$	100.00	73.30	10.0
1/6	1550	230	- 2.7	$11 / 10 \times 31 / 2$	$45 / 10$	$4 \mathrm{M016}$	102.00	78.00	9.9

COMMERCIAL AND RESIDENTIAL PSC CONDENSER/HEAT PUMP FAN MOTORS

Commercial Duty Motors: Feature higher starting torque than residential duty motors and offer universal replacement. Cooler running temperature ensures longer life performance. Motors include two flats on shaft, 90° apart. Typical Uses: Outdoor air conditioner condensers, refrigeration condensers. Two-speed models used on heat pumps.
Bearings: All-angle sleeve or prelubricated ball
Service Factor: 1.0
Thermal Protection: Auto
Enclosure: TEAO
NEMA Frame: 48 YZ (or GE 39)
Body Diameter: $55 / \mathrm{s}^{\mathrm{n}}$
Shaft Dimensions: $1 / 2 \times 6^{n}$
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over

Rotation: CW/CCW (except No. 4 M 342 is CW)
Capacitor: Required
Finish: Gray
Brand: GE
Shaft Up--Shaft endshield is enclosed and shell is totally enclosed. Minimum $1 / 2^{\prime \prime}$ studs on shaft endshield. Opposite endshield open.
Shaft Down-Endshield opposite shaft is enclosed. Drain hole in shaft end for drain condensation.
Shaft Up/Down-Both endshields are totally enclosed with removable drain plugs on each for maximum protection. Minimum $1 / 2^{n}$ studs on both endshields. Mount vertically or horizontally.

HEATING/COOLING MOTORS

ROOM AIR CONDITIONER MOTORS

Typical Uses: Room air conditioners and through-the-wall sleeve units. Also adaptable to other shaft-mounted fan and blower applications.
Special Features: All models have capacitor mounting holes in shell except No. 4M320.
Bearings: All-angle sleeve (except No. 4 M 320 is ball)
Mounting:
(A) Stud mount has four studs on lead end
[B] Cradle with four studs
[C] Resilient ring opposite lead end with four studs on lead end. Includes length adapter kit.
[0] PSC
Enclosure: Open air-over (except No. 4M320 is open dripproof)
Service Factor: 1.0
Thermal Protection: Auto
NEMA Frame: $42 \mathrm{YZ}, 5^{n}$ dia. (GE 29 frame); $48 \mathrm{YZ}, 55 / 8^{17}$ dia. (GE 39 frame); $56 \mathrm{YZ}, 63 / 8^{\mathrm{h}}$ dia.
Aifibient: $40^{\circ} \mathrm{C}$
Duiy: Continuous air-over
Figish: Gray enamel
Brand: GE

	5x	Wexay	\% ${ }^{\text {a }}$	966ty	, $7 \pm$	H20.	I2	1	THFTCIEY	4				x-2	S	,	+608
	Nameplate RPM	NEMA Frame	Rotation Facing Lead End	Volts 60 Hz	Full-LoadAmps at Namepinte Vofts	Mtg. Style	Studs OC A\&B	Body Dia.	Shaft Dimensions Dia. $\times \mathrm{L}$	Length Less Shaft	GE Stock No.	Stock No.	List	Each	Shipg. WL	Capacitor Req'd. Stack No. Each	
1/15	1075/4-Spd	42 YZ	CCW	115	1.4	B	31/4"	$5{ }^{\prime \prime}$	$1 / 2 \times 10^{1 / 2} \& 101 / 2^{\prime \prime}$	5	2830	-4M325	\$129.00	\$79.95	10.0	6×653	\$4.49
4/10	1625/4-Spd	42YZ	CCW	115	1.3	B	$31 / 4$	5	$1 / 2 \times 8 \& 8$	51/2	2835	-4M326	126.00	78.05	11.0	6×653	4.49
	1075/4-Spd	42YZ	CCW	115*	1.9	B	$31 / 4$	5	1-48\&8	$51 / 4$	2831	-4,1327	134.00	83.05	10.0	6×653	4.49
	1075/3-Spd	48 YZ	CCW	115*	1.2	C	35/8	$5{ }^{51 / 3}$	1/27 \% 9	4	3631	-4M324	110.00	66.85	13.0	6×653	$4.49{ }^{\text { }}$
	1075/3-Spd	48 YZ	CCW	208-230*	0.8	C	$35 / 8$	$5 / 3$	1/2×7\&9	4	3632	-4M333	113.00	68.70	11.0	6×651	4.49
+8	1075/4-Spd	42YZ	CCW	115	2.7	B	$31 / 4$	5	$1 / 2 \times 10 \& 10$	$51 / 2$	2832	-4M328	138.00	85.50	11.0	6×653	4.49
	107513 Spd	48YZ	CCW	115*	1.8	C	35/8	59/8	$1 / 2 \times 789$	4	3641	-3M782	110.00	66.85	11.0	6×653	4.49
	1075/4-Spd	42 YZ	CCW	208-230	1.1	B	$31 / 4$	5	$1 / 2 \times 10 \& 10$	$51 / 2$	2836	-4M329	140.00	86.70	11.0	6×653	4.49
	1075/3-Spd	48YZ	CCW	208-230*	0.8	C	35/8	55/8	$1 / 2 \times 7 \& 9$	4	3642	-4M334	113.00	68.70	11.0	6X653	4.49
$\sqrt{116}$	1625/4-Spd	42 YZ	CCW	115*	2.1	B	31/4	5	$1 / 2 \times 888$	$53 / 4$	2837	-4M330	138.00	85.50	10.0	6X653	$4.49{ }^{\text { }}$
	1625/3-Spd	48YZ	CCW	115*	2.0	C	35/8	55/8	$1 / 2 \times 7883 / 4$	47/20	3851	-4M335	137.00	83.25	11.0	6X653	4.49
	1625/3-Spd	48YZ	CCW	208-230*	0.9	C	35/8	$53 / 8$	$1 / 2 \times 7 \& 83 / 4$	41/is	3852	-4M336	139.00	84.50	11.0	6x653	4.49
	1075/3-Spd	48YZ	CCW	115*	2.4	C	$35 / 8$	$55 / 3$	$1 / 2 \times 7 \& 83 / 4$	33\%0	3651	-3M783	110.00	66.85	12.0	6X653	4.49
	1075/3-Spd	48YZ	CCW	208-230*	1.0	C	$35 / 8$	$55 / 8$	$1 / 2 \times 7 \& 83 / 4$	33/t5	3652	-3M784	113.00	68.70	11.0	6×653	4.49
	1075/3-Spd	$48 Y Z$	CCW	208-230*	1.0	A	35/8	55/8	1/2x ${ }^{1 / 2}$ \& $8^{1 / 3}$	$33 / 4$	3656	-4m321	97.00	58.95	11.0	6X653	4.49
1/5	1625/3-5pd	48 YZ	CCW	208-230*	1.1	C	35/8	5 5/8	$1 / 2 \times 81 / 28^{8} 7$	4/59	3862	-4M337	139.00	84.50	11.0	6X653	4.49
1/4	1625/3-Spd	48 YZ	CCW	115*	2.9	C	$35 / \mathbf{s}$	$5^{51 / 8}$	$1 / 2 \times 788^{1 / 4}$	$4^{11 / 15}$	3871	-4M338	150.00	91.15	13.0	6X653	4.49
	1625/3-spd	48YZ	CCW	208-230*	1.2	C	35/8	$53 / 8$	$1 / 2 \times 7 \& 81 / 4$	$4^{15 / 16}$	3872	-4M339	152.00	92.35	13.0	6X653	4.49
	1075/4-Spd	42 YZ	CCW	115^{*}	4.7	B	$3^{1 / 4}$	5	$1 / 2 \times 8 \& 8$	$61 /$	$\rightarrow 833$	-4M331	156.00	96.60	14.0	6×653	4.49
	1075/4-Spd	42 YZ	CCW	208-230*	2.1	B	$31 / 4$	5	$1 / 2 \times 8 \& 8$	61\%	3834	-4M332	158.00	97.85	15.0	6×653	4.49
	1075/3-Spd	$48 Y Z$	CCW	115*	3.7	C	35/8	$57 / \mathrm{s}$	1/2×8\&71/2	4^{-1}	36.1	-4M171	120.00	72.90	14.0	6x653	4.49
	1075/3-Spd	48YZ	CCW	208-230*	1.7	A	35/8	$5{ }^{5 / 8}$	$1 / 2 \times 81 / 2 \&{ }^{1 / 2}$	4	36.0	-4M165	100.00	60.75	15.0	6x653	4.49
	1075/3-Spd	48YZ	CCW	208-230*	1.7	C	$35 / 8$	55/s	1/2 $\times 8871 / 2$	4 fin	3672	-3M785	119.00	72.35	13.0	6x65-3	4.49
	825/3-Spd	48YZ	CCW	$208-230$	1.9	C	35/8	$5 \% / 3$	$1 / 2 \times 7 \% 7 / 1$	$5^{11 / 18}$	3094	-4M322	185.00	112.40	17.0	6x603	4.49
1/3	$1625 / 3$-Spd	48 YZ	CCW	115*	4.1	C	35/9	$55 / 3$	$1 / 2 \times 6^{1 / 2} 88^{1 / 4}$	53/to	3581	-4M340	156.00	94.80	15.0	6×653	4.49
	1625/3-spd	48 YZ	CCW	208-230*	1.9	C	35/8	51/3	$1 / 2 \times 61 / 2881 / 4$	$5^{3 / 2}$ is	3852	-3M788	158.00	96.00	14.0	6X653	+.49
	1075/3-Spd	$48 Y Z$	CCW	115*	5.1	C	35/8	$5^{51 / 3}$	$1 / 2 \times 71 / 27^{1 / 4}$	5	3681	-3M786	129.00	78.40	16.0	6X653	4.49
	1075/3-Spd	48 YZ	CCW	208-230*	2.5	C	$35 / 8$	$\overline{5}^{5 / 8}$	$1 / 2 \times{ }^{1 / 2} / 2{ }^{1 / 4}$	53/10	3682	-3M787	128.00	77.80	15.0	6×653	4.49
	1075/3-Spd	48 YZ	CCW	208-230*	2.5	A	$35 / 8$	$5{ }^{5 / 9}$	$1 / 2 \times 73 / 4 \%^{7 / 16}$	$t^{3 / 4}$	3686	-4M166	105.00	63.80	15.0	6X653	4.49
	1075/2-Spd	48 YZ	CCW	208-230*	2.4	A	$35 / 8$	55/3	$1 / 2 \times 64 \% 91 / 15$	$5^{3 / 4}$	3091	-4N343	121.00	73.55	15.0	6x653	4.49
	825/3-Spd	48 YZ	CCW	208-230	2.8	C	$35 / 8$	$5{ }^{5 / 8}$	1/2x ${ }^{1 / 81 / 4}$	$\mathrm{J}^{\mathrm{H}} \mathrm{H}$.3103	-4M323	198.00	120.30	19.0	6x65:3	4.49
1/2	1625/3-Spd	48 YZ	CCW	115*	6.4	C	$35 / 8$	$5^{5 / 8}$	12x $2871 / 2$	$5^{1 / 2}$	3891	-4M341	171.00	103.90	17.0	6x653	4.49
	1625/3-Spd	48 YZ	CCW	208-230*	3.0	C	$35 / 8$	55/s	$1 / 2 \times 787^{1 / 2}$	$51 / 2$	3892	-3M790	173.00	105.15	17.0	6X653	4.49
	1075/3-Spd	48 YZ	CCW	115*	7.3	C	$35 / 8$	$55^{5 / 3}$	$1 / 2 \times 787^{1 / 4}$	$5^{11 / 20}$	3691	-4M170	151.00	91.75	19.0	6X656	6.43
	1075/3-Spd	48 YZ	CCW	208-230*	3.5	C	$35 / \mathrm{s}$	55/8	$1 / 2 \times 787^{1 / 4}$	$511 / 10$	3692	-3M789	149.00	90.55	19.0	6X655	5.38
	1075 3-Spd	48YZ	CCW	208-230*	3.5	A	$3{ }^{5 / 8}$	$55 / 8$	$1 / 2 \times 71 / 2 \& 7^{3 / 10}$	$51 / 4$	3696	-4M167	125.00	75.95	16.0	6X655	5.38
	1075/2-Spd	48YZ	CCW	208-230	3.8	B	$35 / 8$	$55 / \mathrm{s}$	$1 / 2 \times 8 \& 88 / 8$	$6^{15 / 2}$	3092	-4*318	141.00	85.65	19.0	6X653	4.49
$3 / 4$			CCW	208-230*	3.9	C	$35 / 8$		1/2 $\times 78$	6	3898	-3M792	202.00	122.75	20.0	6×655	5.38
	1075/3-Spd	48 YZ	CCW	-208-230	5.0	C	$35 / 8$	53/8	1/2x-\& $71 / 4$	3116	3698	-3M791	19700	119.70	20.0	6×655	5.38
	1075	56 YZ	CW/CCW	$200-230$	3.8	B	$41 / 8$	$63 / 3$	$5 / 8 \times 6^{3 / 18} 86^{3 / 1}$	10	$\mathrm{P}=33$	4M320:	378.00	254.50	33.0	6X656	6.43

[^10]
ROOM AIR CONDITIONER MOTORS

GE BRAND, PSC AND SHADED POLE, 3.3" DIAMETER
Typical Uses: Room air conditioners, spaee heaters, fans, range hoods, and dehumidifiers.
Special Features: $12^{\text {" }}$ leads, \#8-32 mounting studs. Double shaft.
Bearings: Sleeve
Mounting: Two studs (except No. 4M638 has none; 4M634 and 4M639 have four)
Service Factor: 1.0
Thermal Protection: Auto
Insulation. Class: A (except Nos. 4M637 and 4M639 are B)
Body Diameter: 3.3" (GE 59 frame)
Ambient: $50^{\circ} \mathrm{C}$
Duty: Continuous air-over
Finish: Gray
Brand: GE

CAUTION: Not for fans in uñattended areas.
Whe Reforto pages for Ul507 Standard, proper thermal profection, and other motor selection information.

Complete Index at Back of Catalog Will Help You Quickly Locate Your Product Needs

HEATING/:OOLING MOIORS

ROOM AIR CONDITIONER MOTORS

Typical Uses: Room air conditioners, evaporative coolers, temote fan coil units, and other shaft-mounted fan and blower applications.
Bearings:-All-angle sleeve
Mounting:
(A) Resilient ring mount with four 10-32 tapped holes
[B] Resilient rings with four extended studs and length adapter kit
[C] Cradie base with four studs
Enclosure: Open air-over
Service Factor: 1.0

Thermal Protection: Auto

NEMA Frame: 42YZ, 5^{n} dia (GE 29 frame); $48 \mathrm{YZ}, 558^{\mathrm{n}}$ dia (GE 39 frame)
Ambient: $40^{\circ} \mathrm{C}$
Dury: Continuous air-over
Rototion: CCW facing lead end
Finish: Gray enamel
Brand: GE

ROOM AIR CONDITIONER MOTORS

DAYTON BRAND, PSC, HIGH EFFICIENCY

Typical Uses: High efficiency performance in room air conditioners. Also adaptable to other shaft-mounted fan and blower applications.
Special Features: Capacitor mounting holes in shell. Double shaft.
Bearings: All-angle, self-aligning sleeve
Mounting: Resilient ring on lead-end endshield; four studs out opposite endshield Service Factor: 1.0
Enclosure: Open air-over
Thermal Protection: Auto
NEMA Frame: 48 YZ
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over Rotation: CCW facing lead end
Finish: Gray enamel
Brand: Dayton

(\dagger) Second shaft dimension: $1 / 2 \times 71 / 2^{\prime \prime}$.

Typical Uses: High efficiency performance in fat coil heating/air conditioning, furnace blowers, unit featersí; and other shath
Special Feafures: Mounted capacitor with protective boot. Double shaft.
Bearings: All-angle, self-aligning sleeve
Mounting: Cradle base
Enclosure: Open air-over
Service Factor: 1.0
Thermal Protection: Auto
Insulation Class: B
NEMA Frame: 42 YZ
Body Diameter: 5"
Shaft Dimensions: $1 / 2 \times 91 / 4^{1 "}$ each with full flat
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CCW facing lead end
Finish: Gray enamel
Brand: Dayton

CAUTION:

Not for tans in unattended areas.
Refer to page 5 for UL507 Standard, proper thermal protection, and other molor selection information.

HEATING/COOI.ING MOTORS

ROOM AIR CONDITIONER MOTORS

PSC, HIGH EFFICIENCY, TEAO, UNIVERSAL OEM REPLACEMENT

Typical Uses: High efficiency performance as universal replacements for original motors used in specific brands of air conditioners, fan coil units, and unit heaters. Also used for other resilient ring, base, or band-mounted fan and blower applications.

Special Features: Contractor friendly. Studs are $11 / 2^{\prime \prime}$ at both ends. Each shaft is $1 / 2 \times$ $6^{\prime \prime}$ long. Capacitor mounting holes in shell, $26^{\prime \prime}$ color-coded leads.
Bearings: All-angle sleeve
Service Factor: 1.0
Enclosure: Totally enclosed air-over
Thermal Profection: Auto
Insulation Class: A (except No. 4 M 022 is B)
NEMA Frame: 48YZ
Body Diameter: 55/8"
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rototion: CCW facing lead end
Fifitsh: Gray enamel
Biond: Dayton

Equipment	HP	Nameplate RPM	Voits 60 Hz	Full-Load Amps at Nameplate Volts	Length Less Shaft	Stock No.	List	Each	Shpg. Wt.	Capa Requ Stock No.	tor rd Each
Afĭ̉na, Friedrich, Frigidaire, GE, Philco, Whirlpool Amảna, Friedrich, GE	$1 / 8$ $1 / 8$	1075/3-Spd	115 230	2.1	$31 / 2{ }^{\prime \prime}$ $31 / 2$	-4M019	$\$ 126.00$ 129.00	\$96.35	12.0 12.0	$\begin{aligned} & 5 \mathrm{MO03} \\ & 5 \mathrm{M} 003 \end{aligned}$	$\begin{array}{r} \$ 4.25 \\ 4.25 \end{array}$
Addison, Belding (Gibson), Emerson Quiet Kool, Fritidaire, GE	1/5	1075/3-Spd	208-230	1.4	$33 / 4$	-4M022	137.00	104.70	12.0	5M003	4.25
Addison Whirlpool Friedrich, Frigidaire, Rheem, Whirpool	$1 / 4$ $1 / 3$	$1075 / 3 \mathrm{Spd}$ 1075/3-Spd	$\begin{array}{r} 208-230 \\ 208-230 \end{array}$	1.9	4 $41 / 2$	-4M023	141.00 150.00	107.75 114.60	14.0 16.0	$\begin{aligned} & 5 \mathrm{M} 003 \\ & 5 \mathrm{M} 003 \end{aligned}$	4.25 4.25

PSC, OPEN AIR-OVER, 2 AND 3 SPEED

Fypical Uses: Room air conditioners, fan coil console units, packaged heat pumps, and other double shaft and shaft-mounted fat and blower applications.
Special Features: Supplied with capacitor and resilient mounting base. Capacitor mounted on shell and connected.
Bearings: All-angle sleeve
Mounting: Cradle base
Enclosure: Open air-over
Service Factor: 1.0
Thermal Protection: Auto
Insulation Class: A
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CCW facing lead end
Finish: Gray enamel

Brand: Dayton

HP	Nameplate RPM	NEMA Frant	Volts 60 Hz	Full-Lead Amps at Nameplate Volts	Body Dia.	Resilient Base Mounting Holes OC	Shaft Dimensions	Length Less Shaft	Stock No.	List	Each	Shigg. W.
1/6	1075/3-Spd 1075/3-Spd	$\begin{aligned} & 48 Y Z \\ & 48 Y Z \end{aligned}$	115 230	2.9	$5^{5 / 31}$ $5^{1 / 8}$		$1 / 2 \times 7^{\prime \prime}$	$411 / 3{ }^{\prime \prime}$ $4^{11 / \mathrm{co}}$	$3 M 375$ $3 M 376$	$\$ 88.00$ 90.00	$\$ 67.25$ 68.75	12.0 11.0
1/4	1625/2-Spd	48YZ	115	3.6	55/3	$111 / 16 \times 43 / 4$	1/2x	$415 / 10$	3 M 064	100.00	76.40	13.0
	1625/2-Spd	48 YZ	230	1.8	$56 / 8$	$111 / 10 \times 43 / 4$	$1 / 2 \times 7$	$45 / 10$	$3 \mathrm{M065}$	102.00	78.00	12.0
	1075/2-Spd	48 YZ	. 115	4.4	$55 / 8$	$111 / 16 \times 43 / 4$	$1 / 2 \times 7$	5%	3 M 008	94.00	71.85	15.0
	1075/2-Spd	48YZ	230	2.2	55/8	$111 / 16 \times 43 / 4$	$1 / 2 \times 7$	$5: 16$	$3 \mathrm{MOO9}$	96.00	73.40	15.0
1/3		48YZ	230	2.0	$3^{5 / 8}$	$111 / 16 \times 43 / 4$				97.00		14.0
	1075/3-spd	48YZ	230	2.5	$5{ }^{5 / 3}$	$111 / 16 \times 43 / 4$	$1 / 2 \times 7$	$5^{11 / 16}$	3 N 378	106.00	81.00	18.0
	1075/2-Spd	48YZ	230	2.5	55/8	$111 / 16 \times 43 / 4$	$1 / 2 \times 7$	$511 / 10$	$3 \mathrm{M048}$	102.00	77.95	17.0
1/2	1075/2-Spd	48 YZ	230	3.3	$55 / 3$	$111 / 16 \times 43 / 4$	1/2x	$5^{15 / 16}$	3M178	118.00	90.15	18.0

PSC, OPEN AND TEAO, 2 AND 3 SPEED

Typical Uses: Open motor is replacement for Frigidaire, Carrier, and Keeprite room air conditioners and is supplied with three mounting brackets welded to body. TEAO motor is replacement for Whirlpool, Sears, and Quiet Kool room air conditioners and is supplied with studs for mounting from either endshield.
Special Features: Capacitor and mounting hardware available separately. Double shaft.
Bearings: All-angle sleeve
Service Factor: 1.0
Thermal Protection: Auto
Insulation Class: B
Bady Diameter: 3.3
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Finish: Gray enamel
Brand: Dayton

HP	Nameplate - RPM	Retation Facing Lead End	Enciosure	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Shatt Dimensions Dia. x 1	Length Less Shaft	Stock No.	List	Each	Shpg. W.	Capac Stock No.	Req'd Each
$\begin{aligned} & 1 / 20 \\ & 145 \end{aligned}$	$\begin{aligned} & 1625 / 2 \text { Spd } \\ & 1625 / 3 \mathrm{Spd} \end{aligned}$	CCW	OPAO	115	1.0	5	$4_{4}^{4 / 2}{ }^{1 / 2}$	$3 M 501$ 3 M 500	$\$ 73.00$ 71.00	\$55.25	4.2	$\begin{aligned} & \text { 5M003 } \\ & 5 \mathrm{M} 001 \end{aligned}$	$\$ 4.25$ 4.25

P PSC, OPEN AIR-OVER, 3 SPEED

Typical Uses: Fan coil heating/air conditioning console units for brands such as Neshitt, U.S. Radiator and American Stanfard. Also adaptable to other shaftmopitited fan and blower applications.
Special Fectures: Variable capacitor/load perfơrmance capability (see table below). Capacitor and mounting hardware available:separately.
HP: 1715
Nameplate RPM: 1075/3-Speed
Volis: $60 \mathrm{~Hz}: 115$
Full-Load Amps: 1.0
Bearings: All-angle sleeve
Mounting: Resilient ring, $2^{1 / 2} \mathbf{2}^{\prime \prime}$ dia., $3^{15} / 1 \operatorname{co}^{*}$ OC
Service Factor: 1.0
Thermal Protection: Auto
Insulation Class: A

NEMA Frame: 48YZ
Body Diameter: 55/8"
Shaft Dimensions: $1 / 2 \times 6^{n^{-}}$each
Length Less Shaft: $47 / 16^{\prime \prime}$
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CCW facing lead end
Finish: Gray enamel
Brond: Dayton
No. 3M134. Shpg. wt. 8.7 lbs. List $\$ 105.00$.
Each.

$\begin{aligned} & \text { Size } \\ & 370 \mathrm{~V} \end{aligned}$	Application Blower	Lead	Stock No.	Each	Shpg. W.
3 Mfd \%	Single	Light Normal	$\begin{aligned} & 54001 \\ & 54+1002 \end{aligned}$	\$4.25	0.3 0.3
5 Mfd .	Tnple	Heavy	54M003	4.25	0.4

SHADED POLE, OPEN AIR-OVER, 3 AND 4 SPEED, 4.4" DIA.

Typical Uses: Fan coil console-type units where coolant or heat is pumped to the console from a central system. Also adaptable to other shaft-mounted blower applications.
Bearings: All-angle sleeve
Mounting: Resilient ring, $2^{1 / 21}$ dia.
Service Factor: 1.0

Thermal Protection: Auto
Insulation Class: A
Body Diameter: 4.4"
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CCW facing lead end
Finish: Gray enamel
Brand: Dayton

HP	Nameplate RPW	Volts 60 Hz	Full-Load Amps at Namepiate Voits	21/2" Dia. Resilient Rings OC	Shat Dimensions Dia. x L	Length Lass Shaft	No. No.	List	Each	Shpg. Wt
1/25	1550/3-Spd	115	1.4	$315 / 16^{6}$	$3 / 8 \times 7{ }^{\prime \prime}$	$43 / 8^{\prime \prime}$	4N295	\$83 00	\$62.75	6.0
1/20	$1550 / 3 \mathrm{Spd}$	115	1.9	$3{ }^{315 / 16}$	$1 / 2 \times 7$	$4^{4 / 8}$	4M296	87.00	65.80	6.0
$1 / 15$	1550/3-Spd	115	2.4	315/16	12×7	$43 / 8$	4M297	90.00	68.05	6.5
1/10	15503-Spd	115	3.5	$4^{4 / 3}$	$3 / 8 \times 7$	47/3	4M161	91.00	68.80	6.5
	1550/3-Spd	115	3.5	41/4	$1 / 2 \times 7$	$4^{7 / 8}$	4N162	9100	68.80	6.5
1/8	$1550 / 4$ Spd	115	4.1	$4^{1 / 2}$	$1 / 2 \times 7$	$\pm{ }^{15 / 10}$	4M163	99.00		7.4
1/6	1550/4-Spd	115	5.4	5	$1 / 2 \times 65 / 8$	5/16	$4 \mathrm{M164}$	103.00	77.90	9.3

Nox4M295

HEATING/COOLING MOTORS

ROOM AIR CONDITIONER MOTORS

Typical Uses: Room air conditioners, fan coil console units, packaged heat pumps, and other shaft-mounted fan and blower applications.
Bearings: All-angle, self-aligning sleeve
Mounting: Cradle base
Service Factor: 1.0
Thermal Protection: Auto
Insulation Class: A
Body Diameter: 5^{4}
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CCW facing lead end (except No. 3M166 is reversible)
Finish: Gray enamel
Capacitor: Included
Brand: Dayton

PSC, OPEN AIR-OVER

HP	Nameplate BPM	NEMA Frame	Rotation Facing Lead End	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Resilient Mounting Holes 0 C	Shatt Dimensions Dia. x Length	Length Less Shaft	Stock No.	List	Each	Shipg. Wh
$1 / 6$	$1625 / 2 \mathrm{Spd}$ $16252-\mathrm{Spd}$	$\begin{aligned} & 42 \mathrm{YZ} \\ & 42 \mathrm{YZ} \end{aligned}$	$\begin{gathered} \mathrm{CW} / \mathrm{CCW} \\ \mathrm{CCW} \end{gathered}$	$\begin{aligned} & 115 \\ & 230 \end{aligned}$	2.3 1.2	$\begin{aligned} & 111 / 16 \times 4^{3 / 44^{14}} \\ & 1^{11 / 16 \times 4} 4^{3 / 4} \end{aligned}$	$1 / 2 \times 7^{1 / 2}{ }^{\text {ea }}$	$\begin{aligned} & 415 / 16^{14} \\ & 415 / 16 \end{aligned}$	$\begin{aligned} & 3 M 166 \\ & 3 M 167 \end{aligned}$	$\$ 122.00$ 124.00	$\begin{array}{r} \$ 93.25 \\ 94.80 \end{array}$	12.0
14	$\begin{aligned} & 16250-\mathrm{Spd} \\ & 1625 / 2-\mathrm{Spd} \end{aligned}$	$\begin{aligned} & 42 \mathrm{YZ} \\ & 42 \mathrm{YZ} \end{aligned}$	$\begin{aligned} & \mathrm{CCW} \\ & \mathrm{CCW} \end{aligned}$	$\frac{115}{230}$	$\begin{aligned} & 3.6 \\ & 1.8 \end{aligned}$	$\frac{11 / 16 \times 43 / 4}{1^{11 / 16} \times 4^{3 / 1}}$	$1 / 2 \times 7$	$\begin{aligned} & 57 / 16 \\ & 5^{7 / 16} \end{aligned}$	$\begin{aligned} & 3 M 168 \\ & 3 M 169 \end{aligned}$	132.00 134.00	$\begin{aligned} & 100.90 \\ & 102.40 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$

Slfaded Pole and psc, OPEN AIR-OVER, 2, 3, 4 AND 5 SPEED

Typical Uses: Fan coil heating/air conditioning eonsole units. Also adaptable to other shaft-mounted fan and blower applications.
Bearifigs: All-angle sleeve
Mourting: Cradle base
Service Factor: 1.0
Therinal Protection: Auto
Insulation Class: Dayton, B; A.O. Smith, A
Body Diameter: 5^{n}
Ambent: $40^{\circ} \mathrm{C}$
Duty Continuous air-over
Finish: Dayton, gray; A.O. Smith, black
Brand: Dayton and A.O. Smith

HP	Nameplate RPM	NEMA Frame	Rotation Facing Laad End	Volts 60 Hz	full-Load Amps at Nameplate Volts	Resil. Base Mounting Holes OC	Shaft Dimensions Dia. x Length	Length Less Shaft	Mfr's Model	Stack No.	List	Each	Stipg. W.
		werkwan			DAYTON BRAND, SHADED POLE								
1/10	1550/3.Spd	42YZ	CCW	115	3.5	$111 / 4 \times 33 / 4^{4}$	$1 / 2 \times 88 / 3^{\prime \prime}$ ea	$5^{1 / 4}$	-	$3 M 966$$4 \mathrm{M037}$	$\$ 94.00$78.00	\$71.85	12.0
	$1050 / 5-5 \mathrm{pd}$	42 YZ	CW	115	4.7	$111 / 10 \times 33 / 4$	3/489	5	二			59.6559.65	9.09.0
	1050/5-Spd	42 YZ	CW	115	4.7	$111 / 16 \times 33 / 4$	$1 / 2 \times 10$		-	$4 \mathrm{M038}$	78.00		
	1050/4-Spd	42 YZ	CCW	115	3.8	$111 / 16 \times 381 / 8$	$1 / 2 \times 83 / 4$	$53 / 4$	-	3N965	100.00	76.40	13.0
	1050/4-Spd	42 YZ	CCW	277	1.5	$111 / 16 \times 33 / 1$	$1 / 2 \times 83 / 8$	$5{ }^{1 / 4}$	-	3 M 967	104.00	79.50	13.0
	1050/2-spd	42 YZ	CCW	115	3.7	$111 / 16 \times 31 / 2$	$1 / 2 \times 41 / 2$	41/1641516	-	$3 M 592$$3 M 593$	85.00	65.00	10.0
	1050/2Spd	42 YZ	CCW	$\underline{3} 30$	1.8	$111 / 16 \times 31 / 2$	1/2x $41 / 2$		-		86.00	65.75	10.0
	1050	42 YZ	CCW	115	3.4	$111 / 1, \times 31 / 2$	$1 / 2 \times 41 / 2$	$41 / 46$	-	3M590	79.00	60.40	11.0
1/6	$1050 / 2-\mathrm{Spd}$ 1050/2-Spd	$\begin{aligned} & 42 \mathrm{YZ} \\ & 42 \mathrm{YZ} \end{aligned}$	$\begin{aligned} & \mathrm{CCW} \\ & \mathrm{CCW} \end{aligned}$	115 .30	5.9 2.8	$111 / 16 \times 4 / 1 / 1$ $111 / 16 \times 44$	1/2x 7	$\begin{aligned} & 5^{3 / 1 / 6} \\ & 5^{3 / 16} \end{aligned}$	二	$3 M 018$ 3 MOL	128.00 130.00	97.85 99.35	12.0
	.	arm			A.O. SMITH BRAND, SHADED POIE AND PSC :					\% \%	$\therefore \stackrel{i}{ }$	*	
1/10	${ }^{15503} 3$ Spd	42 YZ	CCW	115	3.5	$111 / 10 \times 31 / 2$	$1 / 2 \times 83 / 8^{4}$	$47 / 16$	322 P 116	3M721	94.00	71.30	12.0
	1550/3Spd	${ }^{42 Y Z}$	CCW	230^{*}	1.8	$111 / 16 \times 31 / 2$	$1 / 2 \times 84 / 3$	$47 / 10$	322 P 218	3M748	104.00	78.85	12.0
	1075/4-Spd	42 YZ	CCW	115	1.7	$111 / 16 \times 31 / 2$	1/2 $\times 83 / 8$	$4 \% / 10$	322 P 482	3M771+	124.00	94.00	11.0
	$1050 / 4$ Spd	42 YZ	CCW	115	3.4	$111 / 16 \times 31 / 2$	$1 / 2 \times 91 / 4$	+7/16	322 P 288	3M720	100.00	80.35	11.0
	1050/4-Spd	42YZ	CCW	230*	1.6	$11 / 16 \times 31 / 2$	1/2x $8^{3 / 8}$	4\% 76	322 P 073	3 M 747	109.00	82.60	10.0
	1050/4-Spd	42 YZ	CCW	277	1.3	$111 / 10 \times 31 / 2$	$1 / 2 \times 81 / 8$	$47 / 10$	322 P 226	3M864	104.00	81.90	12.0

(*) Designed to operate on 2082230 V . (\dagger) PSC, requires No. 6X653 5 MFD, 370 VAC capacitor.

265-277 VOL̇T FAN OR BLOWER MOTORS

Typical Uses: Direct-drive furnace blowers, unit heaters, air conditioners, and many other shaft-mounted fan and blower applications for use in textile industry, hotels, and other institutional settings where 277 volt power is commonly found.
Bearings: Sleeve
Enclosure: Open air-over
Service Factor: 1.0
Thermal Protection: Auto
Insulation Class: A
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Finish: Dayton and GE gray; A.O. Smith, black
Brands: Dayton, GE and A.O. Smith

CAUTION:
Niat for fans in unattended areas. Refer to page 5 for UL507 Standard, proper thermal protection, and other motor selection information.

HP	Kay	Nemeplate RPT	$\begin{aligned} & \text { NEMA } \\ & \text { Frame } \end{aligned}$	Rotation	Voits 60 12	$\begin{aligned} & \text { Full-Load } \\ & \text { Amps at } \\ & \text { Nameplata } \\ & \text { Yoots } \end{aligned}$	$\begin{gathered} \text { Mount } \\ \text { Style } \end{gathered}$	Shatt Dimensions Dia. x Lengti	$\begin{gathered} \text { Lengtth } \\ \text { Lesaft } \\ \text { Shaft } \end{gathered}$	Mtr.	Modes.	Stock No.	List	Each	Shpg ${ }_{\text {Whe }}$		
$\begin{aligned} & 1 / 4 \\ & 1 / 3 \\ & 1 / 2 \end{aligned}$		$1075 / 35 \mathrm{spd}$ $1075 / 3$ spd $1075 / 3$ ppd	$\begin{aligned} & 48 \mathrm{YZ} \\ & \begin{array}{l} 48 \mathrm{YZ} \\ 48 \mathrm{YZ} \end{array} \end{aligned}$	$\begin{aligned} & \text { CWNFEE } \\ & \text { CWFFSE } \\ & \text { CWFFSE } \end{aligned}$	$\begin{aligned} & 277 \\ & 277 \\ & 277 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \\ & 3.4 \end{aligned}$	${ }_{2}^{21 / 2 h^{n}}$ Dia Ring $2^{21 / 2}{ }^{2}$ Dia Ring $2^{1 / 2} 2^{2}$ Dia. Ring	$\begin{aligned} & 1 / 2 \times 5^{\prime \prime} \\ & 1 / 2 \times 5 \\ & 1 / 2 \times 5 \end{aligned}$		Dayton Dayton Dayton	二	$\begin{aligned} & 3 M 712 \\ & 3 M 73 \\ & 3 M 710 \end{aligned}$	$\begin{gathered} \$ 115.00 \\ \begin{array}{c} 12.30 \\ 139.00 \end{array} \end{gathered}$	$\begin{aligned} & 58.90 \\ & 94.05 \\ & 106.25 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 14.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 5 \mathrm{MOOQ} \\ & \begin{array}{l} \mathrm{MMOOD} \\ 5 \mathrm{M} 004 \end{array} \end{aligned}$	4.25 4.25 4.99
1/10		10504.4 spd 1050 MSpd	$\begin{aligned} & 42 \mathrm{YZ} \\ & 42 \mathrm{YZ} \end{aligned}$	CCWNFLE CWW/FFE	277	1.4	$\begin{aligned} & \text { Cradle } \\ & \text { Cradle } \end{aligned}$	$12 \times 837.888^{83 / 3}$	$\begin{gathered} 57 / 6 \\ 7 / 76 \\ \hline 16 \end{gathered}$	$\begin{aligned} & \text { Dayton } \\ & \text { AO. Smith } \end{aligned}$	$329 P 226$	$\begin{aligned} & \text { 3M9967 } \\ & 3 M 864 \end{aligned}$	$\begin{aligned} & 104.00 \\ & 104.00 \end{aligned}$	79.50	$\begin{aligned} & 13.0 \\ & 12 . \end{aligned}$		
$1 / 8$ $1 / 5$	C	${ }^{1075 / 3 / 5 p d}$	${ }^{482 Y Z}$	CCW/NFLE	277 265	0.8 1.3		$12 \times 81 / 8881 / 2$ 122×282		Dayton GE	3074	${ }^{34 \times 883}$	106.00 123.00	81.05 8870	9.0 1.0	51003 58002	4.25
1/4		10763.3pd	4872	CCW/NFLE	277	1.5	RingStud	12 $\times 7 / 1 / 871 / 2$	${ }^{-1 / 8}$	Dayton		3M930	146.00	111.60	14.0	5M003	4.25

$21 / 2$ and $21 / 4^{\prime \prime} O D$ resilient mount rubber rings reduce vibration and are designed to replace mounting rings on NEMA 48 and 56 frame resilient ring mounted motors. Two rings per bag.

MOTOR MOUNTING RINGS

For NEMA Frames	Key	Brand	00	10	Thick	Stock No.	List	$\begin{aligned} & \text { Each } \\ & \text { Bag } \end{aligned}$	Shpg. Wt
48		Dayton	$2^{1 / 4^{4 \prime}}$	11/4	$1 / 2{ }^{\prime \prime}$	3M143	\$10.82	\$6.48	0.1
	D	GE	21/4	111/16	$7 / 16$	4N737	7.00	6.08	0.1
	D	GE	$21 / 2$	$1^{11 / 16}$	$7 / 16$	4N751	7.00	6.08	0.2
	E	GE	$21 / 2$	111/16	7/16	4 M 752	7.01	6.08	0.2
48 \& 56	B	A.O. Smith	$21 / 2$		$3 / 8$	2X456	7.00	6.37	
56	${ }_{\text {F }}$	Dayton.	21/4	$111 / 16$	12	$5 \mathrm{MO73}$	7.00	6.39	0.1
56	C	Dayton	$21 / 2$	17/4	$7 / 16$	2×284	7.00	6.40	0.1

6

[1]

MOTOR MOUNT SPLIT RING ADAPTERS AND LATCHES

(A)

[

[A] Mofor mount split ring adapters. Overlapping aluminum split ring adapters enlarge $21 / 4^{\prime \prime}$ dia. resilient frame mounting rings to $21 / 2^{\prime \prime}$ dia. Two overlapping rings required for each side of motor. Sold in packages of 4 rings. GE brand.
No. 1 A682. Shpg. wt. 0.2 lbs. List $\$ 4.00$.
Each pkg.. $\$ 2.79$
B] Mounting Latches. Fasten motor to cradle.
No. 2X234. Shpg. wt. 0.1 lbs. List......54. 20
Pair...

HEATING/COOLING MOIORS

 DIRECT-DRIVE FURNACE BLOWER MOTORSTypical Uses: High efficiency performance on furnace blowers and other air-over shaft-mounted fan and blower equipment.
Type: PSC
Bearings: All-angle, self-aligning iron graphite sleeve (except No. 3M881 has ball)
Mounting: $21 / 2^{\prime \prime}$ diameter resilient rings
(A) Includes flexible mounting bracket and capacitor mounting hardware. Capacitor mounting holes in shell.
B] Includes 4 mounting studs and capacitor with mounting hardware. Capacitor mounting holes in shell.
[C) Resilient ring.
(D) Resilient ring with studs.

Enclosure: Open air-over
Service Factor: 1.0
Thermal Protection: Auto
Insulation Class: A (except Nos. 3M857 and 3M881 are B)
NEMA Frame: 48 YZ
Boaly Diameter: $55 / \mathrm{s}^{4}$
Ambient: $40^{\circ} \mathrm{C}$
Dyty: Continuous air-over
Fitish: Gray enamel
BEGAnd: Dayton

	CAUTION: Not for fans in unattended areas. Refer to page 5 for UL507 Standard, proper thermal protection, and other motor selection information.

$\begin{aligned} & 3 \times \\ & p \end{aligned}$	Nameplate RPM	Voits 60 Hz	Full-Load Amps at Nameplate Volts	$\begin{gathered} \text { Mount } \\ \text { Style } \end{gathered}$	2 $1 / 2^{\prime 2}$ Dia. Resilient Rings OC	Shaft Dimansions Dia. x Length	Length Less Shaft	Rotation Facing Shaft End	Stock No.	List	Each	Shpg. Wt.	Capacit Stock No.	Req'd Eack
:176	1075/4 Spd	115	2.2	A	$4{ }^{5 / 8} 8^{10}$	$1 / 2 \times 6^{\prime \prime}$	$53 / 16^{17}$	cw/Ccw	-3M885	\$128.00	\$97.85	12.0	Inclu	ed ${ }^{\text {f }}$
	1075/3-spd	115	2.3	C	411/16	$1 / 2 \times 5$	53/16	CW/CCW	-3M882	90.00	68.75	11.0	5M003	\$4.25
\%	-1075/3-Spd	230	1.1	C	$4^{11 / 16}$	$1 / 2 \times 5$	53/16	GW/CCW	-3M902	92.00	70.35	10.0	5M003	4.25
	1075	230	1.1	D	47/16	$1 / 2 \times 5$	415/16	CW	-3M846	84.00	64.20	10.0	5M003	4.25
1/4	1625/3-Spd	115	2.8	C	$4^{11 / 18}$	1/2×5	53/16	CW/CCW	-3M896	112.00	85.60	11.0	5 M 006IncludedIncluded	
	1075/4Spd	115	3.8	A	47/8	$1 / 2 \times 6$	57/16	CW/CCW	-3M886	136.00	103.95	17.0		
	1075/3-Spd	115	3.8	B	53/8	$1 / 2 \times 5$	$515 / 16$	CW/CCW	-4M043	132.00	100.90	13.0		
	1075/3Spd	115	3.8	C	$4{ }^{15 / 16}$	$1 / 2 \times 5$	57/16	CW/CCW	-3M851	93.00	62.85	12.0	5M003	4.25
	1075/3-spd	230.	1.7	C	$4^{15 / 26}$	$1 / 2 \times 5$	57/16	CW/CCW	-3M852	95.00	72.60	13.0	5M003	4.25
	1075	115	3.8	D	$411 / 26$	1/2 $\times 5$	53/16	CW/CCW	-3M954	90.00	68.75	12.0	$5 \mathrm{M003}$	4.25
	1075	115	3.8	D	$41 / 16$	$1 / 2 \times 5$	$53 / 16$	CW	-3M847	83.00	63.45	11.0	5 MO 03	4.25
	1075	230	1.8	D	$4^{11 / 16}$	$1 / 2 \times 5$	53/16	CW	-3M848	85.00	65.00	11.0	$5 \mathrm{M003}$	4.25
	1075	230	1.8	D	$4^{11 / 16}$	$1 / 2 \times 5$	$53 / 16$	CW/CCW	-3N955	92.00	70.35	12.0	5 M 003	4.25
1/3	1625/3-Spd	115	3.8	C	4 $4^{15 / 16}$	1/2×5	57/16	cw/ccw	-3M897	117.00	89.40	13.0	5M008 ${ }^{\text {Included }}$ 9.45Included	
	1075/4Spd	115	4.6	A	$51 / 4$	1/2×6	511/16	CW/CCW	-3M887	144.00	110.05	17.0		
	1075/3-Spd	115	4.6	B	53/8	$1 / 2 \times 5$	$515 / 16$	CW/CCW	-3M865	140.00	107.00	14.0		
	1075/3-Spd	115	4.6	C	$57 / 16$	$1 / 2 \times 5$	$515 / 16$	CW/CCW	-3M853	98.00	67.25	16.0	5 M 005	5.36
	107513-Spd	230	2.2	B	$51 / 8$	$1 / 2 \times 5$	$511 / 16$	CW/CCW	-3N866	142.00	108.55	14.0	Inclu	
	1075/3-spd	230	2.2	C	53/16	$1 / 2 \times 5$	$511 / 16$	CW/CCW	-3M854	100.00	72.35	14.0	5M004	4.99
	1075	115	5.1	D	$5{ }^{3} 16$	$1 / 2 \times 5$	51/16	CW/CCW	-3M956	96.00	73.40	13.0	5M003	4.25
	1075	115	5.1	D	$53 / 16$	$1 / 2 \times 5$	$511 / 16$	CW	-3M849	89.00	68.05	13.0	5M003	4.25
	1075	230	2.2	D	$53 / 16$	1/2×5	$511 / 18$	CW/CCW	-3M957	98.00	74.90	13.0	$5 \mathrm{MOO3}$	4.25
	1075	230	2.2	D	$5^{1 / 16}$	$1 / 2 \times 5$	511/16	CW	-3M850	91.00	69.55	13.0	5 M 003	4.25
	825	230	2.0	D	511/16	1/2 $\times 5$	$63 / 16$	cW/CCW	- 3M881	124.00	94.75	15.0	5 M 005	5.36
1/2	1625/3-spd	115	5.8	C	$5^{11 / 16}$	$1 / 2 \times 5$	$6{ }^{3 / 18}$	CW/CCW	-3M898	127.00	97.05	16.0	Included	
	1075/4-Spd	115	7.6	A	$5 \% 16$	1/2×6	515/16	cw/ccw	-3M888	160.00	122.25	16.0		
	1075/3-Spd	115	7.1	C	$515 / 16$	1/2×5	67/13	cW/ccw	-3M855	110.00	75.50	17.0	${ }_{\text {Included }}^{5.36}$	
	1075/3-Spd	230	3.1	${ }^{\text {B }}$	$55 / 8$	$1 / 2 \times 5$	$63 / 10$	CW/CCW	-4M059	158.00	120.75	18.0		
	10753-Spd	230	3.1	C	$511 / 16$	$1 / 2 \times 5$	$63 / 16$	cW/CCW	-3M856	112.00	85.60	17.0	5M005	5.36
	1075	230	3.3	D	511/16	$1 / 2 \times 5$	63/16	CW	-3M903	104.00	79.45	17.0	5M005	$\overline{5} .36$
$3 / 4$	$1075 / 3-\mathrm{Spd}$ $1075 / 3$-spd	115 230	9.5 4.3	C	$\begin{aligned} & 6^{7 / 16} \\ & 6^{7 / 16} \end{aligned}$	$\begin{aligned} & 1 / 2 \times 5 \\ & 1 / 2 \times 5 \end{aligned}$	$\begin{aligned} & 615 / 16 \\ & 615 / 10 \end{aligned}$	$\begin{aligned} & \text { CW/CCW } \\ & \text { CW/CCW } \end{aligned}$	$\begin{array}{r} 3 M 857 \\ -3 M 858 \end{array}$	150.00 152.00	$\begin{aligned} & 103.00 \\ & 109.95 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & \text { 5M007 } \\ & \overline{\mathrm{OMOO6}} \end{aligned}$	$\begin{aligned} & 7.72 \\ & 6.41 \end{aligned}$

HIGH EFFICIENCY PSC DIRECT－DRIVE FURNACE BLOWER MOTORS

HEATING／COOLING

 MOTORSTypical Uses：High efficiency performance in furnace blowers．Also for other air－over shaft－mounted fans and blowers．
Special Features：Capacitor and mounting hardware available separately．Capacitor mounting holes in shell．Quick reversing leads on CW／CCW models．
Bearings：All－angle sleeve（except Nos． 4M356 and 4M357 are ball）
Enclosure：Open air－over
Service Factor： 1.0
Thermal Protection：Auto
NEMA Frame：42YZ， $5^{n \prime}$ dia．（GE 29 frame）； $48 \mathrm{YZ}, 55 / 8^{n}$ dia．（GE 39 frame）； $56 \mathrm{YZ}, 6^{3} / 8^{n}$ dia．
Shaft Dimensions： $1 / 2 \times 4^{n}$ on 42 YZ and 48 YZ ； $5 / 8 \times 4^{\prime \prime}$ on $56 \mathrm{YZ} ; 5 / 8 \times 6^{\prime \prime}$ on $3 / 4 \mathrm{HP}$ and above
Ambient： $40^{\circ} \mathrm{C}$
Duty：Continuous air－over
Finish：Gray enamel
Brand：GE

$\mathbf{H P}$	Nameplate RPM	Ratation Facing Shaft	Vofts 60 Hz	Full－Lad Amps at Nameplate Valts	Mount Styla	Body Dia．	21／4＂Dia． Resilient Rings OC	Length Less Shaft	GE Stock No．	Stock No．	List	Each	Shpg． Wt	Cap Req＇d． Stock No． Each	
$1 / 30{ }^{\text {a }}$	1075／3－Spd	CW／CCW ${ }^{\text { }}$	115	0.6	B	$5^{\prime \prime}$	47／16＂	47／8 ${ }^{\prime \prime}$	2840	－4M401\＃	\＄119．00	\＄73．75	9.9	6X653	\＄4．49
1／8	1075／3－Spd	CW／CCW ${ }^{+}$	115	2.5	B	5	$451 / 16$	$53 / 8$	2824	－4M402	119.00	73.75	9.0	6X653	4.49
	1075	CW／CCW	115	2.6	B	5	$4^{15 / 16}$	$53 / 8$	2820	－4M344	110.00	68.10	8.6	6X653	4.49
1／6	1625	CW	208－230＊	0.9	A	55／8	43／16	45／8	3452	－4M408	145.00	88.10	9.6	6×653	4.49
1／6 管	1075	CW／CCW：	115	3.0	B	5	$53 / 16$	$5^{11 / 16}$	2821	－4M345	113.00	70.00	9.7	6×653	4.49
紫	1075	CW	115＊	2.3	A	55／8	43／16	45／8	3251	－4M409	132.00	80.25	9.8	6×653	4.49
ジ	1075	CW	208－230＊	0.9	A	55／8	$43 / 16$	45／8	3252	－3M804	134.00	81.45	9.7	6×653	4.49
：	1075	CCW	－208－230＊	0.9	A	$55 / 8$	43／16	45／8	3254	－4M410	134.00	81.45	9.3	6x653	4.49
	1075／3－Spd	CW／CCW \dagger	115	3.5	B	5	$57 / 16$	5\％	2825	－4M403	126.00	78.05	11.0	6×653	4.49
	1075／3－Spd	CW／CCW	$208-230$	1.7	B	5	57／16	$5^{7 / 8}$	2826	－4M404	128.00	79.30	11.0	6×653	4.49
Fin	1075	CW／CCW	115	3.5	B	5	57／16	$5^{1 / 8}$	2822	－4M346	119.00	73.75	11.0	6X653	4.49
$1 / 4$		$\text { CW/CCW } \dagger$	115＊	2.7	B	55／8	$411 / 16$	$51 / 3$	3992	－4M133	153.00	93.00	11.0	6x656	6.43
$=\frac{a}{2}$	1625／3－Spd	CW／CCW \dagger	208－230＊	1.2	B	$55 / 8$	$411 / 16$	$51 / 8$	3993	－4N134	155.00	94.20	11.0	6X653	4.49
4	1625	CW	115＊	3.2	A	55／8	$411 / 16$	$51 / 8$	3471	－4M411	148.00	89.95	11.0	6X653	4.49
른	1625	CW	208－230＊	1.4	A	55／8	411／16	$5^{1 / 8}$	3472	－3M808	143.00	86.95	11.0	6×653	4.49
	1075／3－Spd	CW／CCW \dagger	115	3.7	B	$55 / 8$	$53 / 16$	$5{ }^{5 / 8}$	3983	－3M813	111.00	67.45	13.0	6×655	5.38
	1075／3－Spd	CW／CCW \dagger	115	4.8	B	5	$5^{11 / 16}$	63／16	2827	－4M405	138.00	85.50	12.0	6×653	4.49
	10753－Spd	CW／CCW \dagger	208－230	2.2	B	5	$511 / 16$	63／16	2828	－4M406	140.00	86.70	12.0	6×653	4.49
	1075／3－Spd	CW／CCW	208－230＊	1.7	B	55／8	$53 / 16$	$53 / 8$	3984	－3M814	113.00	68.70	12.0	6X653	4.49
	1075	CW／CCW	115	4.7	B	5	$511 / 16$	63／16	2823	－4M347	132.00	81.75	12.0	6X653	4.49
	1075	CW	115＊	3.5	A	$5{ }^{5 / 8}$	47／16	4／8／8	3271	－3M805	140.00	85.05	11.0	6X653	4.49
	1075	CW	208－230＊	1.5	A	55／8	$47 / 16$	4%	3272	－3M806	143.00	86.95	11.0	6×653	4.49
	1075	CCW	208－230＊	1.5	A	$55 / 8$	47／16	41／8	3274	－3M807	143.00	86.95	10.0	6×653	4.49
1／3	1625／3－Spd	CW／CCW	115＊	3.9	B	5 5 ／8	$53 / 16$	$5^{5 / 8}$	3994	－4M135	159.00	89.40	13.0	6X658	8.82
	1625／3－Spd	CW／CCW \dagger	208－230＊	1.9	B	$53 / 8$	$53 / 16$	55／8	3995	－4M136	161.00	97.85	13.0	6X653	4.49
	1625	CW	115＊＊＊	4.7	A	55／8	$53 / 16$	53／3	3481	－4M412	156.00	94.80	12.0	6X653	4.49
	1625	CW	208－230＊	2.2	A	55／8	53／16	$53 / 8$	3482	－4M413	158.00	96.05	12.0	6×653	4.49
	1075／3－Spd	CW／CCW \dagger	115	5.8	B	5	$5^{1 / 16}$	$61 / 15$	2829	－4M407	153.00	94.80	13.0	6×658	8.82
		CW／CCW \dagger	115	4.9	B	55／8	$53 / 16$	$5{ }^{5 / 3}$	3985	－3M815	117.00	71.10	16.0	6X655	5.38
	10753－Spd	CW／CCW \dagger	208－230＊	2.5	B	55／8	53／16	$5{ }^{5 / 3}$	3986	－ 3 M816	119.00	72.35	14.0	6×653	4.49
	1075	CW	115＊	5.0	A	55／8	$53 / 16$	$5{ }^{5 / 8}$	3281	－3M809	152.00	92.35	14.0	6X653	4.49
	1075	CW	208－230＊	2.4	A	55／3	$5^{3 / 10}$	$55 / 8$	3282	－3M810	154.00	93.60	13.0	6X653	4.49
	1075	CCW	208－230＊	2.4	B	55／4	$53^{1 / 16}$	$5^{5 / 3}$	3284	－3M811	154.00	93.60	13.0	6×653	4.49
1／2		CW／CCW \dagger	115＊	6.0	B	55／8	$5^{7 / 16}$	$57 / 8$	3996	－4M137	172.00	104.55	16.0	6×658	8.82
	1625／3－Spd	CW／CCW +	208－230＊	2.8	B	$55 / 8$	$57 / 10$	$55 / 8$	3997	－4M138	174.00	105.75	16.0	6×655	5.38
	1075／3－Spd	CW／CCW \dagger	115＊	7.3	B	$56 / 8$	$5^{11 / 16}$	$61 / 8$	3987	－3M817	131.00	77.30	18.0	6X656	6.43
	1075／3－Spd	CW／CCW ${ }^{\text {¢ }}$	208－230＊	3.5	B	55／8	$511 / 16$	61／2	3988	－3M818	133.00	80．80	19.0	6×655	5.38
	1075	CW	208－230＊	3.4	A	$55 / 8$	$5^{11 / 16}$	61／8	3292	－3M812	176.00	106.90	17.0	6×655	5.38
$3 / 4$		$\text { CW/CCW } \dagger$	115^{*}	8.5	B				3998	－4M139	190.00	115.45	18.0	6X658	8.82
	1625／3－Spd	CW／CCW \dagger	208－230＊	4.0	A	55／8	$515 / 16$	$63 / 3$	3999	－4M140	192.00	116.70	18.0	6×655	5.38
	1075／3－Spd	CW／CCW ${ }^{+}$	115	10.3	B	$55 / 8$	$511 / 16$	61／8	3989	－31819	179.00	103.00	19.0	6×658	8.82
	1075／3－Spd	CW／CCW \dagger	208－230	4.8	B	65／8	$511 / 16$	64／3	3990	－3M820	181.00	109.95	17.0	6X656	6.43
1	1075／3－Spd $1075 / 3-\mathrm{pd}$	$\begin{aligned} & \mathrm{CW} / \mathrm{CCW} \\ & \mathrm{CW} / \mathrm{CCW} \end{aligned}$	115 $200-230$	10.8 5.0	B	$63 / 8$ $63 / 8$	$91 / 16 \ddagger$ $91 / 167$	$93 / 16$ $9 / 10$	P184 P185	$-4 M 356$ $-4 M 357$	355.00 355.00	217.00 239.25	35.0 43.0	$\begin{aligned} & 6 \times 658 \\ & 6 \times 657 \end{aligned}$	8.8 .82

HEATING/COOLIANG COMMERCIAL AND RESIDENTIAL DUTY DIRECT-DRIVE BLOWER MOTORS

- Quick reversing leads on CW/CCW models
- Capacitor and mounting hardware available separately
- Capacitor mounting holes in shell

Commercial Duty Motors: Feature higher starting torque than residential duty motors and offer universal replacement. Cooler running temperature ensures longer life performance.
Typical Uses: Direct-drive furnace blowers, unit heaters, air conditioners, and many other shaft-mounted fan and blower applications.
Type: PSC
Bearings: All-angle, self-aligning sleeve
Mounting: Resilient ring
Enclosure: Open air-over
Service Factor: 1.0
Thermal Profection: Auto
NEMA Frame: 48 YZ
Body Diameter: 55/8"
Ambient: $40^{\circ} \mathrm{C}$
Dutif: Continuous air-over
Finitsh: Gray enamel
Brend: Dayton

	Namaplate RPM	Rotation Facing Shaft	Volts 60 Hz	Full-Load Amps at Nameglata Volts	Ins. Class	21/2"Dia. Resilient Rings 06	Shaft Dimensions	Length Less Shatt	Stock No.	List	Each	Shpg. Ht	Stock No.	tor Each
8复													TVa	
1/4	1075/4-Spd $1075 / 3-S p d$	CW/CCW	115	4.6 2.0	A	$415 / 16^{\prime \prime}$ $4^{15 / 16}$	$1 / 2 \times 5{ }^{\prime \prime}$	$\begin{aligned} & 5^{-1 / 16^{n}} \\ & 5^{-\pi} / 16 \end{aligned}$	$3 M 087$ $3 M 12$	$\begin{array}{r} \$ 123.00 \\ 115.00 \end{array}$	$\begin{array}{r} \$ 94.05 \\ 87.90 \end{array}$	$\begin{aligned} & 14.0 \\ & 13.0 \end{aligned}$	$\begin{gathered} \text { Inciuded } \\ 5 \mathrm{M} 002 \end{gathered}$	
His	1075/4Spd	CW	115	6.5	A	$4^{7 / 8} 8$ $53 / 16$	$1 / 2 \times 5$	$\begin{aligned} & \tilde{5}^{5} / 10 \\ & 5^{14 / 16} \end{aligned}$	$3 M 118$ $3 M 713$	112.00 123.00	$\begin{aligned} & 85.60 \\ & 94.05 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 5 \mathrm{M} 002 \\ & 5 \mathrm{R} 302 \end{aligned}$	$\begin{aligned} & 4.25 \\ & 4.25 \end{aligned}$
12	1075/4Spd $1075 / 3$ Spd	CW	115	8.0 3.4	A	$53 / 16$ $53 / 16$	$1 / 2 \times 5$ $1 / 2 \times 5$	$511 / 16$ $5^{1 / 16}$	$3 M 142$ $3 N 14$	128.00	97.80 106.25	14.0 15.0	$\begin{aligned} & 5 \mathrm{MO03} \\ & 5 \mathrm{M} 004 \end{aligned}$	$\begin{array}{r} 4.25 \\ 4.99 \end{array}$
34 3	1075/4 Spd	CW	115 230	11.0 5.5	B	$67 / 16$ $6^{7 / 16}$	1/2×5	$6^{15 / 16}$ $6^{5 / 16}$	$3 M 300$ $3 M 222$	161.00 163.00	123.05 124.60	18.0 18.0	$5 M 006$ $5 M 005$	6.41 5.36
\qquad														
1/4	1075/3-Spd	CW/CCW CW/CCW CW/CCW CW/CCW	$\begin{gathered} 115 \\ 115 \\ 208-230 \\ 208-230 \end{gathered}$	4.24.02.01.7	$\begin{aligned} & \mathbf{B} \\ & \mathbf{B} \\ & \mathbf{B} \\ & \mathbf{B} \end{aligned}$	$\begin{aligned} & 47 / 8 \\ & 4^{3 / 4} \\ & 4^{7 / 8} \\ & 43 / 4 \end{aligned}$	1/2 4	$\begin{aligned} & 7^{3 / 16} \\ & 5^{3 / 16} \\ & 5^{3 / 16} \\ & 5^{3 / 16} \end{aligned}$	$\begin{array}{r} 4 M 096 \\ 4 M 991 \\ 4 M 097 \\ 4 M 992 \end{array}$	$\begin{aligned} & 88.00 \\ & 84.00 \\ & 90.00 \\ & 86.00 \end{aligned}$	$\begin{aligned} & 49.00 \\ & 47.50 \\ & 50.15 \\ & 48.60 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \\ & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 5 \mathrm{M} 003 \\ & 5 \mathrm{M} 003 \\ & 5 \mathrm{M} 003 \\ & 5 \mathrm{M} 003 \end{aligned}$	$\begin{aligned} & 4.25 \\ & 4.25 \\ & 4.25 \\ & 4.25 \end{aligned}$
	1075/2-Spd						12×4							
	1075/3-Spd						$1 / 2 \times 4$							
	1075/2-Spd						1/2x4							
1/3	1075/3-Spd	$\begin{aligned} & \text { CW/Ccw } \\ & \text { CW/Ccw } \\ & \mathrm{CW} / \mathrm{CcW} \\ & \mathrm{CW} / \mathrm{CcW} \end{aligned}$	$\begin{gathered} 115 \\ 115 \\ 208-230 \\ 208-230 \end{gathered}$	6.2	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 51 / 8 \\ & 5^{1 / 8} \\ & 51 / 8 \\ & 51 / 8 \end{aligned}$	$1 / 2 \times 4$	$\begin{aligned} & 5^{11 / 15} \\ & 5^{11 / 10} \\ & 5^{11 / 10} \\ & 5^{11 / 10} \end{aligned}$	$4 \mathrm{MO98}$ 4 M993 $4 \mathrm{M099}$ $4 \mathrm{M994}$	$\begin{aligned} & 92.00 \\ & 89.00 \\ & 94.00 \\ & 91.00 \end{aligned}$	$\begin{aligned} & 51.55 \\ & 49.95 \\ & 52.95 \\ & 51.35 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 15.0 \\ & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 5 \mathrm{M} 003 \\ & 5 \mathrm{M} 003 \\ & 5 \mathrm{M} 003 \\ & 5 \mathrm{M} 005 \end{aligned}$	$\begin{aligned} & 4.25 \\ & 4.25 \\ & 4.25 \\ & \hline 5.36 \end{aligned}$
	1075/2-Spd			6.0			$1 / 2 \times 4$							
	1075/3-Spd			2.9			1/2 $\times 4$							
	10752-Spd			2.4			1/2 $\times 4$							
1/2	1075/3-Spd	CW/CCW	115	9.0	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 61 / 8 \\ & 6^{1 / 8} \\ & 5^{7 / 8} \\ & 57 / 8 \end{aligned}$	1/2 x 4	$\begin{aligned} & 6^{*} \\ & 6^{7} / 18 \\ & 6^{3 / 15} \\ & 63 / \% \end{aligned}$	4M100 4M995 4 M101 4 M996	$\begin{aligned} & 111.00 \\ & 104.00 \\ & 113.00 \\ & 106.00 \end{aligned}$	$\begin{aligned} & 60.60 \\ & 57.55 \\ & 62.05 \\ & 58.90 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 18.0 \\ & 18.0 \\ & 18.0 \end{aligned}$	5M003 5M003 $5 \mathrm{M003}$ 5M005	$\begin{aligned} & 4.35 \\ & +.25 \\ & 4.25 \\ & 5.36 \end{aligned}$
	1075/3-Spd	CW/CCW	115	8.1			$1 / 2 \times 4$							
	1075/3-Spd	CW/CCW	208-230	4.3			1/2) x 4							
	1075,2-Spd	CW/CCW	208-230	4.5			$1 / 2 \times 4$							
$3 / 4$		CW/CCW	115	9.1	BBBB	$\begin{aligned} & 61 / 8 \\ & 61 / 8 \\ & 61 / 8 \\ & 61 / 8 \end{aligned}$	$1 / 2 \times 1$	$\begin{aligned} & 6^{7 / 10} \\ & 6^{7} / 10 \\ & 6^{7 / 16} \\ & 6^{8 / 10} \end{aligned}$	$4 \mathrm{M183}$ 4 M997 $4 \mathrm{M184}$ 4 M998	$\begin{aligned} & 150.00 \\ & 140.00 \\ & 152.00 \\ & 142.00 \end{aligned}$	$\begin{aligned} & 84.80 \\ & 82.35 \\ & 86.15 \\ & 83.60 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 20.0 \\ & 19.0 \\ & 20.0 \end{aligned}$	5M008 5M008 5M006 5M006	$\begin{aligned} & 9.45 \\ & 9.45 \\ & 6.41 \\ & 6.41 \end{aligned}$
	1075/2-Spd	CW/CCW	115	10.0			$1 / 2 \times 4$							
	1075/3-Spd	CW/CCW	208-230	4.6			$1 / 2 \times 4$							
	1075/2Spd	CW/CCW	208-230	4.9			$1 / 2 \times 4$							

fichution: Not for fans in vxęttended areas.
Refer to page 5 for UL50\% Standard, proper thermail protection, and other motor selection information.

THE RIGHT STUFF. RIGHT HERE. RIGHT NOW

Our branches are conveniently located and stocked with commonly used items from this catalog. If you need it now, call Grainger. To find the branch nearest you, check the white pages in your local telephone directory under "Grainger."

RESIDENTIAL DUTY DIRECT-DRIVE FURNACE BLOWER MOTORS

- Quick reversing leads on CW/CCW models
- Capacitor and mounting hardware available separately
- Capacitor mounting holes in shell

Typical Uses: Direct-drive furnace blowers, unit heaters, air conditioners, and many other shaft-mounted fan and blower applications.
Type: PSC
Bearings: All-angle sleeve
Mounting: Resilient ring with studs
Enclosure: Open air-over
Service Factor: 1.0
Thermal Protection: Auto
NEMA Frame: 48YZ (GE 39 frame)
Body Diameter: 55/8"
Shaft Dimensions: $1 / 2 \times 4^{n}$
Ambient: $40^{\circ} \mathrm{C}$:
Duty: Continuous
Rotation: CW/CCW
Finish: Gray enamel
Brañig: GE

	Nameplate RPM	Yolts 60 Hz	Full-Load Amps at Nameplate Volts	Ins. Class	$\begin{aligned} & 21 /{ }^{\prime \prime} \text { Dia. } \\ & \text { Resilient } \\ & \text { Rings } 0 C^{*} \end{aligned}$	Length Less Shaft	$\begin{aligned} & \text { GE } \\ & \text { Stock } \\ & \text { No. } \end{aligned}$	Stock No.	List	Each	Shpg. W.	Capacitor Req'd. Stock No. Each	
$1 / 4$	$\begin{aligned} & 1075-3-\mathrm{Spd} \\ & 1075-3-\mathrm{sd} \end{aligned}$	- ${ }^{115}$	4.2 2.0	B	${ }^{411 / 11^{6 \prime}}$	$51 / 8$ $51 / 8$	3583 3584	4M583	$\$ 88.00$ 90.00	$\$ 49.00$ 50.15	12.0	6X653 6×653	\$4.49
1/3	$\begin{aligned} & 1075-3 \text { Spd } \\ & 1075-3-\mathrm{Spd} \end{aligned}$	115 $208-230$	6.2 2.7	B	4 4 45/16	53/8	3585 3586	4M585	92.00 94.00	51.55	15.0 15.0	6×653 6×653	4.49 4.49
$1 / 2$	$\begin{aligned} & 10753 \mathrm{Spd} \\ & 10753 \mathrm{spd} \end{aligned}$	$\begin{gathered} 115 \\ 208-230 \\ \hline \end{gathered}$	$\begin{aligned} & 9.0 \\ & 4.3 \end{aligned}$	B	515/16	$\begin{aligned} & 6^{63 / 8} \\ & 61 / 8 \end{aligned}$	3587 3588	4M587	111.00 113.00	60.60 62.05	19.0 19.0	$\begin{aligned} & 6 \times 653 \\ & 6 \times 653 \end{aligned}$	4.49 4.49
$3 / 4$	$\begin{aligned} & 1075-3 \text { Spd } \\ & 1075-3-\mathrm{spd} \end{aligned}$	${ }^{208} 8150$	11.2	${ }^{-} \mathrm{B}$	${ }^{-} \mathrm{F}$ - $5^{15 / 15 / 16}$	$6^{63 / 8}$	3589 3590	4M589	150.00 152.00	84.80	20.0 20.0	$\begin{aligned} & 6 \times 659 \\ & 6 \times 656 \end{aligned}$	8.82 6.43
Fhw whatw													
$\frac{1 / 42}{2}$	$\begin{aligned} & 1075-2-\mathrm{Spd} \\ & 1076-2-\mathrm{Spd} \end{aligned}$	115 $208-230 \#$	4.2	B	$411 / 16$ $41 / 16$	$51 / 8$ $51 / 8$	3383 3384	$4 M 383$ 4	84.00 86.00	47.50	12.0	6×653 6×653	4.49 4.49
$1 / 3$	$1075-2-S p d$ $1075-2-S p d$	208-230\#\#	6.2 2.9	B	$415 / 16$ $45 / 16$	533/8 ${ }^{3 / 8}$	3385 3386	$\begin{array}{r} \text { 4M385 } \\ 4 \mathrm{M} 386 \end{array}$	89.00 91.00	49.95 51.35	14.0 14.0	$\begin{aligned} & 6 \times 653 \\ & 6 \times 653 \end{aligned}$	$\begin{array}{r}4.49 \\ 4.49 \\ \hline\end{array}$
$1 / 2$	$\begin{aligned} & 1075-2-\mathrm{spd} \\ & 1075-2-\mathrm{spd} \end{aligned}$	208-230\# ${ }^{\text {115 }}$.	9.0 4.3	B	515/66	63/8 ${ }^{61 / 9}$	3387 3388	$4 M 387$ 4	104.00 106.00	57.55 58.90	18.0 17.0	$\begin{aligned} & 6 \times 653 \\ & 6 \times 653 \end{aligned}$	4.49 4.49
3/4	$\begin{aligned} & 1075-2-\mathrm{Spd} \\ & 1075-2-\mathrm{Spd} \end{aligned}$	$\begin{gathered} 115 \\ 208-230 \end{gathered}$	$\begin{array}{r} 10.3 \\ 5.2 \end{array}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 515 / 16 \\ & 5_{5}^{15 / 16} \end{aligned}$	$63 / 8$ $63 / 8$	$\begin{aligned} & 3389 \\ & 3390 \end{aligned}$	$\begin{aligned} & \text { 4M389 } \\ & 4 \mathrm{M} 390 \end{aligned}$	140.00 142.00	$\begin{aligned} & 82.35 \\ & 83.60 \end{aligned}$	19.0 19.0	$\begin{aligned} & 6 \times 658 \\ & 6 \times 656 \end{aligned}$	8.82 6.43

${ }^{*}$) Ring kit furnished to provide both $21 / 4$ and $21 / 2^{\prime \prime}$ diameters. (\#) $60 / 50 \mathrm{~Hz}$ operation.

WE OFFER A WIDE RANGE OF ENERGY SAVING PRODUCTS Electric motors, controls, blowers, fans and ventilators, lighting, boilers,
ballasts, pumps, furnaces, water heaters, and other products. See Index under Energy Saving Products for complete listings.

UL LISTING AND CSA CERTIFICATION When choosing products from this section, look for the UL and CSA symbols. Those approved products meet or exceed rigid standards established for personal safety and maximum product life. UL file number and CSA Certification are indicated in the individual listings.

FLEXIBLE BAND MOUNTING BRACKET

Stainless steel band adjusts to fit motors 3 to $7^{\prime \prime}$ in diameter. Lock-on hangers slide on band for ease of handling. Hangers have $1 / 4 \times 7 / 8^{\prime \prime}$ slots. Knockouts expand slots to $3 / 4 \times 15 / 16^{\prime \prime}$.
No. 3M133. Shpg. wt. 0.5 lbs. List $\$ 12.40$. Each.. $\$ 9.92$

For More Motor Accessories Including Motor Mounting Bases, Capacitors, Fan Blades and Impellers, Blower Wheels, Mounting Brackets, Switches, and More
See Pages 184 thru 193

HEATING/COOLING MOTORS
 DIRECT-DRIVE FURNACE BLOWER MOTORS

PSC, OPEN AIR-OVER, 4 SPEED

Contractor Friendly Features

- Versatile, sfrong, easy to install and adjust
- Four speeds with external speed selection
- Resilient mounting rings
- Quick reversing leads
- Fine-tune air delivery and rotation without major reconnection
- Four ratings replace 85% of all motors found in residential furnaces; no need for expensive one-on-one replacements
Typical Uses: Wide variety of air-moving uses such as direct-drive furnace blowers, unit heaters, air conditioners, air handlers, and many other shaft-mounted fan and blower applications.
Special Features: Unique raethod of quick ania easy speed selection. Quick reversing leads. Capacitor sold separately.

$\begin{aligned} & \text { wim } \\ & \text { mip } \end{aligned}$	Nampplate RPM	Volts 60 Hz	Full-Load Ampsat Nameplate Volts	$2^{\prime} f^{\prime \prime}$ Dia. Resilient lings 0C	Length Less Shaft	Stock No.	List	Each	Shpy. Wt.		Each
144	1075/4-Spd	115	3.8	57/14"		4M257	\$85.00	\$66.85	14.0	5 M 003	\$4.25
113	1075/4_Spd	115	4.6	6	63/8	4 M 258	90.00	70.70	17.0	5M005	5.36
112	1075/4Spd	115	7.1	$63 / 16$	65/8	4 M 259	103.00	80.95	19.0	5M005	5.36
34	1075/4 Spd	115	10.8	67/3	73/8	4 H 260	141.00	110.80	22.0	5M007	7.72

Type: PSC
Bearings: All-angle, self-aligning sleeve Mounting: Resilient rings or belly band
Enclosure: Open air-over
Service Factor: 1.0
Thermal Profection: Auto
Insulation Class: \mathbf{B}
NEMA frame: 48 YZ
Body Diameter: $55 / \mathrm{s}^{\prime \prime}$
Shaft Dimensions: $1 / 2 \times 5^{\prime \prime}$
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CW/CCW
Finish: Gray enamel
Brand: Dayton

 Whedoming

T

- Corrosive resistant metal case
- Self-clearing to insure performance
- Uses environmentally compatible and biodegradable Supernol ${ }^{\circ}$ fluid to prolong life
- Metallized polypropylene film dielectric
- Ambient operating temperature range $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ within $\pm 10 \%$ of nominal rating
- Built to ElA Standard R\$456A
- UL Class 94V-2 and 746C for direct support of live electrical parts. Also ULES 1176 and CSA LR58450

SUPERMET ${ }^{\text {O }}$ OVAL CAPACITORS

MFD Rating	Width	Dimen Depth	Mes Height	$\begin{aligned} & \text { EIA. } \\ & \text { UL. Base } \end{aligned}$	Aerowax Madei	Stock No.	List	Each	SWe
2	$23 / 15^{\text {² }}$	15/16"	19/6*	A	Z50P3702M	4M999	55.35	\$4.25	0.3
3	23/25	15/16	1916	A	250P3\%03M	$5 \mathrm{MOO1}$	5.35	4.25	0.3
4	23/16	15/16	$18 / 16$	A	750P3704M	$5 \mathrm{MOO2}$	5.35	4.25	03
5	${ }^{23 / 16}$	15/16	1919	A	250P3705M	5 MOO 3	5.35	4.25	0.4
6	$23 / 16$	15/26	23/3	A	250P3706M	5M004	5.95	4.99	0.4
7.5	$2^{33 / 19}$	15/16	23/9	A	$250 \mathrm{P3} 307 \mathrm{~N}$	5M005	5.40	5.36	0.2
10	23/16	15/16	23/4	A	250P3710M	514006	7.65	6.41	0.4
12.5	23/16	15/16	314	A	250p3:12N	SM007	9×0	7.72	0.5
15	23/16	15/26	3374	A	250P3715M	5M008	10.50	9.45	0.5
17.5	$2^{15 / 16}$	$115 / 76$	$23 / 9$	C	204P3T1	$5 \mathrm{M009}$	1.30	10.76	0.6
20	$2^{15 / 16}$	$115 / 16$	$23 / 4$	C	Z64P3:20M	5M010	13.05	11.45	0.5
25	$2^{25 / 16}$	115/16	23/4	C	764P3-25M	$5 \mathrm{MO11}$	15.25	12.81	0.6
30	$2^{15 / 16}$	$1{ }^{15 / 46}$	$31 / 4$	C	26+P3-30M	$5 \mathrm{MO12}$	$1-20$	14.44	0.8
35	$22^{15 / 16}$	115/28	$31 / 4$	C	$26+3 \mathrm{PT35M}$	$5 \mathrm{MO13}$	13.40	15.44	0.8
40	$2^{151 / 16}$	$115 / 12$	$33 / 4$	C	Z6-P35 40 M	$5 \mathrm{MO14}$	20.50	17.22	0.8
45	$215 / 16$	115/16	414	C	26.43 P - 5 M	$5 \mathrm{MO15}$	33.15	19.43	1.1
50	$215 / 16$	$1{ }^{15 / 16}$	$4^{1 / 4}$	C	$76+33^{3} 5091$	5M016	24.70	20.69	1.0
15/5	$2{ }^{15 / 18}$	$115 / 16$	23/8	C	$26+1{ }^{3} 9200$	$5 \mathrm{MOL7}$	16.50	13.65	0.5
17.5/5	${ }_{2}^{15 / 16}$	115/26	$2^{23 / 8}$	C	$26+3 \times 29 W$	5M018	5 L	14.28	0.6
$20 / 5$	${ }^{215 / 16}$	115/66	23/3	C	$26+13^{2} 250$	$5 \mathrm{MO19}$	1.35	14.54	0.5
25/5	$2^{15 / 16}$	115/16	$29 / 4$	C	264P3:305	5M020	19.05	16.49	0.5
$30 / 5$	$2^{25 / 15}$	115/76	31/4	C	264P3:35w	$5 \mathrm{M021}$	21.20	17.77	0.5
35/5	$2^{15 / 16}$	115/16	H_{4}	C	264P3T40W	$5 \mathrm{MO22}$	$\times 20$	18.64	0.5
60		$\stackrel{2}{2}^{7}$	31/4	D	762P3760M	$5 \mathrm{SM076}$	${ }_{3}^{25.85}$	22.59	0.8
80	$35 / 8$	2	$31 / 4$	D	Z62P3780M	$5 \mathrm{M077}$	33.00	28.90	0.8

GRAINGER HAS OVER 330 BRANCHES NATIONWIDE
We're well stocked with items you use everyday and our salespeople are knowledgeable, courteous professionals who care about your business.

To find the branch nearest you, check the white pages in your local telephone directory under "Grainger."

HIGH EEFICIENCY PSC AND SHADED POLE DIRECT-DRIVE FURNACE BLOWER MOTORS

GE BRAND, SHADED POLE, OPEN AIR-OVER, 4 SPEED

Typical Uses: Shaft-mounted small furnace and mobile home furnace blowers. Also used for other shaft-mounted fan and blower equipment.
Special features: Male and female Safety Speed Selector Plugs included to prevent misconnection and motor burnout. Plugs can be separated or easily snapped together in a variety of configurations. $12^{\prime \prime}$ leads for connecting to Speed Selector Plugs.
Bearings: All-angle, self-aligning sleeve

Mounting: 3 -way, $2^{1 / 2^{\prime \prime}}$ resilient rings, $4^{3 / 4^{\prime \prime}}$ OC, $1 / 2^{\prime \prime}$ studs, or band mount, SE
Service Factor: 1.0
Thermal Protection: Auto
Insulation Class: A
NEMA Frame: 42 YZ
Body Diameter: $5^{\prime \prime}$
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: GW facing shaft
'Finish: Gray' enamel
Brond: GE

HP	Nameplate RPM	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Shaft Dimensions Dia. x Length	Length Less Shaft	GE Stock No.	Stock No.	List	Each	Shpg. Mt
$1 / 5$	1050/3-Spd	$\begin{aligned} & 230^{*} \\ & \hline 15 \end{aligned}$	3.7	$1 / 2 \times 31 / 2^{1 /}$	51/8"	2986	4M015	\$112.00	\$71.75	11.0
1/5	1050/4-5pd	115	8.3	$1 / 2 \times 31 / 2$	$51 / 8$	2985	$4 \mathrm{M014}$	111.00	71.10	11.0

(*) Designed to operate on 208-230V.

GE AND A. Typicia Uses: Furnace blowers. Also used
for other air-over shaft-mounted fan and for other air-over s.
blowet applications.
Spedial Features: Capacitor and mounting hardxare for PSC models available separately: Capacitor mounting holes in shell.
Bearings: All-angle sleeve
Mounting: Resilient rings and studs (except No. 3M862 has resilient rings only)
Enclosüre: Open air-over
Servide Factor: 1.0
Thermal Protection: Auto
Shaffodimensions: $1 / 2 \times 5^{\prime \prime}$ (except No. 3 MO 2 L is $2^{1 / 8^{n}}$ long)

Ambieat: $40^{\circ} \mathrm{C}$

Dury: Continuous air-over
Rotation: PSC models are CW/CCW; shaded pole models are CW facing shaft
finish: GE, gray; A.O. Smith, black
Brands: GE and A.O. Smith

[^11]
HEATING/COOLING MOTCRS

DIRECT-DRIVE FURNACE BLOWER MOTORS

- Welded bracket
- Quiet operation
- Quick reversing leads on PSC models

Typical Uses: Exceptionally quiet operation on shaft-mounted blowers with 9 or 10^{n} diameter wheels.
Special features: Torsion flex mounting effectively isolates and prevents torsional vibrations from reaching the blower housing and causing noise. Capacitor and mounting hardware available separately for PSC motors.
Bearings: All-angle sleeve
Mounting: Three torsion-flex mounting brackets welded to motor shell
Enclosure: Open air-over
Service Factor: 1.0
Thermal Protection: Auto-
Insulation Class: PSC models are B; shaded pole models are A
NEMA Frame: 42YZ, 5^{n} dia. (GE 29 frame); $48: \mathrm{ZZ}, 55 / 8^{\prime \prime}$ dia. (GE 39 frame)
Ambient: $40^{\circ} \mathrm{C}$
Dutiy: Continuous air-over
Rotation: PSC models are CW/CCW with quitck reversing leads; shaded pole models ate CW facing shaft
Fiñish: Gray enamel
Brond: GE

(*) $60 / 50 \mathrm{~Hz}$ operational. (${ }^{(}$) GE motors ane nameplated rotation vewing lead end.
Tede CAUTION: Not for fans in U'nattended areas.
Refer to page 5 for ULK 507 Standard, proper thermal profection, and other motor selection information.
MANY BRANDS OF MAINTENANCE EQUIPMENT AVAILABLE Rubbermaid

Dayton

DIRECT-DRIVE FAN AND BLOWER MOTORS

Typicil Uses: Furnace blowers, unit heatens, air circulators, and fans.
Bearings: All-angle, self-aligning sleeve
Service:Factor: 1.0
Thermat Protection: Auto
Body Eiameter: NEMA frame $42 \mathrm{YZ}, 5$ "; NEMA
Ambient: $40^{\circ} \mathrm{C}$
Duty: Gifntinuous air-over
Rotation: CW facing shaft
Finishegray enamel
Brand Dayton

EAUTION: Not for fans in unattended areas.
Refer to page 5 for UL507 Standard, proper thermal protection, and other motor selection information.

HEATING:COOIING MOTORS

DIRECT-DRIVE FAN AND BLOWER MOTORS

DAYTON BRAND, PSC, HIGH EFFICIENCY

Typical Uses: High efficiency performance in furnace blower, unit heater, ventilators, and other shaft-mounted fan and blower applications.
Special Features: Sturdy steel case with open lamination design.
Bearings: All-angle, self-aligning sleeve
Mounting: Resilient rings with studs
Enclosure: Open air-over
Service factor: 1.0
Thermal Protection: Auto
Insulation Class: B
NEMA Frame: 42 YZ
Body Diameter: $5^{\text {T}}$
Shaft Dimensions: $1 / 2 \times 51 / 4^{\prime \prime}$ with full flat
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CW/CCW
Finish: Gray enamel
Brand: Dayton

T1

	Namepfata RPM	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Mounting Pattern	$\begin{gathered} \text { Stud } \\ \text { Location } \dagger \end{gathered}$	$21 / 2^{-0}$ Dia. Resilient Rings OC	Length Less Shaft	Stock No.	List	Each	Shpg. Wt.		Each
1 1/10	1625/3-Spd	115	1.2	1	BE	$4^{9 / 16 "}$	$5 \cdot$	-5M049	\$127.00	\$81.10	8.5	5M003	\$4.25
n	1075/3-Spd	115	1.5	2	BE	49/16	5	-5M050	117.00	74.70	8.5	5 M 003	4.25
	1625/3-Spd	208-230*	0.6	1	BE	$4^{9 / 16}$	5	-5M051	130.00	83.00	8.5	5M003	4.25
-	1075/3-Spd	208-230*	0.8	2	BE	49/16	5	-5M052	120.00	76.60	8.5	5M003	4.25
1/8	1625/3-Spd	115	1.6	1	BE	$47 / 8$	$5^{3 / 16}$	-5M053	132.00	84.30	9.5	5M003	4.25
	1075/3-Spd	115	1.9	2	BE	$4^{7 / 8}$	53/66	-5M054	122.00	77.90	9.5	5M003	4.25
$\underline{x}=1 / 6$	1625/3-Spd	115	1.8	1	BE	$51 / 16$	$5{ }^{5}$	-5M055	137.00	87.45	11.0	5M003	4.25
: $:$	1075/3-Spd	115	2.5	2	BE	51/6	$5{ }^{1 / 2}$	-5M056	127.00	81.10	11.0	5M003	4.25
1/4	1625/3-Spd	115	3.0	1	BE	$5^{1 / 2}$	6	-5M057	142.00	90.65	13.0	5M005	5.36
-	1075/3-Spd	115	3.7	2	BE	$5^{1 / 2}$	6	54058	132.00	84.25	13.0	5 M 005	5.36
等	1625/3-Spd	$208-230^{*}$	1.5	1	BE	$5{ }^{1 / 2}$	6	-5M059	145.00	92.55	13.0	5M003	4.25
\%	1075/3-Spd	208-230*	1.9	2	BE	$5^{1 / 2}$	6	-5M060	137.00	87.45	13.0	5M003	4.25
${ }^{*}{ }^{*}(*) 60 / 50 \mathrm{~Hz}$ (\dagger) $\mathrm{BE}=$ Both Ends.													
 													$\begin{gathered} \mathbf{h f}^{2} \\ -34 \end{gathered}$

GE BRAND, PSC, HIGH EFFICIENCY TRANSFORMER COOLING FAN MOTORS

Typical Uses: Specifically designed for use on outdoor transformer cooling fans.
Special Features: Stainless steel shaft and $60 / 50 \mathrm{~Hz}$ operation.
Bearings: Double-sealed ball bearings Mounting: Rigid welded base on No. 5U267; rigid welded base with studs on No. 5U268 Enclosure: TEAO
Thermal Protection: Auto Insulation Class: B
Ambient: $65^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CCW facing shaft
Finish: Gray enamel
Brand: GE

(*) Has nonstandard $1 / 2^{\prime \prime}$ diameter shaft with flat.

DIRECT-DRIVE FAN AND BLOWER MOTORS

Typical Uses: Room air conditioners, unit heaters, condensers, furnace blowers, and a wide range of other shaft-mounted fan and blower equipment.
Special Features: Operable on $60 / 50 \mathrm{~Hz}$. Type: Shaded Pole
Bearings: All-angle sleeve
Mounting:
(A) Resilient rings and four No. 10-32 holes
B Resilient rings and $3 / 4^{n}$ studs
[C] Resilient rings
Enclosure: Open air-over
Service Factor: 1.0
Thermal Profection: Auto
Insulation Class: A (except Nos. 4M288,
4M430, 4M434, 4M467, and 4M469 are B)
NEMA Frame: 42 YZ , 5^{n} dia. (GE 21/29
frame); 48YZ, $55 / 8^{n}$ dia. (GE 39 frame)
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Finish: Gray
Brand: GE

$\begin{gathered} \text { Bis } \\ \hline \end{gathered}$	Nameplate RPI	NEMA Frame	Rotation Faciag Shaft	Volts $68 / 50 \mathrm{~Hz}$	Full-Load Amps et $^{\text {t }}$ Nameplate Volts	Mount Style	Body Dia.	21/" Dia. Resilient Rings OC	Shaft Dimensions Dia. \times L	Length Less Shaft	GE Stock No.	Stock No.	List	Each	Shpg. H2
1120	1550	42 YZ	CCW	115	2.5	A	$5{ }^{\prime \prime}$	$5{ }^{\text {n }}$	$3 / 8 \times 11 / 2^{\prime \prime}$	$5^{5} / 8^{11}$	2331	3 M 463	\$135.00	\$83.65	6.0
	1550	42YZ	CW -	115	2.5	A	5	5	$318 \times 1 / 2$	$55 / 8$	2341	3 M 456	135.00	83.65	6.0
$=$ \%	1550	42 YZ	CCW	208-230	1.2	A	5	5	$3 / 8 \times 142$	$55 / 8$	2332	3M464	138.00	85.50	6.1
\%	$\cdot 1550$	42 YZ	CW	208-230	1.2	A	5	5	$3 / 8 \times 11 / 2$	$5^{5 / 8}$	2342	3 M 457	138.00	85.50	6.0
	1050	$42 Y \mathrm{Z}$	CCW	115	3.1	A	5	5	$3 / 8 \times 1 / 2$	$5^{5 / 8}$	2311	4 M 457	165.00	102.20	5.8
His	1050	42YZ	CW	115	3.1	A	5	5	$3 / 8 \times 11 / 2$	55/8	2321	4M458	165.00	102.20	6.0
	1050	42YZ	CCW	208-230	1.6	A	5	5	$3 / 8 \times 11 / 2$	55/8	2312	$4 \mathrm{M459}$	170.00	105.30	5.8
\#	1050	$42 Y Z$	CW	208-230	1.6	A	5	5	$3 / 8 \times 11 / 2$	55/8	2322	4 M 460	170.00	105.30	5.8
1715	1550	42YZ	CCW	115	2.8	A	5	53/16	$3 / 8 \times 1 / 2$	$5^{13 / 16}$	2231	3M465	147.00	91.05	6.9
	1550	42YZ	CW	115	2.8	A	5	53/16	$3 / 8 \times 11 / 2$	$5{ }^{13 / 16}$	2241	3 M 458	147.00	91.05	7.0
寿	1550	42 YZ	CCW	208-230	1.6	A	5	$4{ }^{13 / 16}$	$3 / 8 \times 11 / 2$	$53 / 8$	2003	4×461	163.00	101.00	7.8
	1550	42YZ	CCW	208-230	1.4	A	5	53/16	$3 / 8 \times 11 / 2$	$513 / 16$	2232	3 M 470	150.00	92.90	7.0
\cdots	1550	42 YZ	CW	208-230	- $1: 4$	A	5	53/16	$3 / 8 \times 1 / 2$	$5^{13 / 16}$	2242	3 M 459	150.00	92.90	7.1
4	1050	42YZ	CCW	115/208-230	$4.0 / 2.0$	A	5	53/16	$3 / 8 \times 11 / 2$	$513 / 16$	2213	4 M 462	193.00	119.60	6.7
\%/2	1050	42YZ	CW	$115 / 208-230$	$4.0 / 2.0$	A	5	53/16	$3 / 8 \times 11 / 2$	$5^{13 / 16}$	2223	4 M 463	193.00	119.60	- 7.0
180	1550	42YZ	CCW	115	4.6	A	5	$57 / 16$	$3 / 8 \times 11 / 2$	$6^{1 / 8}$	2131	$3 M 471$	152.00	$94.15 \text {. } 8.82$	
	1550	42YZ	CW	115	4.6	A	5	$57 / 16$	$3 / 8 \times 1 / 2$	$61 / 8$	2141	3 M 461	152.00		
	1550	42YZ	CCW	208-230	2.1	A	5	$57 / 16$	$3 / 8 \times 11 / 2$	$61 / 8$	2132	$3 M 467$	154.00	95.45 8.2 95.45 .9 .0	
	1550	$42 Y Z$	CW	208-230	2.1	A	5	57/16	$3 / 8 \times 11 / 2$	$61 / 8$	2142	3 M 462	154.00		
	105013-Spd	48 YZ	CW	115	3.9	C	$55 / 8$	$311 / 16^{*}$	$1 / 2 \times 4$	$41 / 8$	3931	4 M 433	129.00	78.40	8.0
	1050	+2YZ	CW	115	4.7	A	5	$57 / 16$	$3 / 8 \times 2$	$61 / 8$	2121	3M460	177.00	109.65	7.6
	1050	42 YZ	CW	208-230	2.5	A	5	57/16	$3 / 8 \pm 2$	$61 / 3$	2122	3M624	180.00	111.50	8.0
	1050	42 YZ	CCW	115/208-230	4.0/2.0	A	5	$57 / 16$	$388 \times$	61/3	2113	$3 M 466$	180.00	111.50	7.6
1/8	1550	48 YZ	CW	115	4.5	C	55/8	$43 / 15$	$1 / 2 \times 4$	$45 / 3$	3341	4 M 464	120.00	72.90	9.6
	1550	48 YZ	CW	208-230	2.2	C	55/8	43/16	$1 / 2 \times 4$	45/8	3342	4 M 465	122.00	74.15	9.7
	1550	48 YZ	CCW	208-230	2.2	C	55/8	43/16	$1 / 2 \times 4$	$4^{5 / 3}$	3344	4M466	125.00	75.95	9.6
	1050/3-Spd	42 YZ	CW	$115{ }^{\text {t }}$	4.3	B	5	$4^{15} / 16^{*}$	$1 / 2 \times 4$	$\bar{\partial}^{3 / 3}$	2806	4M434	97.00	60.10	9.2
	1050/3-Spd	48YZ	CW	115	5.4	C	$5^{5 / 8}$	$3{ }^{15 / 16^{*}}$	$1 / 2 \times 4$	$4^{3 / 8}$	3941	319430	133.00	80.85	9.9
	1050	42 YZ	CW	115	4.3	B	5	$4^{15} / 16^{*}$	$1 / 2 \times 4$	$5^{3 / 3}$	2802	4 M 467	93.00	57.60	9.3
	1050	48YZ	CW	115	4.5	C	55/8	$43 / 16$	$1 / 2 \times 4$	45/8	3141	3×429	126.00	76.55	11.0
	1050	48YZ	CW	208-230	2.2	C	$55 / 8$	4.1/16	$1 / 2 \times 4$	+5/9	3142	3 M 953	129.00	78.40	11.0
$1 / 6$	1550	48YZ	CW	115	5.0	C	55/8	$47 / 10$	1/2×4	4%	3351	4 M 468	128.00	77.80	11.0
	1550	48 YZ	CW	208-230	3.9	C	55/8	47/16	12×4	4\%	3352	3 M 401	131.00	79.60	11.0
	1050/3-Spd	42YZ	CW	115	6.3	B	5	45/16*	$1 / 2 \mathrm{x} 4$	5\%/16	2807	4M288	97.00	60.10	9.0
	1050	$42 Y Z$	CW	$115 \dagger$	5.8	B	5	$415 / 10^{*}$	$1 / 2 \times 4$	53/3	2803	$4 M 469$	93.00	57.60	9.4
	1050	48YZ	CW	115	5.8	C	55/8	$4^{7 / 16}$	12×4	$4 \% / 8$	3151	3N402	133.00	80.85	12.0
	1050	48 YZ	CW	208-230	2.8	C	55/8	47/10	$1 / 2 \times 4$	$4^{1 / 3}$	3152	3 M 403	135.00	82.05	11.0
1/5	1050/3-Spd	42 YZ	CW	$115+$	7.4		5	$57 / 16^{*}$	$1 / 2 \times 4$	$5{ }^{15 / 16}$	2808	4T289	107.00	66.30 11.0 85.05 11.0	
	1050/3-Spd	48 YZ	CW	115	6.8	C	5 5/8	$4^{3 / 16} 6^{*}$	12×4	47/3	3961	3+1412	140.00		
	1050/3-Spd	42 YZ	CW	208-230\%	3.5	B	5	$5^{7 / 16}{ }^{*}$	$1 / 2 \times 4$	5	2842	4M435	109.00	$\begin{array}{r} 67.55 \\ 63.80 \\ \hline \end{array}$	11.0
	1050	42 YZ	CW	$115 \dagger$	6.5	B	5	$53 / 16^{*}$	$1 / 2 \mathrm{x}+$	$5^{11 / 16}$	2804	4 M 430	103.00		11.0
1/4	1550	48YZ	CW	115	7.5	C	$58 / 8$	$415 / 16$	$1 / 2 \times 4$	$53 / 3$	3371	4 M 431	139.00	84.50 14.0 85.70 14.0 74.30 12.0 95.40 15.0	
	1550	48YZ	CW	208-230	3.7	C	55/8	415/60	$1,2 \times 4$	$5^{3 / 3}$	3372	3 M 404	141.00		
	1050/3-Spd	42YZ	CW	$115 \dagger$	8.6	B	5	$57 / 4{ }^{*}$	12×4	$5^{15 / 36}$	2809	4M290	120.00		
	1050/3-Spd	48 YZ	CW	115	9.0	C	55/8	415/16*	$1 / 2 \times 4$	$53 / 3$	3971	3 M 413	157.00		
		42 YZ	CW	$115 \dagger$	9.4	8	$\begin{aligned} & \hline 5 \\ & 55 / 8 \\ & 5^{5} / 8 \end{aligned}$	$\begin{aligned} & 57 / 16^{*} \\ & 4^{15 / 16} \\ & 4^{15 / 16} \end{aligned}$	$1 / 2 \times 4$	5.78	2805	4×432	113.00	70.00	11.0
	1060	48 YZ	CW	115	9.2	C			$1 / 2 \times 4$	53/3	3171	3M405	148.00	89.95	14.0
	1050	48 YZ	CW	208-230	4.7	C			$1 / 2 \times 4$	53/8	3172	3M406	151.00	91.75	16.0
1/3	1050/3-Spd	42 YZ	CW	$115 \dagger$	11.0	B	5	57/16*	$1 / 2 \times 4$	5\%/8	2810	$4 \mathrm{M436}$	135.00	83.60	11.0

HEATING/COOLING MOIORS

DIRECT-DRIVE FAN MOTORS

- Supplied with mounted capacitor
- 1/2" studs for mounting fan guard on 48 frame

Typical Uses: Exhaust and poultry fans, air circulators, and other equipment operating in dusty, dirty, noncombustible environments. High efficiency or standard.
Special Features: Terminal board on all 48 frame. Large internal conduit box on 56 frame.
Type: PSC
Mounting: Resilient cradle base
Enclosure: TEAO (No.3M742 is TENV)
Service Factor: 1.0.
Thermal Protection: Auto
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Finish: Gray
Brand: Dayton

GRAINGER STOCKS A BROAD LINE OF DAYTON AND GE MOTORS

Top Performance. Dayton motors are built to exceed industry standards such as NEMA (National Electrical Manufacturers Association). Used as a replacement motor in a wide variety of applications, each Dayton motor must outperform the best motor it may be called upon to replace, hence "best of the best". performance. You can be confident that the Dayton motor will work as. well as, or better than, the motor you are replacing.
Top Quality Verified by Engineers. Grainger's Engineering Dept., with its "state-of-the-art" test lab, confirms that Dayton motors consistently meet or exceed top performance standards. Engineering also confirms the motors have applicable agency approvals such as UL and CSA.
Clearly Identified. Dayton motors are clearly identified by full fact carton labels and nameplates with wiring diagrams. Maintenance and installation instructions appear in every motor carton.
Broad line Offering. Dayton offers one of the broadest lines of motors in the industry. One brand can be used for nearly all your motor replacement needs.
Time Proven Performance. Established in 1937, Dayton has grown to be one of the most dependable names in the motor industry.

Broad Line Offering. Grainger now offers over 2400 stock GE brand motors including AC; and DC motors from $1 / 370 \mathrm{HP}$ to 450 HP in Energy $\$$ aver ${ }^{\text {TA }}$ and standard efficiency designs including severe duty, explosion proof, farm duty, HVAC, and many others.
National Recognition. GE is considered the leading national brand motor with the largest installed customer base. The GE brand is widely known for quality and reliability.
Clearly Identified. GE motors are clearly identified by full fact carton labels and nameplates. Easy-to-read wiring diagrams are included.
Premium Efficiency leader. GE has long been recognized as an industry leader in premium efficiency motors with a wide variety of ratings and types to suit many applications.
Heritage of Excellence, General Electric is one of the pioneers in the electrical industry with a proud 100 year history dating back to the time of founder Thomas Edison.

MANY BRANDS OF FAN BLOWERS/CONTROLS AVAILABLE

Dayton
Honeywell

DIRECT OEM REPLACEMENT MOTORS

DRAFT BOOSTER SWITCH MOTORS, SINGLE SPEED

- Single Pole, Single Throw switch configuration
- 120VA at 120 VAC -pilot duty
- 16" Auxiliary leads on all but No. 10090
Typical Uses: Replacements for draft booster and flue exhaust switch motors in specific brands of furnaces, such as Adams, Roberts Gordon, Wayne Home, J. Zink, Coleman, and Carrier.
Also used on other shaft-mounted blower applications where auxiliary equipment needs to be turned on/off when motor develops full operating speed or when motor is deenergized and speed drops (switch not available on No. 1D090).
Special Features: Includes centrifugal safety switch on all but No. 1D090
Type: Shaded pole and PSC
Service Factor: 1.0
Body Diameter: 3.3 ${ }^{n}$
Ambient: $40^{\circ} \mathrm{C}$
Du啇 Continuous
Finish: Gray enamel
Brönd: Dayton

${ }^{(}{ }^{*}$) Includes 5/16" diameter shaft bushing. (\dagger) UL Recognized E40077.

MOBILE HOME FURNACE BLOWER MOTORS

Typical Uses: Replacements for original
equipment motor in mobile home furnaces.
Special Features: Nos. 3M663 and 3M665 are used in Coleman furnaces; resilient rings not supplied since motors are generally mounted in original belly band. No. 3M664 is for Lear-Siegler furnaces; resilient rings supplied for mounting in existing base. Bearings: All-angle, self-aligning sleeve Enclosure: Open air-over

Service Factor: 1.0
Thermal Protection: Auto
Insulation Class: A
NEMA Frame: 42 YZ
Body Diameter: $5^{\prime \prime}$
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CW facing shaft
Finish: Gray enamel
Brond: Dayton

HP	Nampeplate APM	Votts 60 Hz	Fulli-Load Ampsat Nameplate Volts	Shaft Dimensions Dia. $\times \mathrm{L}$	Length Less Shaft	Stock No.	List	Each	Shpg. Wt.
$1 / 12$	1050	115	3.1	$1 / 2 \times 31 / 2^{1}$	$4^{\text {n }}$	4 M 221	\$65.00	\$49.20	5.2
$1 / 10$	$1050 \dagger$	115	4.2	$1 / 2 \times 21 / 2$	45/s	$3 \mathrm{M663}$	70.00	52.95	6.1
$1 / 8$	1050	115	5.1	1/2×24	$4^{1 / 4}$	3M664*	81.00	61.25	7.6
1/6	1050t	115	7.1	$1 / 2 \times 21 / 2$	5	3M665	80.00	60.50	7.5

HEATING/COOLING MOIORS

HOT WATER CIRCULATOR PUMP MOTORS

- Single and three-phase

- Resilient bracket, ring, and C-face mounting
Typical Uses: Exact replacement motors complete with mounting brackets to replace specific motors on Bell \& Gossett, Armstrong, and Teel brand circulator pumps.
Certain models require a coupler assembly for proper Bell \& Gossett replacement. Coupling assembly must be ordered separately. See page 77 for coupling ordering information.
Special Features: All units have exact performance and mechanical interchangeability with the OEM motor.
Enclosure: Open dripproof
Duty: Continuous
Finish: Red or gray enamel
Brand: Dayton

For Hot Water Circulator Pump Motor Cross Reference Guide, See Page 77

CAUTION:

Not for fans in unattended areas. Refer to page 5 for UL507 Standard, proper thermal protection, and other motor selection information.

N	Kay	$\underset{\substack{\text { Namp } \\ \text { R. }}}{ }$	nema	Rotation Facing Shatt	Theimal	Volts	$\begin{aligned} & \text { Full-Load } \\ & \text { Amps at } \\ & \text { Namephatite } \\ & \text { Vofts } \end{aligned}$	Service Factor	Bearings	Mounting	$\begin{gathered} \text { Bott } \\ \text { Circle } \end{gathered}$	$\begin{aligned} & \text { Rings } \\ & \text { of } \end{aligned}$	Stock No.	List	Each	$\begin{aligned} & \text { Shapg. } \\ & \text { Wt. } \end{aligned}$
$11 / 2$	${ }_{\text {A }}^{\text {A }}$	1725 1725	48YZ	$\stackrel{\text { cW }}{\text { CW/CCW }}$	Auto	115	${ }_{2}^{2.5}$	1.75	Sleeve Sleeve	Bracket Ring	$45 / 8^{\prime \prime}$	$515 / 6{ }^{16}$	3K515**	\$155.00	\$104.15	$\xrightarrow{10.0}$
1/12	E	1725	48 YZ	CW	Auto	115	28	1.0	Sleeve	Ring		$57 / 8$	3K350	100.00	76.45	8.0
1/8	F	1725	48 YZ	CW/CCW	Auto	115	2.7	1.0	Sleeve	Bracket	45/8		6 K 509	123.00	94.05	12.0
1/6	A	1725	48YZ	${ }_{\text {CW }} \mathrm{CW}$	Auto	115	${ }_{3}^{3.6}$	1.75	Sleeve	Bracket	${ }_{4}^{5}$	-	${ }^{3 K 516 * *}$	${ }^{254} 25000$	173.00 173.00	14.0 13.0
116	E	1725	48YZ	CW/CCW	${ }^{\text {Auto }}$	115	3.5	1.35	Sleeve	${ }_{\text {Ring }}$		75/8	6K521*	123.00	94.05	120
1/6	E	1725	48YZ	CW/CCW	Auto	115	3.5	1.0	Sleeve	Ring	-	715/16-91/8	6K864	123.00	94.05	14.0
$1 / 4$ $1 / 4$	${ }_{\text {B }}^{\text {B }}$	${ }_{1725}^{1725}$	${ }_{48 \mathrm{Y}}^{48 \mathrm{Y}}$	${ }_{\text {CCW }}$	Auto	115	5.0 5.0	${ }_{1}^{1.25}$	Sleeve	Bracket	$\frac{5}{5} / 8$	-	${ }_{\text {3k517* }}$	348.00 36900	264.00	15.0 5.0 15
1/3	B	1725	48 YZ	CCW	Auto	115	5.4	1.3	Sleeve	Bracket	5\%/s	-	3K521*	+99.00	340.50	15.0
							SPIT-PHASE, 50 Hz					(ex\%			683	
$1 / 12$	A	1425	${ }_{48 \mathrm{Y}}^{48 \mathrm{Y}}$	CW	Auto	$\stackrel{220}{220}$	$\frac{1.2}{3}$	1.0	Sleeve	Bracket Bracket	${ }_{5}^{5}$	-	1 1N795	${ }_{2}^{159.00}$	111.35 166.25	12.0
$1 / 4$	B	1425	48 YZ	CW	Auto	220	2.8	1.0	Sleeve	Bracket	5		1N793	35.00	262.75	16.0
1/3	B	1425	48 YZ	CW	Auto	220	3.5	1.0	Sleeve	Bracket	57/3	-	1N792	170.00	329.25	16.0
3/		$\pm \times 2$		Y	,		CAPACTIOR-START, 60 Hz ,							.	$\therefore \cdots{ }^{2}$	
3/4	C_{C}	1725 1725	${ }_{56}^{56 C Z}$	${ }_{\text {CCW }}^{\text {CCW }}$	$\begin{aligned} & \text { Auto } \\ & \text { Auto } \end{aligned}$	$115208-230$ $115 / 208-230$	$\begin{aligned} & 5.8 / 2.8-2.9 \end{aligned}$	1.5	Sleeve Sleeve	Bracket Bracke	${ }_{5}^{5 / 7 / 8}$	-	$3 \mathrm{3K519*}$ $3 \mathrm{~S} 22^{*}$	640.00 728.00	457.00 494.00	33.0 27.0
+2		2		*	x^{5}		THREE-PHASE, 60 Hz									
1/2	D	${ }_{1725}^{1725}$	${ }_{56 \mathrm{CZ}}^{56}$	${ }_{\text {cW/CCW }}$	None	${ }^{208} 23230460$	${ }_{2}^{23.2 .4} 41.2$	1.5	${ }_{\text {Ball }}$	C-Face	557/8	-	3N850**	640.00 728.00	486.75	- 21.0
	D	1725	56 CZ	CW/CCW	None	208-230/460	3.53.36/1.8	1.4	Ball	C-Face	$5 \% / 3$		3N825*	738.00	552.50	25.0
$11 / 2$	D	1725	56 CZ	CW/CCW	None	208-230/460	4.8-4.82. 4	1.35	Ball	C-Face	5\%	-	3N826*	S22.00	614.50	28.0 -

[^12]
HOT WATER CIRCULATOR PUMP MOTORS

COUPLING ORDERING DATA AND CROSS REFERENCE GUIDE FOR DAYTON HOT WATER CIRCULATOR PUMP MOTORS ON FACING PAGE

W, COUPINGSEORGRCULATOR PUMPMOTORS						
Motar Stack No.	Motor Shaft Size	Pump Size	Required Coupling			
			No.	List	Each	$\begin{aligned} & \text { sipg. } \\ & \text { wit } \end{aligned}$
3 K 515	$12^{\prime \prime}$	$1 / 2{ }^{\prime \prime}$	1R462	\$10.00	\$9.29	0.4
3×516	$1 / 2$	$1 / 2$	1 R 462	10.00	9.29	0.4
3K517	1/2	12	1 R 463	20.00	18.67	0.3
3×518	1/2	$1 / 2$	1R464	35.00	29.95	0.5
3 K 518	$1 / 2$	$5 / 8$	1 R 465	30.00	29.45	0.5
3×519	5/8	$1 / 2$	1R464	35.00	29.95	0.5
3K519	518	5/8	1R465	30.00	29.45	0.5
3K520	1/2	1/2	1R462	10.00	9.29	0.4
3K521	$1 / 2$	$1 / 2$	1R464	35.00 30.00	29.95	0.5 0.5
3 K 522	5/8	1/2	1R465	30.00	29.45	0.5
$3 N 824$	578	12		30.00		0.5
$3 N 824$	518	$5 / 8$.	1R466	68.00	64.25	1.0
$3 N 825$	$5 / 8$	1/2	1R465	30.00	29.45	0.5
34825	$5 / 8$	518	1 R 466	68.00	64.25	1.0
34886	$5 / 8$	$1 / 2$	1R465	30.00	29.45	0.5
34850	5	$-5 / 8$	1R465	38.00	64.25	1.0

Bell \& Gossett	Armstrong	Teel	Stack No.
*	817025-253	2 P 610	1N792
*	817025-153		1N793
*	817005-053	1P900, 1P902, 2P432, 2P609	iN794
*	805316-053	1P899, 1P903	1N795
111034	$805316-010$	1P899, 1 P903	$3 \mathrm{K515}$
111036	817025001	1P900, 1P902, 2P432, 2P609	$3 \mathrm{K516}$
111040 11044^{\dagger}	$817025-007$ $811757-001$		3 K 18
$111044{ }^{\prime}$	$811757-001$ $831001-083$	${ }_{3 \mathrm{P} 720} \mathrm{P} 435,2 \mathrm{P} 612$	3 K 519 3 N 50
$111047+$	811757-002	${ }_{2} 2436$	3 K 522
111049	831012-083	2 P 611	3N824
111061	817025-005	-	3 K 520
169035	816141-001	2P434	3 K 17
169038	$816141-002$	2 P 610	3 K 521
169090	816676-069	3 P 701	3N825
169092	816678-069	3P702	3N826

$\left.{ }_{(8)}^{*}\right)$ Requires No. 18465 coupler assembly for proper Beil \& Gossett replacement.
For Dayton hot water circulator pumps ordering information, see page 76.
See Cross Reference Information on page opposite inside back cover.

OEM REPLACEMENT HOT WATER CIRCULATOR PUMP MOTORS

Typizal Uses: Replace original equipment motors on hot water circulator pumps fromich Bell \& Gossett, Armstrong, Teel, and Tačo. Also for other close coupled pump applications.
Typezs Split-phase
Endesure: Open dripproof
Ambient: $40^{\circ} \mathrm{C}$
Dury: Continuous
Finish: Gray
Brañ: GE

HP	Nameplate RPM	NEMA Frame	Rotation Facing Shaft	Thermal Protection	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	Bearings	Mounting	Rings OC	$\begin{aligned} & \text { GE } \\ & \text { Stock } \\ & \text { No. } \end{aligned}$	Stock No.	List	Each	Shpg. Wt
Y		\cdots -	5		".	SPLIT-PHASE, 60 Hz						$\begin{aligned} 4 x \\ 7 \end{aligned}$	\because		$\begin{aligned} & x+1 \\ & x \\ & x \end{aligned}$
$1 / 12$	1725	48YZ	CW	Auto	115	2.1	1.4	Sleeve	Ring	$5^{151 / 164}$	4722	6K996	\$135.00	\$99.45	9.1
$1 / 8$	1725	42YZ	CW	Auto	115	1.8	1.0	Sleeve	Ring	615/10	2987	3K25i	129.00	87.25	10.0
1/8	1725/1425	48 YZ	CW	Auto	115*	1.6	1.0	Sleeve	Ring	$615 / 10$	2800	6K997 \ddagger	126.00	99.95	10.0
1/8	1725	48 YZ	CW	Auto	115	$\underline{2} .6$	1.4	Sleeve	Ring		404	$6 K 998$	146.00	111.00	11.0
1/6	1725	48 YZ	CW	Auto	115	3.0	1.0	Sleeve	Ring	$711 / 16$	2801	6K999	166.00	126.15	12.0

NOTE: To ensure correct motor selection, measure the bolt circle of old motor Vos. $3 \mathrm{~K} 25 \mathrm{~L}, 6 \mathrm{Kg97}$, and 6 K 999 have round shaft with setscrew.
NOTE: No. 6 K 998 has flat shaft, all others have round shaft. (*) 6060 Hz . (1) No. 3 K . 51 fits old and new style brackets. (二) No. 6 K 997 uses base of original motor.
CAUTION: Not for fans in unattended areas.
Refer to page 5 for ULSOT Standard, proper thermal protection, and other motor selection information.
CHOOSE FROM MANY BRANDS OF INDUSTRIAL PUMPS

Including Little Giant, Alldos,
Ingersoll-Rand, Hale and Teel
ARO ABS FUII

HEATING/COOLING MOTORS

FLANGE-MOUNT OIL BURNER MOTORS

Typical Uses: NEMA oil burner flange for direct-coupling to domestic oil burners. Also widely used for replacements in applications where a NEMA $48 \mathrm{M}, 48 \mathrm{~N}$, or 56 N flange mounting is required.
Special Features: All Dayton models (except No. 6K149) have holes drilled and tapped in shell for mounting optional No. 4X510 conduit box (sold separately below). GE and Dayton models feature quick-change reversing terminals.
Service Factor: 1.0
Thermal Protection: Manual reset
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW (except No. 3K036 is CCW facing shaft)
Finish: Black enamel
Brand: Dayton and GE

CONDUIT BOX FOR OIL BURNER MOTORS

FFits Dayton oil burnmer motors listed tolow (except No. 6K149).
No. 4×510. Shpg. wt. 0.6 lb . List $\$ 6.55$. Each.. $\$ 5.00$

25054				GE BRAND, CAPACITOR-START, VENIILATED FLANGE							- E'W			
1/3	3450	48N	Open Dripproof	115/230	6.0/3.0	1.35	Ball	B	$1 / 2 \times 1 / 8$	4788	6K546	181.00	131.30	14.0
1/2	1725	48N	Open Dripproof	115/230	8.2/4.1	1.25	Ball	B	$1 / 2 \times 17 / 3$	4781	$6 K 547$	193.00	140.25	16.0

[^13]CAUTION: Nof för fans in unaffended areas.
Refer to page 5 for UL507 Standard, proper thermal protection, and other motor selection information.

UNIT HEATER BLOWER MOTORS

HEATING/COOLING MOTORS

Typictil Uses: Unit heaters and other shaftmounted fan and blower equipment in dusty dirty, noncombustible environments. Capacitor included.
Service Factor: 1.0
Thermal Protection: Auto
Insulation Class: B
NEMA Frame: $48 \mathrm{YZ}, 558^{n}$ dia.; $42 \mathrm{YZ}, 5^{n \prime}$ dia. Ambient: $40^{\circ} \mathrm{C}$
Duty Continuous air-over Finishe Gray enamel
Brand Dayton

	Nameplate RPM	NEMA Frame	Rotation Facing Shaft End	Volts 60 Hz	$\begin{gathered} \text { Full-Load } \\ \text { Arups at } \\ \text { Nameplate Volts } \end{gathered}$	Efficiency	Bearings	Stud Pattern	Bory Dia.	Shaft Dimension Dia, xL	Length less Shaft	Stock No.	List	Each	Shpg. MI.
E.															
$1 / 8 \mathrm{C}$	1075	42YZ	CW	115	2.3	Standard	Sleeve	-	5	$1 / 2 \times 21 / 4^{n}$	$5^{7 / 16}{ }^{17}$	3M657*	\$120.00	\$91.70	12.0
$1 / 6$ B 	$\begin{gathered} 1075 / 2 \text { Spd } \\ 1075 \\ 1075 \end{gathered}$	48 YZ	$\begin{gathered} \text { CW/CCW } \\ \text { CW/CCW } \\ \text { CW } \end{gathered}$	115	2.3	HighHighStandard	Sleeve Sleeve Sleeve	$\begin{aligned} & 2 \\ & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 5^{5 / 8} \\ & 5^{5 / 8} \\ & 5^{5} / 8 \end{aligned}$	$\begin{aligned} & 1 / 2 \times 23 / 4 \\ & 1 / 2 \times 23 / 4 \\ & 1 / 2 \times 23 / 8 \end{aligned}$	$\begin{aligned} & 5^{11 / 16} \\ & 5^{11 / 16} \\ & 5^{7 / 16} \end{aligned}$	$-3 M 831$$-3 M 829$$3 M 658$	132.00	100.90	13.0
		48 YZ		115	2.3								127.00	97.05	11.0
		48 YZ		115	2.6								133.00	101.70	13.0
1/3	1075	48 YZ	$\begin{aligned} & \hline \mathrm{CW} / \mathrm{CCW} \\ & \mathrm{CW} \\ & \mathrm{CW} / \mathrm{CCW} \end{aligned}$	115	4.2	High Standard High	Sleeve Sleeve Sleeve	$\begin{aligned} & 2 \\ & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 5^{5 / 8} \\ & 5^{5 / 8} \\ & 5^{5 / 8} \end{aligned}$	$\begin{aligned} & 1 / 2 \times 23 / 4 \\ & 1 / 2 \times 23 / 8 \\ & 1 / 2 \times 23 / 4 \end{aligned}$	$\begin{aligned} & 5^{15 / 16} \\ & 5^{9 / 16} \\ & 5^{15 / 16} \end{aligned}$	$\begin{array}{r} -3 N 835 \\ 3 N 659 \\ -30837 \end{array}$	147.00	112.30	18.0
	1075	48YZ		115	5.0								149.00	113.90	16.0
	1075	48YZ		230	1.8								149.00	113.90	17.0
	\cdots	- -	PSC TOTALIY ENCLOSED AR-OYER STUD MOUNT									F\%	\cdots		
$1 / 6$ A E A A	$\begin{gathered} 1075 / 2-\mathrm{Spd} \\ 1075 \\ 1075 \\ 1075 \\ \hline \end{gathered}$	$\begin{aligned} & 48 \mathrm{YZ} \\ & 48 \mathrm{YZ} \\ & 48 \mathrm{YZ} \\ & 48 \mathrm{YZ} \end{aligned}$	$\begin{aligned} & \mathrm{CW} / \mathrm{CCW} \\ & \mathrm{CW} \\ & \mathrm{CW} / \mathrm{CCW} \\ & \mathrm{CW} / \mathrm{CCW} \end{aligned}$	115	2.3	High	Sleeve	1	55/8	$1 / 2 \times 33 / 4$	49/16	-3M830	118.00	90.20	11.0
				115	2.6	Standard	Ball	4	55/3	1/2×21/2	53/3	3 M 899	134.00	102.45	10.0
				115	9.3	High	Ball	1	5\%/s	$1 / 2 \times 23 / 4$	$49 / 16$	-4M044	116.00	88.70	9.5
				115	2.3	High	Sleeve	1	$55 / 3$	$1 / 2 \times 23 / 4$	49/16	-3M828	108.00	82.55	9.5
1/4	$\begin{gathered} 1075 / 2-S p d \\ 1075 \\ 1075 \\ 1075 \end{gathered}$	48 YZ	$\begin{gathered} \mathrm{CW} / \mathrm{CCW} \\ \mathrm{CW} \\ \mathrm{CW} / \mathrm{CCW} \\ \mathrm{CW} / \mathrm{CCW} \end{gathered}$	115	3.3	High	Sleeve	1	53/8	$1 / 2 \times 23 / 4$	$49 / 16$	-3M833	121.00	92.45	15.0
		48 YZ		115	3.6	Standard	Ball	4	$55 / 8$	$1 / 2 \times 21 / 2$	$6^{1 / 8}$	$3 M 970$	142.00	108.55	14.0
		48 YZ		115	3.4	High	Ball	1	$55 / 8$	$1 / 2 \times 23 / 4$	49/16	-4M045	124.00	94.75	14.0
		48 YZ		115	3.4	High	Sleeve	1	$55 / 8$	$1 / 2 \times 23 / 4$	$4 / 16$	-3M832	116.00	88.65	14.0
1/3	$\begin{aligned} & 1075 / 2-\mathrm{Spd} \\ & 1075 / 2-\mathrm{spd} \\ & 1075 / 2-\mathrm{Spd} \end{aligned}$	48 YZ	$\begin{aligned} & \text { CW/CCW } \\ & \text { CW/CCW } \\ & \text { CW/CCW } \end{aligned}$	115	4.6	Standard High Standard	Ball Sleeve Ball	$\begin{aligned} & \hline 3 \\ & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 5 / 8 \\ & 5^{5 / 3} \\ & 5^{5 / 8} \end{aligned}$	$\begin{aligned} & 1 / 2 \times 5 \\ & 1 / 2 \times 23 / 4 \\ & 1 / 2 \times 5 \end{aligned}$	$\begin{aligned} & 6 \\ & 4^{13 / 16} \\ & 5^{3 / 4} \\ & \hline \end{aligned}$	$\begin{array}{r} 3 M 971 \\ -3 M 838 \\ 3 M 901 \end{array}$	$\begin{aligned} & 159.00 \\ & 135.00 \\ & 161.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 121.55 \\ & 103.95 \\ & 123.05 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 15.0 \\ & 15.0 \end{aligned}$
		48 YZ		115	4.3										
		48 YZ		930	2.4										
	1075	48 YZ	CW	115	5.1	Standard	Ball	4	$55 / 8$	1/2×21/2	$61 / 8$	$3 \mathrm{M900}$	150.00	114.60	14.0
	1075	48 YZ	CW/CCW	115	4.2	High	Ball	1	55/8	$1 / 2 \times 33 / 1$	$4{ }^{15 / 16}$	-4M046	132.00	100.90	15.0
	1075	48 YZ	CW/CCW	115	4.9	High	Sleeve	1	$5^{5 / 8}$	$1 / 2 \times 33 / 4$	$4183 / 16$	-3M834	124.00	-94.75	15.0
	1075	48 YZ	CW/CCW	230	1.8	High	Sleeve	1	$\tilde{9}^{5 / 8}$	$1 / 2 \times 334$	413/10	-3M836	126.00	96.30	15.0

[^14]CAUTION: Not for fans in unaftended areas.
Refer to page 5 for UL507 Standard, proper thermal protection, and other motor selection information.

HEATING/COOLING MOTORS

UNIT HEATER BLOWER MOTORS AND HALO MOUNT OEM REPLACEMENT MOTORS

GE BRAND, PSC UNIT HEATER BLOWER MOTORS

Typical Uses: Unit heaters and other shaftmounted fan and blower equipment in dusty, dirty, noncombustible environments. Special Features: Operable on $60 / 50 \mathrm{~Hz}$.
Bearings: Prelubricated ball or sleeve Mounting:
(A) Resilient ring with holes

B Resilient ring with studs, capacitor and length adapter kit included
[C] Cradle base with studs. Capacitor, and mounting kit included. Mounting base holes are $17 / 8 \times 4^{13 / 16^{6}}$
Enclosure: TEAO
Service Factor: 1.0
Thermal Protection: Auto
Insulation Class: A
Body Diameter: $42 \mathrm{YZ}, 5^{n}$ dia. (GE 29 frame);
$48 \mathrm{YZ}, 55 / 8^{\text {n }}$ dia. (GE 39 frame)
Shaft' Dimensions: $42 \mathrm{YZ}, 3 / 8 \times 1 / 2^{1 / 2} ; 48 \mathrm{YZ}, 1 / 2$ X ${ }^{5}$ "
Ambient: $40^{\circ} \mathrm{C}$
Du'ty: Continuous air-over
Retation: CW/CCW
Finish: Gray
EFTand: GE

HP	Key	Nameplate RPM	NEMA Frame	Volts $60,50 \mathrm{~Hz}$	$\begin{gathered} \text { Full-Load } \\ \text { Almps at } \\ \text { Nameplate Volts } \end{gathered}$	Efficiency	Bearings	2 $1 / 2^{2}$ Dia. Resilient Rings OC	Length Less Shaft	GE Stock No.	Stock No.	List	Each	Shpg. Wt	Capacitor Req'd. Stock No. Each
3/15	B	1550	42 YZ	115	1.3	Standard	Sleeve	$4^{15 / 16^{\prime \prime}}$	55/8"	2925	$3 \mathrm{M691}$	\$183.00	\$113.40	9.2	Included Included Included Included
尔	B	1550	42YZ	208-230	0.7	Standard	Sleeve	$4^{15 / 16}$	55/3	2950	$4 \mathrm{M442}$	218.00	135.10	9.1	
	B	1050	42YZ	115	1.6	Standard	Sleeve	415/16	55/3	2926	3M690	210.00	130.10	8.3	
\%	B	1050	42YZ	208-230	0.7	Standard	Sleeve	$415 / 16$	55/8	2952	4M443	251.00	155.50	9.4	
- $1 / 12$	A	1550	42YZ	115	1.6	Standard	Sleeve	$67 / 16$	7	2927	4M444	223.00	138.15	9.8	6×653 \$4.49
	A	1550	42 YZ	208-230	0.7	Standard	Sleeve	$67 / 16$	7	2953	4 M 446	235.00	145.60	9.9	6×653 4.49
is	A	1050	42YZ	115	1.9	Standard	Sleeve	$67 / 16$	7	2928	4 M 445	247.00	153.00	9.5	6X653 : 4.49
- \%	A	1050	42YZ	208-230	0.7	Standard	Sleeve	$6{ }^{7} / 16$	7	2954	$4 \mathrm{M447}$	258.00	160.00	10.0	$6 \times 653 \quad 4.49$
6,1/6	C	1075	48 YZ	115	2.2	High	Ball	$4^{11 / 16}$	51/8	3206	-3m800	158.00	96.05	12.0	Included
N/4	C	1075	48YZ	${ }_{208}^{115}$	3.3 1.4	High High	Ball	$415 / 16$ $415 / 16$	$53 / 8$ $53 / 8$	3208	-3M801	171.00 173.00	$\begin{aligned} & 103.90 \\ & 105.15 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 15.0 \end{aligned}$	Included Included
\%	$\stackrel{C}{C}$	1075 1075	$\begin{aligned} & 48 \mathrm{YZ} \\ & 48 \mathrm{YZ} \end{aligned}$	$\begin{gathered} 115 \\ 208-230 \end{gathered}$	5.0 2.0	High High	Ball Ball	$515 / 16$ $5{ }^{5 / 16}$	$63 / 8$ $63 / 8$	3212	$\begin{array}{r} 3 \mathrm{M} 802 \\ -3 \mathrm{M} 803 \end{array}$	183.00 185.00	111.20 112.40	21.0 20.0	Included Included

A.O. SMITH BRAND, HALO MOUNT, PSC, DIRECT OEM REPLACEMENT MOTORS

Typical Uses: Original equip- Bearings: All-angle sleeve ment replacement motor Enclosure: TEAO for many Halo mount room air conditioner designs (See Original Equipment Motor Replacement Guide).

HP	Nameplate RPM	Volts* 60 Hz	Full-Load Amps at Nameplate Volts	$\begin{aligned} & \text { Ins. } \\ & \text { Class } \end{aligned}$	Shatt Dimensions Dia. $\times 1$	A.O. Smith	Stock No.	List	Less Cap Each	Sthg. Wt.	Cap Re Stock No.	Each ${ }_{\text {'d. }}$ +
$1 / 4$	$1330 / 2-\mathrm{Spd}$ $14503-\mathrm{spd}$	230 230	$\frac{1}{2} 9$	B	$1 / 2 \times 21 /{ }^{1 / 2}$	322 P 755	$4 / 1488$ 4	$\$ 126.00$ 139.00	595.50 105.35	9.9	6x653 6×654	\$4.49
1/3	$14503-\mathrm{spd}$	230	2.5	A	1/2×4/8	322 P 754	4 M 149	139.00	105.35	12.0	6X654	5.00

(*) Motors designed to operate on 208 V . (\dagger) No. 4 ML 48 requires a 7.5 MFD capacitor on 208 V.
\%. CRCINAL EQUIPMENT MOTOR REPLACEMENI GUIDE

No. 4M148	Mo. 4M149					
319P639	319P387	319 P 821	395 P 889	$395 \mathrm{P908}$	C274724	C275403
322 P 402	319 P 390	319 P 824	$395 \mathrm{P890}$	$395 \mathrm{P959}$	C274727	C277315
322P424	319P393	319P925	395 P 892	$395 \mathrm{P960}$	C274731	C279266
322P499	319P403	322 P 401	395 P 893	395P964	C274734	C279269
322P755	319 P 417	322P436	395P896	395P965	C974736	846A915G01
$395 \mathrm{P931}$	319P487	322P439	395 P 897	396 P 032	C274740	846A915G05
$395 \mathrm{P935}$	319P488	322 P 461	395 P898	396 P 036	C276387	846A915G08
C275399	319P490	322 P 468	$395 \mathrm{P9} 92$	396 P 043	C275388	846A915G18
	319P493	322 PT 54	396 P 904	396 P 046	C275390	
	319P497	395P887	$395 \mathrm{P9} 96$	396 P 047	C275393	
	319P700	39518888	$395 \mathrm{P9} 07$	396 P 048	C 275402	

EVAPORATIVE COOLER MOTORS

SPLIT-PHASE, MOISTURE-RESISTANT, SINGLE, 2, AND 3 SPEED

Typical Uses: Evaporative coolers, pumps, and other devices in high moisture environments.
Special Features: Moisture-resistant features include corro-sion-resistant rotor core, internally and externally painted shell, finished hardware, and nylon actuator bracket. Cradle base included.

Bearings: All-angle sleeve Mounting: Cradle base Enclosure: Open dripproof Ambient: $40^{\circ} \mathrm{C}$ Insulation Class: B
Thermal Protection: Auto
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: Dayton

$\begin{aligned} & 1725 \\ & \text { RPM } \end{aligned}$	$\begin{array}{ll} \hline \text { HP at } & \\ & 1140 \\ & \text { RPM } \end{array}$	Nameplate RPM	Volts 60 Hz	NEMA Frame	$\begin{gathered} \text { Full-Load } \\ \text { Amps at } \\ \text { Nameplate Volts } \end{gathered}$	Stock No.	List	Each	Shpy. Wit.
$1 / 3$	-	1725	115	562*	6.6	64298	\$118.00	\$71.35	17.0
5	1/6	1725/1140	115	56Z*	6.8/4.5	$6 K 066$	158.00	90.45	20.0
12	-	1725	115	56Z*	8.5	6K069	147.00	83.60	19.0
20	1/4	1725/1140	115	56Z*	9.2/6.0	6K203	202.00	104.45	22.0
\%	1/4	1725/1140/850 \dagger	115	562*	8.9/6.3/3.2	$6 K 737$	216.00	125.40	22.0
$3 / 4$ z_{0}	. $\overline{1 / 3}$	$1725 / 1140$	115 115	$\begin{aligned} & 56 \\ & 56 \end{aligned}$	111.9	$\begin{aligned} & 6 K 222 \\ & 6 K 214 \end{aligned}$	209.00 280.00	$\begin{aligned} & 112.90 \\ & 139.30 \end{aligned}$	21.0 27.0

$\}^{*}$) NENAA 568 frame motors have nonstandard 12^{*} dia. shaft with flat and are supplied with $5 / 8^{n}$ dia. shaft bushing.
(\dagger) $1 / \mathrm{EP} \mathrm{ZP}$ at 850 RPM .

SPLIT-PHASE AND CAPACITOR-START, SINGLE AND 2 SPEED

Typical Uses: Evaporative cooler fans and blowers. Use on other applications voids warranty.
Spectal Features: All copper windings. Corrosion-resistant internal parts. Thrubolts on endshields facilitate easy access for servicing internal components.
Bearings: All-angle sleeve, with oil ports
Enclosure: Open dripproof
Thermal Protection: Auto
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW facing shaft (except Nos.
3 K 307 and 3 K 308 are CW/CCW)
finish: Gray enamel
Brand: Dayton

(*) NEMA 56 Z frame motors have nonstandard $1 / 2^{2}$ dia shaft with flat.

HEATING/COOLING MOICRS

DIRECT OEM REPLACMENT MOTORS

Here, and on the next 11 pages, you will find OEM replacement motors listed alphabetically by OEM and then horsepower. All motors feature automatic thermal protection (except Nos. 4M246 and 4 M 247 are impedance protected). 230 V models operate on $208-230 \mathrm{~V}$. All are recognized by UL for construction: Dayton E47479 and GE E46035 under the Motor Component Recognition Program. CSA Certified. $40^{\circ} \mathrm{C}$ ambient. Gray finish.

	Abbreviation Glossary
TEAO	.Totally Enclosed Air-Over
OPAO	.Open Air-Over
CW	.Clockwise
CCW	. .Counterclockwise
VFLE	.View Facing Lead End
VFSE	.View Facing Shaft End

Brand	Page No.
Hill Refrigeration	88, 89
Hotpoint	82,83
Hussman	.88,89
Intertherm	.88,89
J. Zinc	
Jenn-Air	.88, 89
Kelvinator	83, 88, 89
Kramer-Trenton	.88,89
Lakewood	. 110
Lear-Siegler	
Lennox	.90,91
Martin	
Miami-Carey	. 110
Modine	. 82,83
Nesbitt	.61, 82, 83
Nutone	110,116
Patton	. 110
Penncrest	.82,83
Penn Ventilator	30, 91, 110
Philco	.82,83
Quiet Kool	.82, 83
Rheem Ruud	91, 92, 93
Roberts	
Singer	83, 84, 85
Snyder/Arco	. 92,93
Taco	$\ldots .77$
Teel	.76,77
Trane	83, 92, 93
US Radiator 61
Wayne Home	. 75
Westinghouse	
Whirlpool	
Wizard	- 8 82, 83
York	87, 92, 93

Key	OEM Motoi	Replaces	HP	Nameplate RPM	Volts	Hz	Full-Load Amps at Nameplata Volts
A	Acme Engineering	Fasco D119	I/11	1500/3-Spd	115	60	3.4
B	Addison, Rheem, Day \& Night	8101-193; 8101-279; F55BWM-1119; K55EBC-2608; F54CKY-1397; F55CDR-1259; F55CSH-1352; K55ERC-3004; 19906-01-02: 1847-01-05; 18471-01-05; and Emerson K8537	$1 / 5$	1075/2-Spd	230	60	1.4
c	AMC, Chrysler, Coldspot, Emerson, Gibson, Hotpoint, Kelvinator. Penncrest, Phitco, Quiet Kool. Wizard	Marathon X217: Fasco D855; S88-421; and Emerson RAK7024	1/3	1367/3-3pd	230	60	27
D	AMC, Chrysler, Coldspot. Emerson, Gibson, Hotpoint. Kelvinator, Peencrest, Philco, Quiet Kool, Wizard	Emerson Rak 7091	1/3	1300/4Spd	230	60	3.2
E	American Air Filter	GE 5KCP39KGB909T; 5KCP36KG317S; 5KCP36KG583S; 5KCP36KG246S; 5KCP38PG200S	1/8	700	115	60/50	3.0
F	American Standard	GE 5KCP39HG7728S; 5KCP39HG3692S	13	1075	230	60	3.3
6	American Standard, Bohn, Carrier, Durham Bush, Fedders, Nesbitt, Singer, Trane, York	Fasco D291; GE 2362; 5KCP29CK4534T; Universal 362	1/10	10754Spd	115	60	1.7
H	Amarican Standard, Duaham Bush, Fadders, Modine, Nesbitt, Singer. Trano, York	Fasco D293; GE 5KSP29BK26491; Universal 93	1/10	1050/5-Spd	115	60	3.4
H	American Standard, Duaham Bush. Fodders, Modine, Nesbitt, Singer, Trane, York	Fasco D289: GE KSP29BK2660S; 2089; Unversal 89	V10	1050/5-Spd	115	60	3.4

DIRECT OEM REPLACMENT MOTOR										HEATING/COOIING MOTORS				
Key Bearing	Mounting	Enc.	(${ }_{\text {dial }}^{\text {diat }}$			Rotation	Brand						
Ball	Sud	OPAO		48°	$12 \times$	${ }^{3}{ }^{3} 8^{\circ}$	CCWVF.	Daston	$4{ }^{4}$	S400	526			
sleve	Stad	teao	${ }_{487}$	${ }_{5}{ }^{3}$	122 ${ }^{1 / 4}$	${ }^{14 / 1 / 6}$	сw.rres	Daston	4 mos	11200	85.50	${ }^{13.0}$	5к003	
6 Sleeve		opao	18.2	3\%\%									5m03	
steve	Lug	OPAO	488	${ }_{5}$	$12 \times 2 \times$ ¢	3\%16	ccwver		змез	13.40	10240	14.0	5x003	
E Steve	Crade	OPAO	4882	${ }^{51 / 4}$	$12 \times 1{ }^{1 / 2}$	${ }^{614 / 20}$	ccwurse	${ }^{\text {GE }}$ (334)	4 ms3	${ }^{12200}$	${ }^{23.30}$	16.0		
Sleve	Crade	Prao	1887	${ }^{5 \%}$	12×3	5\%e	Wriss	$\operatorname{CE}(3)$	4 4m36	16200	98.45	15.0	inculued	
Sleve	crade	OPAO	${ }^{202}$	5	12x9\%1080 $10 / 2$	$484 / 2$	cr-me	GE (238)	4	178.00	9195	10.0		
sleve	crade	opao	${ }_{427}$	¢	38.	$43 / 2$	cwyme	Daton	4×03		59.65			
sleve														

HEATING/COOLING MOTORS

DIRECT OEM REPLACEMENT MOTORS

HEATING/COOLING MOTORS

DIRECT OEM REPLACEMENT MOTORS

Key	OEM Motor	Replaces	HP	Nameplate RPM	Volts	Hz	Full-Load Amps at Nameplate Volts
- A	Carrier	Camer HC4451230; GE 5KCP39PG190S; 5 KCP 39 PG 361 S ; Unversal 655; Fasco D804	12	$10 \% 5$	308-230	60/50	4.0
B	Carrier	GE 5KCP39NGP032S; 5KCP39NGJ515S	12	1075/4-Spd	115	60	7.7
C	Carrier	GE 5KCP39MGP041S; 5KCP39MGB284S	12	1075/3-Spd	$208-230$	60	2.9
D	Coleman, Friedrich. G\&S, Rheem, York	Emerson K8008	13	1075/2-Spd	330	60	3.2
E	Coleman, Friedrich, G\&S, Rheem, York	Emerson K8009	I/4	1075/2-Spd	330	60	2.0
F	Copeland	GE JKSP39FG4144S	U6	1580	230	60	2.6
G	Copeland	050-0238-00; K55BZY-1439, 5KCP39GG3537S: Emerson K6124	L4	15:0	330	60	2.1
H	Copeland	GE 5KCP39PG3224S; 5KCP39PG915S, 5KCP39PGC092S; Linversal 558	$1 / 3$	385	230	60	2.4
J	Copeland	GE 5KCP39KGB906T; 5KCP32KG175S, 3KCP32KG259S	L3	1625	30	$60 / 50$	3.2
K	Fedders	Fasco D1016; GE 2090; 5KCP29GK 5666 T ; Universal 515	$1 / 4$	1100	230	60	1.6
L	Fedders	S199-00011-001: S199-00011-002; K63TXMR1109: 5KCP45PG133T; Emerson K2328	$3 / 4$	107.5	208.30	60	4.0
M	First Company	GE 5KSP29HK1672S; 5KCP 29 FK 630 S	$1 / 5$	1550/3Spd	208-30	60	2.1
N	Friedrich	GE 3056, 5KCP39LGK010T: 5KCP39LGM01 1T, 5KCP39MGB109S: 5KCP39MG9679S; 5KCP39MG7145S; 5KCP39LGC720S, 5KCP39LGD804S. $5 \mathrm{KCP} 39 \mathrm{KGE992S} ; 5 \mathrm{KCP39MG9096T}$; Fasco D868; Unversal 118	1/3	$1075 / 5 \mathrm{spd}$	1.30	60	1.9

HEATING/COOLING MOTORS

DIRECT OEM REPLACEMENT MOTORS

			SPECIFATONS AND				
Key	OEM Motor	Replaces	HP	Nameplate RPM	Voits	Hz	Full-Load Amps at Nameplate Volts
A	Frigidaire	Emerson K4340; Fasco D891, GE 3 KCP39HG9762S; 5KCP39HGA85\%T	1/3	1420/3-Spd	330	60	3.0
B	GE	GE 5KSP $29 \mathrm{DK1728S}$, 5KSP99FK2458S; 5KSP29FK2763T, Liversal 492: 598	1/S	1550	280	60	1.9
C	GE	GE 5KCP39DGK013T, 5KCP39EG5967S	1/5	1075/3-Spd	265	60	1.3
D	GE	GE 5KCP39DGK014S; 5KCP39EG5130S	L/5	1075/4-Spd	$\cdots 30$	60	1.5
E	Gibson-Belding, Kelvinator	Fasco D852; Franklin 80431; GE $3 \mathrm{KCP} 39 \mathrm{DGK136T}, 3068$	U5	1075/3-5pd	230	60	1.3
F	Goodman	GE 5KCP39BGK335S	16	1075	208-330	60	1.0
6	Hill Refrigeration	GE 5KCP39KG1369S, Fasco D801; Linversal 160	L/3	1625	208-230	$60 / 50$	2.9
H	Hill Refrigeration	GE 5KCP39PGC030S; 5KCP39PGC910S; Hill PP19162G; AO. Smuth OHR1106	1	1075	208-230	60	7.1/6.4
J	Hussman	GE jKSP39DG4200S	U8	1550	330	60	2.1
K	Hussman	GE 5KSP39FG4771S; Fasco D807; Universal 17.	1/6	1550	208-230	60	2.5
4	Hussman	GE 5KCP39GG3611AS; Fasco D805; A.0. Smith OHIS1016	$1 / 5$	1075	330	60	1.7
M	Hussman	GE 5KCP39GG5606S	L/5	1075	208-330	60	1.7
N	Intertherm	Fasco D871; GE 5KCP:39PG502S; 5KCP39PG577T; 5KCP39PGH508T. Unversal 428	1	1625	330	60	6.4
P	Jenn Air	07704D	1/12	1450	115	60	3.1
0	Kramer Trenton	GE 5KCP $3 \mathrm{AKGC100T} ; 5 \mathrm{KCP} 35 \mathrm{KG144S} ; 5 \mathrm{KCP} 35 \mathrm{KC} 5$	1/4	1075	$115208-230$	$60 / 50$	3.41 .7

-	ING	TA	\cdots	2				"	2			x		$\alpha \cdots \hat{z}^{2}+\frac{x^{2}}{\alpha^{2}}$
Key	Bearings	Mounting	Encl.	NEMA Frame	Body Dia.	Shaft Dimensions Dia. \times Length	Length Less Shaft	Rotation	Brand	Stock No.	List	Each	Shpg. Wt.	Capacitor Required Stack No.
A	Sleere	Ring	OPAO	48 YZ	$5^{5} / /^{*}$	$12 \times 37 \% 82$	$5{ }^{1 / 167}$	CCW-VFLE	GE' (3593)	4 M 035	\$157.00	\$95.40	13.0	$6 \times 653 \quad \$ 4.49$
B	Sieeve	Band	OPAO	42 YZ	5	1/2×21/2	419/20	CW-VFSE	GE (2742)	4 M 013	84.00	52.05	8.0	None
C	Sleeve	Lug	OPAO	48YZ	35/3	$1 / 2 \times 2$ 2 $21 / 8$	$4^{11 / 16}$	CW-VFLE	GE (307i)	4M551	123.00	88.70	11.0	6×652
D	Sleeve	Lug	OPAO	48 YZ	3078	1/2x 2 \& $21 / 4$	$4^{11 / 16}$	CW-VFLE	GE (3078)	4M552	140.00	91.75	11.0	$6 \mathrm{X} 652 \quad 4.49$
E	Sleeve	Lug	OPAO	48YZ	5\%/4	$1 / 2 \times 4^{12 / 15} \mathrm{ea}$	$47 / 16$	CCW-vFLE	GE (3068)	4 M 029	157.00	95.40	13.0	fncluded
F	Sleeve	Stud	TEAO	48YZ	$55 / 8$	$12 \times 35 / 16$	43/16	CW-VFSE	GE (3216)	4 M 287	113.00	68.70	12.0	$6 \times 653 \quad 4.49$
G	Sleeve	Cradle	OPAO	48 YZ	55/8	$1 / 2 \times 31 / 2$	501/2	CCW-VFSE	GE (3001)	3M612	148.00	89.95	17.0	Included
H	Ball	Cradle	OPAO	48 YZ	55/8	$1 / 2 \times 31 / 4$	$6^{13 / 12}$	CW-VFSE	GE (3067)	$4 \mathrm{M012}$	250.00	152.00	21.0	6x658 $\quad 8.82$
J	Sleeve	Cradle	OPAO	48YZ	55/8	$1 / 2 \times 1 / 2$	419.12	CCW YFS	GE (3011)	4M554	141.00	85.70	13.0	None
K	Sleeve	Stud	OPAO	48YZ	55/9	$12 \times 1 / 2$	$t 29 . x$	CCW-VFSE	GE (3057)	4M039	139.00	84.50	13.0	None
1	Sleeve	Cradle	OPAO	48 YZ	55/8	$1 / 2 \times 21 / 2$	$4 \times 1 / 52$	CCW-VFSE	GE (3009)	3M684	151.00	91.75	13.0	Included
M	Sleeve	Stud	OPAO	48 YZ	55/8	$1 / 2 \times 21 / 2$	$t^{* / 3 / 2}$	CCW-VFSE	GE (3012)	4 M 555	154.00	93.60	12.0	Included
N	Ball	Cradle	OPAO	562	$63 / 8$	$1 / 2 \times 5891 / 8$	$6^{11 / 12}$	CW-VFLE	GE (3594)	440036	228.00	138.55	21.0	$6 \times 655 \quad 5.38$
P	Sleeve	Band	OPAO	二	43/8	$38 \times 11 / 2$	39/16	CCW-VFSE	Dayton	$4 \mathrm{M191}$	75.00	56.70	4.2	None
0	Ball	Cradle	OPAO	48YZ	55/8	1/2×2	$6^{101 / 12}$	CW-VFSE	GE (3128)	4 m 556	164.00	99.70	16.0	Included

HEATING/COOLING MOTORS

DIRECT OEM REPLACEMENT MOTORS

DIRECT OEM REPLACEMENT MOTORS

HEATING/COOLINC MOTORS

	Searings	Mounting	Encl.	nema Frame	Body Dia.	Shaft Dimensians Dia. x Length	Length Less Shaft	Rotation	Brand	Stock No.	List	Each	Shpg. Wit.		itor red Each
A	Sleeve	Band	TEAO	48 YZ	$55 / 8^{\text {c }}$	$1 / 2 \times 5{ }^{*}$	$4{ }^{\prime \prime}$	CW-VFSE	GE (3215)	4\%1557	\$101.00	\$61.40	9.7	6X653	\$4.49
B	Sleeve	Ring	OPAO	48 YZ	5\%/8	$1 / 2 \times 3$	$4^{7 / 8}$	CW-VFSE	Dayton	3*926	110.00	84.05	11.0	5M002	4.25
${ }^{*}$	Sieeve	Ring	OPAO	48YZ	$5^{5 / 8}$	1/2 $\times 3$	$6^{29 / 32}$	CW-vFSE	GE (3050)	3M613	147.00	89.30	18.0	6X652	4.49
0	Sleeve	Lug,	TEAO	48 YZ	53/3	$1 / 2 \times 33 / 4$	49/16	CW-VFSE	Dayton	3M923	133.00	101.65	15.0	5M003	4.25
E	Ball	Ring	OPAO	48 YZ	53/8	$1 / 2 \times 3$	$6^{29} / 3$	CW-VFSE	GE (3591)	4M030	190.00	115.45	16.0	6x652	4.49
F	Sleeve	Ring	OPAO	48 YZ	$5^{5 / 8}$	$1 / 2 \times 31 / 2$	$5^{13 / 2}$ 2	CW-VFSE	GE (3087)	4M010	154.00	93.60	13.0	6x653	4.49
F	Sleeve	Ping	OPAO	48 YZ	$53 / 3$	$1 / 2 \times 21 / 2$	$53 / 32$	CW-VFSE	GE (3082)	4N169	151.00	91.80	9.5	6x653	4.49
G	Sleeve	Lug	TEAO	48YZ	3/4	$1 / 2 \times 31 / 4$	53/22	CW-VFSE	GE (3592)	4M1033	13500	82.05	13.0	6X653	4.49
H	Sleeve	Stud	OPAO	42 YZ	;	$3 / 8 \times 1 / 2$	$31 / 4$	CW-VFSE	Dayton	4M246	67.00	50.70	4.5	Non	
H	Sleeve	Stud	OPAO	42 YZ	5	$3 / 8 \times 1^{1 / 16}$	$31 / 4$	CW-VFSE	Dayton	4M247	72.00	54.45	4.5	No	
J	Sleere	Stud	OPAO	48 Y	3\%	12×4	41/10	CW-VFSE	Dayton	418150	120.00	76.40	11.0	5M003	4.25
K	Sleeve	Stud	TEAO	48YZ	57/8	$1 / 2 \times 33 / 1$	$4^{3 / 16}$	CW-VFSE	GE (3155)	4M4560	126.00	76.55	12.0	6x653	4.49
L	Sleeve	1/4' ${ }^{\text {n }}$ studs \& holes	TEAO	48YZ	50/8	1/2 $\times 33 / 16$	43/16	CW-VFSE	GE (3222)	4M284	96.00	58.35	12.0	6×651	4.49
M	Sleeve	Stud	OPAO	48 YZ	53/8	$1 / 2 \times{ }^{1 / 1 / 6}$	$39 / 10$	CW-VFSE	Dayton	4M109	100.00	76.45	9.2	5 M 001	4.25
N	Sleese	Stud	OPAO	48 YZ	$5^{5 / 3}$	$1 / 2 \times 3 / 1$	41/10	CW-VFSE	Dayton	4M110	105.00	80.25	10.0	5M001	4.25
P	Sleeve	$1 / 4{ }^{\text {n }}$ studs \& holes	TEAO	48 YZ	5 ${ }^{3} / 8$	$1 / 2 \times 4$	43/16	CW-VFSE	GE (3220)	4M285	126.00	76.55	12.0	6X651	4.49
0	Sleeve	Stud	TEAO	48 YZ	53/3	1/2x $31 / 1$	$43 / 16$	CW-VFSE	GE (3153)	4M558	127.00	77.20	9.6	6X651	4.49
R	Sleeve	Stud	OPAO	48Y	5\%8	$1 / 2 \times 3$	45/16	CW-vFSE	Dayton	4M151	110.00	83.95	13.0	5M003	4.25
s	Sleeve	$1 / 44^{n}$ studs \& holes	TEAO	48 YZ	5\%/3	$1 / 2 \times 4$	41/2	CW-vFSE	GE (3221)	4M286	141.00	85.70	11.0	6×653	4.49
T	Steeve	Stud	TEAO	48YZ	53/8	$1 / 2 \times 24$	$4^{11 / 16}$	CW-VFSE	Dayton	$4 \mathrm{M111}$	135.00	86.05	13.0	iM013	4.25

HEATING/COOLING MOTORS

DIRECT OEM REPLACEMENT MOTORS

Key	DEM Motor	Replaces	HP	Nameplate RPM	Voits	Hz	Full-Laad Amps at Nampalate Vofts
A	Rheem/Ruud	GE 5KCP39FGN329T; 5KCP39FGK786S; 5 KCP 39 GGE879S; A.O Smuth ORM1036; Rheem 21185-11; 21185-01: Unversal 44	13	1075	208-230	60	1.8
B	Sears/Whisipoel	GE 5KCP39GGBI58T; 5KCP39GGA332S	13	1075/3-Spd	208-230	$60 / 50$	1.9
C	Snyder/Arco	GE 5KCP39DGP089S; 5KCP39DGK093S	$1 / 10$	825	208-230	60	0.7
D	Trane/GE	GE 5KCP29BK4074S; 5KCP29CK4629S: 3 KSP 29 DK 1728 S : 5KSP29FK2458AS; Trane 21A131098P01: 21A135055P01; 21A120676P01; 21A135217P01; GE WW94X236; WW94X381: Fasco D1050	16	1650	$200-230$	60	0.9
E	Westinghouse	GE 5KCP39GGB907T; 5KCP32GG167S; 5KCP32GG210S; 5 KCP 32 GG 258 S	$1 / 3$	1625	208-240/220	$60 / 50$	$\underline{-5}$
F	Whiripool	997346; K55RGM-7901; Emerson RAK8558	1/3	1075/3-Spd	230	60	19
G	York	GE 5KCP39BGP931S	1/8	1075	208-230	$60 / 50$	0.3
H	York (Borg Warner)	Emerson F47HXBGM927; K1124; Fasco D1042; GE 5KCP99 3K4685T	1/5	1075	230	60	14
J	York \{Borg Warner)	Emerson F47HXBGM927; K1124; Fasco D1042; GE 5KCP90GK4685T	15	1075	208-230	$60 / 50$	1.3
G	York	GE 5KCP39,FP984S	14	850	208-230	60/50	1.6
K	York	GE 5KCP39NGP941S	12	1110	115	60	8.3
6	York	GE 5KCP39LGN418S; Marathon W48A11T388	$1 / 2$	1090	208-230	60	23
K	York	GE 5KCP39PGN812S; A.O. Smath F48SL6V15	1	1075	115	60	13.0

ORDERINGDATA ${ }^{2}$,

Key	Bearings	Mounting	Encl.	NEMA Frame	Body Dia.	$\begin{aligned} & \text { Shaft } \\ & \text { Dimensions } \\ & \text { Dia. } \mathrm{x} \text { Length } \end{aligned}$	Length Less Shaft	Rotation	Brand	Stock No.	List	Each	Stipg. Wt.		tor d Each
A	Sleeve	Stud	TEAO	48 YZ	$55 / 8^{n}$	$1 / 2 \times 39 /{ }^{10}$	41/2"	CW-VFSE	GE (3154)	4M559	\$101.00	561.40	12.0	6X653	\$4.49
B	Sleeve	Stud	OPAO	48 YZ	53/3	$1 / 2 \times 43 / 185{ }_{16}$	43/12	CCW-VFLE	GE (3070)	3M487	157.00	95.40	13.0	6X653	4.49
C	Sleeve	Stud	TEAO	48 YZ	55/4	$1 / 2 \times 3$	$3^{14 / 32}$	CW-VFSE	GE (3219)	4M562	119.00	72.35	9.7	6X653	4.49
D	Sleeve	Band	TEAO	+2YZ	5	$1 / 2 \times 1 / 1$	$43 / 2$	CW-VFSE	GE	4M168	120.00	74.30	8.0	6X652	4.49
E	Sleeve	Cradle	OPAO	48 YZ	51/4	L®×6\&65/8	6×29	CCW-VFLE	GE (3129)	4M563	16.00	101.50	16.0	[ncluded	
F	Sleeve	Stud	TEAO	48 YZ	-3/4	$12 \times 4 / 16833 / 4$	51/16	CCW-VFL 3	Dayton	4M005	134.00	97.35	15.0	5M003	4.25
G	Sleeve	Stud	TEAO	48 Y	5\%	$1 / 2 \times 1 / 16$	$41 / 16$	CW-VFSE	Dayton	10210	12700	101.05	9.0	$3 \mathrm{M002}$	4.25
H	Sleeve	Band	OPAO	42YZ	5	$1 / 2 \times 5^{5 / 16}$ ea	$429 / \mathrm{ce}$	CW-VFLE	GE (2091)	4M027	135.00	83.60	11.0	6X653	4.49
J	Sleeve	Band	OPAO	42 YZ	3	$1 / 2 \times 5 / \times$ ea	51/9	CW-VFLE	Dayton	4M152	102.00	85.20	14.0	5M003	4.25
6	Sleeve	Stud	TEAO	48 Y	3\%/8	$1 / 2 \times 3 / 1$	413/16	CCW.VFSE	Dayton	10211	131.00	104.20	13.0	5M003	4.35
K	Sleeve	Band	OPAO	48 Y	5/4	$1 / 2 \times 41 / 2$	$413 / 16$	CW-VFSE	Dayton	10208	15200	120.90	15.0	3M006	6.41
G	Sleeve	Stud	TEAO	48 Y	$3^{1 / 4}$	$1 / 3 \times 31 / 2$	41.316	CCW-VFSE	Dayton	10209	138.00	109.80	15.0	5 M 005	5.36
K	Sleeve	Band	OPAO	48 Y		$1 / 2 \times 314$	$61 / 6$	CW-VFSE	Dayton	10207	173.00	137.60	21.0	5M008	9.45

FAN/BLOWER MOTORS

3-PHASE COMMERCIAL ROOFTOP BELT-DRIVE FAN AND BLOWER MOTORS

3-PHASE OPEN DRIPPROOF, RIGID WELDED BASE

CONTRACTOR FRIENDL ${ }^{\text {ºw }}$ FEATURES

- Three posts replace line leads for quick and easy wiring
- Quick voltage change plugs change voltage without major reconnection
- Copper windings

Typical Uses: New and replacement use in 5 to 15 ton and larger commercial outdoor condensers.
Special Features: Quick voltage changing plug for ease of installation. Dual voltage. Water slinger on shaft.
Bearings: Double-sealed, permanent lubricated ball
Mounting: Rigid welded base Enclosure: Open dripproof Thermal Protection: Auto Insulation Class: B Ambient: $40^{\circ} \mathrm{C}^{\circ}$. Dint: Continuous Rotation: CW/CCW Finish: Gray
Brond: Dayton

$\begin{aligned} & 10 \\ & H P \end{aligned}$	Nameplate RPM	NEMA Frame	Volts 60 Hz	$\begin{gathered} \text { Fulh-Load } \\ \text { Amps at } \\ \text { Namoplate Volts } \end{gathered}$	Service Factor	Langth Less Shaft	Shaft Dimensions Dia. x Length	Stock No.	List	Each	Shpg. Wt
S	1725	56	208-230/460	3.4/1.7	1.0	$10^{\prime \prime}$	$5 / 8 \times 1 / 3^{\prime \prime}$	3N813	\$275.00	\$205.00	24.0
11/2	1725	66H	208-230/460	5.0/2.5	1.0	101/2	$5 / 8 \times 11 / 8$	3N814	297.00	221.25	27.0
\%	1725	56H	208-230/460	6.6/3.3	1.0	103/4	$5 / 8 \times 17 / 8$	3N815	327.00	243.25	29.0
-3	1725	143T	208-230/460	8.8/4.4	1.0	$11^{1 / 4}$	$7 / 8 \times 21 / 4$	3N816	366.00	272.50	45.0

3-PHASE OPEN DRIPPROOF, CRADLE BASE

NEMA service factors up to 1.35 provide a reserve margin for intermiftent overloading or fluctuating (high/low) yoltage conditions
EOperable on $60 / 50 \mathrm{~Hz}$ at same HP tating and service factor
NEMA design B
Typical Uses: Pumps, fans, blowers, machine tools, air compressors, and other moderate to hard-starting applications where 3 -phase power is available.
Bearings: Double-shielded ball
Mounting: Cradle base
Enclosure: Open dripproof
Windings: Copper
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: Dayton

HP	Nameplate 60 Hz	RPM at 50 Hz	NEMA Frame	Thermal Protection	$\begin{aligned} & \text { Volts } \\ & 60 / 50 \mathrm{~Hz}^{*} \end{aligned}$	Full-Load Amps at Nameplate Voks	Senvine Factor	NEMA Nominal Efficiency	las. Class	Stock No.	List	Each	Shpg. Wt.
1/3	1725	1425	56	None	208-220/440	1.4-1.4/0.7	1.35	660	A	3NO26	\$168.00	\$128.45	18.0
1/2	3450	2850	56	Auto	208-220/440	2.2-2.4/1.2	1.25	860	A	3N634	166.00	126.85	20.0
$1 / 2$	1725	1425	56	None	208-220/440	2.0-2.01.0	1.55	≥ 0	A	3N027	193.00	147.55	29.0
314	3450	2850	56	Auto	208-220/440	$2.8-3.011 .5$	1.25	$\bigcirc 0$	4	3N635	193.00	147.50	21.0
3/4	1725	1425	56	None	208-220/440	2.8-2.711.4	1.25	$\div 0$	A	3N487	203.00	155.25	23.0
1	3450	2850	56	Auto	208-220/440	3.5-3.6/1.8	1.25	7.0	A	3N636	221.00	169.00	23.0
1	1725	1425	56	None	208-220/440	3.4-3.4/1.7	1.25	78	A	3N488	231.00	176.75	26.0
11/2	3450	2850	56	Auto	208-220/440	4.4-4.2¢.1	1.15	-8.5	$\stackrel{\text { A }}{ }$	3N637	263.00	201.25	28.0
$1^{1 / 2}$	1725	1425	56	None	208-320/440	4.94 .882 .4	$1: 20$	31.5	A		273.00	208.75	33.0
2	3450	2850	56	Auto	208-220/440	$5.8-5.62 .8$	1.15	S1. 5	B	3N638	304.00	232.50	31.0

[^15]
3-PHASE BELT-DRIVE FAN AND BLOWER MOTORS

Typical Uses: Designed for commercial and industrial fans, air handlers, exhaust fans, blowers, and other air-moving applications.
Special Features: Cast aluminum endshields. Bearings: Ball
Thermal Protection: None
Insulation Class: B (except No. 4 N 049 is Class A)
Ambient: $40^{\circ} \mathrm{C}$ (except No. 4 N 011 is $65^{\circ} \mathrm{C}$)
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: GE

	Nameplate - RPM	NEMA Frame	Enclosure	Volts 60 Hz	Full-Load Amps At Nameplate Volts	Service Factor	Mounting		Stock No.	List	Each	Shpg. Wt.
-174	1725	48Z*	Op Dpf	230/460	1.410 .7	1.35	Cradle/Stud	K275	$4 N 025$	\$166.00	\$115.15	14.0
- 12	1725	56	Op Dpf	203-230/460	2.1-2.2/1.1	1.25	Cradle/Stud	K381	4N026	216.00	149.80	19.0
314	1725	56	Op Dpf	$230 / 460$	2.81 .4	1.25	Cradle/Stud	K277	$4 \mathrm{NO28}$	241.00	167.25	21.0
1	1725	56	Op Dpf	208-230/460 ${ }^{-}$	3.43.2/1.6	1.15	Cradlestud	K278	4N029	253.00	175.75	24.0
	Namepiata RPM	NEMA Frame	Enclosure	Volts 60 Hz	Full-Load Amps At Nameplate Voits	Service Factor	Mounting		Stock No.	List	Each	Shpg. Wt
1/2, $1 / 6$	$1725 / 1140$ $1725 / 1140$	56 56	Op Dipf Op Dpf	$200-230$ 460	2.4/1.6	1.25 1.25	Cradle/Stud	K544	$4 N 047$ $4 N 049$	$\$ 346.00$ 346.00	$\$ 240.25$ 240.25	26.0 25.0
$3 / 4 ; 1 / 4$	$1725 / 1140$ $1725 / 1140$	66 56	Op Dpf Op Dpf	$200-230$ 460	$3.0 / 1.9$ $1.3 / 0.9$	1.25	Cradle/Stud	$K 279$ $K 280$	$4 N 050$ $4 N 052$	411.00 411.00	$\begin{aligned} & 285.25 \\ & 285.25 \end{aligned}$	32.0 33.0
1 1/8	$1725 / 1140$ $1725 / 1140$	56	Op Dpf Op Dpf	$\begin{gathered} 200-230 \\ 460 \end{gathered}$	$3.9 / 2.3$ $1.8 / 1.3$	1.15 1.15	Cradle/Stud	K 518 K 519	4N053	427.00 427.00	296.25 296.25	37.0 38.0
$11 / \chi^{2}=1 / 2$	$1725 / 1140$ $1725 / 1140$	$\begin{aligned} & 56 \mathrm{H} \\ & 56 \mathrm{H} \end{aligned}$	Op Dpf Op Dpf	$200-230$ 460	5.3/3.0	1.15 1.15	Cradle/Stud	K 520 K 549	$4 N 056$ $4 N 058$	454.00 454.00	315.00 $3 \mathbf{1 5 . 0 0}$	48.0 47.0
	Namplato RPM	NEMA Framb	Enclosare	Volts 60Hz	Full-Load Amps At Nameplate Volts	Service Factor	Mounting $\begin{gathered}\text { GE } \\ \text { Stock } \\ \text { No. }\end{gathered}$		Stock No.	List	Each	Shpg. WL
1/4	1725	48	TEFC	230/460	1.4/0.7	1.0	Cradle/Stud	K538	4N001	\$214.00	\$148.45	16.0
	1725	48	TEAO	230/460	$1.4 / 0.7$	1.0	CradledStud	K281	$4 \mathrm{N003}$	175.00	121.35	14.0
	1140	56	TEAO	230/460	1.4/0.7	1.0	Cradle/Stud	K282	4N004	279.00	193.75	18.0
1/3	1725	48	TEAO	230/460	1.510 .8	1.0	Cradle/Stud	K283	4N005	197.00	136.70	15.0
1/2	1140	56	-TEFC	230/460	2.6.1.3	1.0	Cradle/Stud	K541	4N002	354.00	245.75	28.0
	1725	56	TEAO	$230 / 460$	2.2/1.1	1.0	Cradle/Stud	K284	$4 \mathrm{N006}$	229.00	159.00	18.0
	1140	56	TEAO	230/460	$2.6 / 1.3$	1.0	Cradle/Stud	K285	4N007	328.00	227.75	26.0
$3 / 4$12	1725	56	TEAO	230/460	$2.8 / 1.4$	1.0	Crade/Stud	K286	4N009	275.00	190.75	21.0
	1725	56	TEAO	230/460	3.811.9	1.0	Cradle/Stud	K525	4N010	258.00	179.00	27.0
	1725	145T	TEAO	208-230/460	6.5-6.6/3.3	1.0	Rigid	K1396	4NO11 ${ }^{+}$	413.00	286.75	33.0

${ }^{*}$) Nonstandard $1 / s^{\prime \prime}$ shatt (\dagger) Designed for $65^{\circ} \mathrm{C}$ ambient, 30° leads out $3 / 4-14$ condut adapter welded to shell at 3 o $^{\prime}$ clock postion. Condut box furninshed with motor.
CAUTION: Nof for fons in unattended areas.
Referto page 5 for UL507 Standard, proper thermal protection, and other motor selection information.
MANY BRANDS OF HEATING/AIR CONDITIONING AVAILABLE

FAN/BLOWER MOTORS

BELT-DRIVE FAN AND BLOWER MOTORS

CAPACITOR-START, OPEN DRIPPROOF, SINGLE AND 2 SPEED

- High starting torque
- Quick connect teriminals
- Electrically reversible
- Copper windings
- Tri-voltage models-operate on all three volitage systems without derating
Typical Uses: Furnace blowers, attic exhaust fans, industrial blowers, and other similar belt-drive applications where smooth, quiet starting and running characteristics are desired.

Special Features: Single speed motors meet NEMA performance requirements at $115 / 208-230 \mathrm{~V}, 60 \mathrm{~Hz}$ and are capable of operating on a 208 V system.
Two speed models are specifically designed for diminishing torque, air-moving applications, such as belted or directdrive fans and blowers.
Mounting: Cradle base
Thermal Protection: Auto
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray enamel
Brand: Dayton

Ye4w												
HP	$\underset{\substack{\text { Nameplate } \\ \text { RPM }}}{ }$	NEMA			Full-Load Amps at Nameplate Yolts	Service Factor	Bearings	Insulation Class	Stock No.	List	Each	$\begin{aligned} & \text { Shpg. } \\ & \text { Wt. } \end{aligned}$
1/2	345	48	$115 /$		8.644 .3	1.25	Sleeve	A	688	\$152.00	\$93.55	17.0
	3450	48			9.24 .6	1.25	Sleeve	A	55900	198.00	125.05	21.0
	3450					1.25	Sleev	A		230.0	147.50	
$\pm \frac{1}{11 / 2}$	1725 3450	56	115		14.0/8.5	1.15	Sleev	${ }^{\text {A }}$	$6 \mathrm{6K830}$	312.00 318.00	208.50	30.0 33.0
$\begin{gathered} \mathrm{T}_{\mathrm{RPM}}^{1725^{1}} \\ \hline \end{gathered}$	${ }_{00 M}^{1140}$	$\begin{gathered} \text { Nameplate } \\ \text { RPM } \end{gathered}$	$\underset{\text { NEMA }}{\text { Nrame }}$	$\begin{aligned} & \text { Votss } \\ & \text { Co } \end{aligned}$	$\begin{gathered} \text { Full-Livad } \\ \text { Ampsat } \\ \text { Nameplate Volts } \end{gathered}$	Service Factor	Bearings	losuliation Class	$\begin{gathered} \text { Stock } \\ \text { No. } \end{gathered}$	List	Each	$\begin{aligned} & \text { Stpg. } \\ & \text { Wht } \end{aligned}$
t	$1 / 4$	$1725 / 140$	${ }_{56}^{56}$	5		10	leev		(5	\$216.00	\$155.00	${ }^{26.0}$
$3 / 4$ $3 / 4$	1/3	$1725 / 1140$ $1725 / 1140$	56 56	15	11.77.5 5.93 .8	1.0 1.0	Sleev	${ }_{8}$	6K050	350.00 358.00	243.50 249.00	30.0 27.0
	1/3	17251140	56	230	7.23 .5	1.0	Sleeve	B	$6 \mathrm{K054}$	398.00	296.50	${ }_{33.0}$
CAUTION N Not for tans in Unatended areas. 												

HIGH EFFICIENCY SPLIT-PHASE START/CAPACITOR-RUN, OPEN DRIPPROOF, SINGLE SPEED

Iypical Uses: High efficiency performance in furnace blowers, and other belt-driven fan and blower applications. All models have the starting torque of split-phase motors but use less electricity when running because they are capacitor-run.
Special Features: Studs extend out shaft endshield for mounting to fan guard. Capacitor included.

Bearings: All-ängle sleeve
Mounting: Cradle base
Thermal Protection: Auto
insulation Class: A
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray enamel
Brand: Dayton

4 P	Nameplate RPM	NEMA Frame	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	Stock No.	List	Each	Stipg. W.
1/4	1725	48Y*	115	3.2	1.35	-6K870	\$132.00	\$91.45	16.0
$1 / 3$	1725	48Y*	115	4.1	1.35	-6K871	150.00	103.65	19.0
1/2	1725	56Z \dagger	115	5.2	1.25	-6K872	202.00	139.60	25.0
$3 / 4$	1725	56	115	9.0	1.25	-6K857	256.00	177.25	25.0

(*) NEMA 48 Y frame motors have cradie base with holes and slots to match mounting dimensions of f; th 3 r NEMA 48 or 56 frame.
(\dagger) NEMA 56 Z frame motor has nonstandard $1 / 2^{2}$ dia shaft with flat and is supplied with $5 / 8^{\prime}$ diá siáft bushing.

ESTIMATED YEARLY POWER COST SAVINGS	HP	Average Expected Watts Saved	Typical \ddagger Hrs. Usage per Year	$\begin{aligned} & \text { at } 5 c \\ & \text { per Kwh } \end{aligned}$	$\begin{gathered} \text { SAVH } \\ \text { at \&e } \\ \text { per Kwh } \end{gathered}$	YEAR at 10c per Kwh	$\begin{gathered} \text { at } 12 c \\ \text { per KwH } \end{gathered}$
FOR HEATING/COOLING	. 1/4	60	2400	\$8.64	\$11.52	\$14.40	\$17.28
	1/3	86	2400	12.38	16.51	20.64	24.77
Dayton Wattrimmer	$1 / 2$	82	2400	11.81	15.74	19.68	23.62
Compared to Standard	$3 / 4$	88	2400	12.67	16.90	21.12	25.34

[^16]
BELT-DRIVE FAN AND BLOWER MOTORS

FAN/BLOWER MOTORS

Typical Uses: Belt-drive furnace blowers, exhaust fans, circulating fans, and other similar belt-driven applications where a motor with smooth, quiet starting and running characteristics is desired.
Special Features: Single speed motors meet NEMA performance requirements at $115 / 208-230 \mathrm{~V}, 60 \mathrm{~Hz}$ and are capable of operating on a 208 V system. Serv-S-Line ${ }^{\text {e }}$ models have studs that extend out shaft endshield for mounting fan guard.
Two speed models are specifically designed for diminishing torque, air-moving applications, such as belted or directdrive fans and blowers.
Type: Capacitor-start
Bearings: Prelubricated bail
Enclosure: Open dripproof
Thermal Protection: Auto
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty C_{C} Eontinuous

Rotation: CW/CCW

Finishig Gray
Brand=GE

(*) Usable on 200 V at 1.0 service factor. (\dagger) Capacitor-start, capacitor-run.

Refer to proge 5 for ULS07 Standard, proper thermal proteitidn, and other motor selection information.

MANY BRANDS OF HEATING EQUIPMENT AVAILABLE

RIVAL:
ARVINAIR
Dayton

COMMERCIAL AND RESIDENTIAL BELT-DRIVE FAN AND BLOWER MOTOR'S

- Heavy 12 gauge steel base - Quick connect terminal board

Typical Uses: Fans, blowers, air circulators, and air coolers where a quiet running single or two speed motor is required.
Special features: NEMA service factors of 1.25 to 1.4 are needed when intermittent overloading or fluctuating (high/low) voltage conditions may occur.
NEMA 42 frame is supplied with a relay and relay mounting clip instead of centrifugal switch.
NEMA 48Y frame cradles are notched for mounting in place of 48 or 56 frame cradle.
NEMA 56 Z frame motors feature $1 / 2 \times 1 / 2^{\prime \prime}$ shaft with flat and are supplied with a $5 / 8^{\prime \prime}$ diameter shaft bushing.
Two speed models are specifically designed for diminishing torque, air-moving applications, such as belted or directdrive fans and blowers.

Commercial Duty Motors: Feature higher starting torque than residential duty motors. Cooler running temperature ensures longer life performances.
Mounting: Cradle base
Thermal Protection: Auto
Shaft Diameters: NEMA 42, $3 / 8^{\prime \prime}$; NEMA 48 , $1 / 2^{\prime \prime}$, NEMA 56, $5 / 8^{\prime \prime}$
Ambient; $40^{\circ} \mathrm{C}$.
Duty: Continuous
Rotation: CW/CCW
Finish: Gray except Nos. 3K771, 6K778, and 3 K 772 , which are black
Brand: Dayton

HP	$\begin{gathered} \text { Hame. } \\ \begin{array}{c} \text { plafe } \\ \text { RPM } \end{array} \end{gathered}$	NEMA	Voits $60 \mathrm{~Hz}$	Full-Load Nameplate Volts	Service Factor	Bearings	$\begin{gathered} \text { Class. } \end{gathered}$	Shaft Dimensions Dia. \times Length	Stock No.	List	Each	Sthp. wh
Y	Way		8	SPITEP	OP	DRPPR	${ }^{+1}$	ERCALD	\cdots			
1/12	1725	42	115	2.9	1.4	Sleeve	B	$3 / 8 \times 118^{8}$	4K133	\$114.00	\$79.00	8.8
$\begin{aligned} & 1 / 6 \\ & =4 \\ & \hline \end{aligned}$	1725 1725	$\begin{aligned} & 48 \\ & 48 \mathrm{Y} \\ & 48 \end{aligned}$	$\begin{gathered} 115 \\ 115.230 \end{gathered}$	$\begin{gathered} 3.5 \\ 3.3 \\ 3.6 / 1.8 \end{gathered}$	$\begin{aligned} & 1.155 \\ & 1.36 \\ & 1.35 \end{aligned}$	Sleeve Sleeve Ball	\ldots	$\begin{aligned} & 1 / 2 \times 11 / 2 \\ & 1 / 2 \times 11 / 2 \\ & 1 / 2 \times 11 / 2 \end{aligned}$	$\begin{aligned} & 6 K 551 \\ & 5 K 906 \end{aligned}$	$\begin{aligned} & 104.00 \\ & 104.00 \\ & 100 \end{aligned}$	$\begin{aligned} & 75.20 \\ & 71.90 \\ & 86.75 \end{aligned}$	13.013.015.0
	1725											
$\%^{1 / 4}$	1725	${ }_{48}^{48}$	115		${ }_{1.0}^{1.35}$	Sleeve	B	$1 / 2 \times 1 / 2$	6K553	112.00	81.00	15.0
			${ }^{1151230} 115$				B	$1 / 2 \times 1 / 2$	$3 \mathrm{KG14}$	108.00128.00	92.50	15.0
	1725 1725	48		$\begin{array}{r} 4.0 .4 \\ 4.4 \\ \hline 5.3 \end{array}$	1.351.351.0	Sleeve						
	1725	${ }_{489}^{48 Y}$					${ }_{\text {A }}^{\text {A }}$	$1 / 2 \times 11 / 2$	5K908	108.00	74.35	13.0
\%	1725	$\begin{aligned} & 48 \mathrm{Y} \\ & 56 \mathrm{Z} \\ & 562 \\ & 562 \end{aligned}$	115/208-230		1.35	Sleeve	B	$1 / 2 \times 1 / 2$	3K091 \dagger	${ }^{120.00}$	$\begin{aligned} & 82.95 \\ & 89.65 \end{aligned}$	15.0 15.0
	1725		115	$\begin{aligned} & 5.4 \\ & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.05 \\ & 1.0 \end{aligned}$	Sleeve Sleeve	A	$1 / 2 \times 11 / 2 / 2$	$\begin{aligned} & 6 K 722 \\ & 5 K 977^{\dagger} \end{aligned}$	${ }_{11200}$		
	1725		115							108.00		15.0
	1725						A	5/8×11/2	5K260	112.00	78.45	16.0
	1725	484848484848 Y	115	6.8	${ }_{1}^{1.0}$	Ball	A	$12 \times 1 / 2$	6K744	124.0013000		
	1725		115	6.0		SleeveSleeve		$1 / 2 \times 11 / 2$			94.05	
	1725			6.8	1.0		A		$6 K 570$ $5 K 918$	${ }^{130.00}$	85.25	16.0 160
	1725			6.3	1.0	Sleeve	B	$1 / 2 \times 1 / 2$	3K384\#	118.00	81.55	14.0
	1725		115230 115	${ }^{6.03 .0}$	1.35 1.35	Ball Sleeve	B	$1 / 2 \times 11 / 2$	3K615 5K682	146.00 130.00	105.55 89.80	17.0 160
	1725	48 Y	115	6.3	1.0	Sleeve	A	$1 / 2 \times 1 / 2$	5K909	118.00	81.60	13.0
	1725	${ }^{48 \mathrm{Y}}$	230	${ }^{2.8}$	${ }^{1.35}$	Sleeve	${ }_{\text {A }}$	$1 / 2 \times 11 / 2$	$6 K 717$	138.00	95.35	17.0
	1725	48 Y	115/208-230	6.633.3	1.35	Sleeve	B	$12 \times 11 / 2$	4K252 \dagger	138.00	95.35	19.0
	1725	${ }_{567}$	115	6.0	1.0	Ball	A	$1 / 2 \times 11 / 2$	$5 K 413$	124.00	97.25	18.0
	1725	56 Z	115	5.8	1.35	Sleeve	A	$1 / 2 \times 11 / 2$	$6 \mathrm{K030}$	${ }^{130.00}$	92.00	17.0
	1725	${ }_{568} 56$	115	$\stackrel{6}{6.0}$	$\stackrel{1}{1.0}$	Sleeve	A	$1 / 2 \times 11 / 2$	$5 K 221$	116.00	85.65	18.0
	1725	56	115	5.8	1.35	Sleeve	A	$5 / 8 \times 17 / 8$	5K261	130.00	89.80	19.0
1/2	1775	48484848 Y48 Y		$\begin{gathered} 7.4 \\ 8.8 \\ 7.6 .8 .8 \\ 7.0 \\ 8.644 .3 \end{gathered}$	$\begin{aligned} & 1.25 \\ & 1.0 \\ & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$	SieeveSleeveBallSleeveSleeve	BABA	$\begin{aligned} & \begin{array}{l} 1 / 2 \times 11 / 2 \\ 1 / 2 \times 11 / 2 \\ 1 / 2 \times 11 / 2 \\ 1 / 2 \times 1 / 2 \end{array} \end{aligned}$	$6 K 589$$6 K 768$$3 K 616$$5 K 910$	$\begin{aligned} & 182.00 \\ & 145.00 \\ & 189.00 \\ & 182.00 \end{aligned}$	131.55 106.30 143.15 125.80 131.30	$\begin{aligned} & \begin{array}{l} 19.0 \\ \hline 18.0 \\ 20.0 \\ 19.0 \\ 21.0 \end{array} \end{aligned}$
	1725 1725											
	1725											
	1725							$1 / 2 \times 1 / 2$				
	1725	$\begin{aligned} & 56 \mathrm{Z} \\ & 56 \\ & 56 \\ & 56 \\ & 56 \\ & 56 \end{aligned}$	$\begin{aligned} & \text { 115 } \\ & 115 \\ & 115 \\ & 115 \\ & 115 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.6 \\ & 8.3 \\ & 8.2 \\ & 8.6 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.0 \\ & 1.25 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline \text { Sleeve } \\ & \text { Bail } \\ & \text { Sleve } \\ & \text { Sleeve } \\ & \text { Sleveve } \\ & \text { Sleeve } \end{aligned}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~B} \\ \mathrm{~A} \\ \mathrm{~A} \\ \mathrm{~B} \\ \hline \end{gathered}$	$12 \times 12 / 2$ $5 / 8 \times 1^{17 / 8}$ $58 \times 17 / 8$	$\begin{aligned} & \hline 5 k 258 \\ & 6 K 780 \\ & 5 K 416 \\ & 6 k 399 \\ & 6 k 845 \\ & 6 k 729 \end{aligned}$	$\begin{aligned} & 182.00 \\ & 155.00 \\ & 182.00 \\ & 147.00 \\ & 114.00 \\ & 10000 \end{aligned}$		20.020.020.020.018.020.020.0
	1725											
	1725											
	1725											
	1725 1725											
3/4	${ }_{1}^{1725}$	${ }_{56}^{56}$	${ }_{115}^{115230}$	${ }_{1}^{11.4 / 5.7}$	$\begin{aligned} & 1.25 \\ & \hline 1.25 \end{aligned}$	$\xrightarrow{\text { Balt }}$	Tr ${ }_{\text {B }}$		$\begin{aligned} & 3 K 617 \\ & 6 K 624 \end{aligned}$	238.00 230.00	$\begin{aligned} & 170.25 \\ & 166.75 \end{aligned}$	${ }_{23.0}^{23.0}$
1/4	1725	$\begin{aligned} & \begin{array}{l} 48 Y \\ 48 Y \\ 48 Y \\ 566 \end{array} \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \\ & 115 \\ & 115 \end{aligned}$	$\begin{gathered} 5.3 \\ 6.6 \\ 8.1 \\ 1 F 0 \end{gathered}$	$\begin{aligned} & 1.35 \\ & 1.55 \\ & 1: 25 \\ & 1.25 \end{aligned}$	Sleeve Sleeve Sheeve Sleeve		$1 / 2 \times 1 / 2$ $1 / 2 \times 1 \%$ $5 / 8 \times 1 / 4$	$36771+$$6 K 778+$$3 k 772+$$10170^{+}$	109.00 21.00 185.00	$\begin{array}{r} 47.75 \\ 51.25 \\ 70.25 \\ 121.15 \end{array}$	13.0 16.0 19.0 17.0
1/3	1725											
1/2	1725 1725											

[^17]
COMMERCIAL BELT-DRIVE MOTORS AND WHOLE¿HOUSE/MOBILE FAN MOTORS

DAYTON BEIT-DRIVE FAN AND BLOWER MOTORS (Cont.)

$\begin{aligned} & 1725^{\dagger} \\ & \text { RPM } \end{aligned}$	$\begin{aligned} & 1140 \\ & \text { RPM } \end{aligned}$	Nameplate RPW	NEMA Erame	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	Bearings	Insulation Class	Shaft Dimensions Dia. x Length	Stock No.	List	Each	Shpg. Wt
1/4	$1 / 8$	1725/1140	562*	115	5.2/3.6	1.0	Sleeve	B	$1 / 2 \times 1 / 2^{11}$	$6 K 425$	\$144.00	\$99.55	17.0
1/3	1/6	$\begin{aligned} & 1725 / 1140 \\ & 1725 / 1140 \end{aligned}$	$\begin{aligned} & 56 Z^{*} \\ & 56 \end{aligned}$	115 115	6.8/4.5	1.0	Sleeve Sleeve	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$1{ }^{1 / 2 \times 1 / 2} \times 1 / 8$	$\begin{aligned} & 6 K 426 \\ & 5 K 654 \end{aligned}$	158.00 202.00	109.20 139.60	20.0 21.0
$1 / 2$	1/4	$\begin{aligned} & 1725 / 1140 \\ & 1725 / 1140 \end{aligned}$	$\begin{aligned} & 56 \\ & 56 \end{aligned}$	115	$\begin{aligned} & 9.2 / 6.0 \\ & 9.2 / 6.0 \end{aligned}$	1.05	Sleeve Sleeve	A	5	$\begin{aligned} & 5 K 620 \\ & 6 K 394 \end{aligned}$	202.00 258.00	$\begin{aligned} & 139.60 \\ & 178.75 \end{aligned}$	22.0

(*) Has extended studs out shatt endshield for mounting fan guard. $43 / 16^{\circ} \mathrm{OC}$.

WHOLE-HOUSE/MOBILE FAN MOTORS

- Quick connect terminal board for easy wiring on $1 / 3 \mathrm{HP}$ models
- Heowy-duty 12 gauge steel base

TypicalUses: Replacement of original single and two speed belt-drive motors. Also suitable for use in other belt-drive fan and blowerfapplications.
Speciolffeatures: On 48 frame models, shaft extenats from lead end so motor can be mourited and wired without lead interference that may occur in some fans.
Two Speed models are specifically desighed for diminishing torque, air-moving applications, such as belted or directdrive fans and blowers.
Type: Split-phase
Beariags: All-angle sleeve or prelubricated ball
Mounting: Cradle base
Enclosîfite: Open dripproof
Service factor: 1.0
Thermal Protection: Auto
Ambient: $40^{\circ} \mathrm{C}$
Duty: Nos. $3 \mathrm{~K} 384,3 \mathrm{~K} 386$, and 3 K 371 are continuous; No. 3 K 372 is continuous air-over Rotation: CW/CCW
finish: Gray enamel
Brand: Dayton

USE AIR MOTORS WHERE ELECTRIC MOTORS ARE IMPRACTICAL

A compact, lightweight source of smooth, vibrationless power, Gast rotary vane air motors can be used in applications where electric or hydraulic motors are impractical. Unlike an electric motor, the air motor runs cool to prevent heat buildup and pro-
vides smooth startups. Use air motors in batch mixers, conveyors, and hoists. With no heat buildup or sparks, air motors are ideal for explosion-proof applications. See Index under Air Motors.

FAN/BIOWER NOTORS

COMMERCIAL AND RESIDENTIAL BELT-DRIVE FAN AND BLOWER.MOTORS

Typical Uses: Belt-drive furnace blowers, exhaust and circulating fans, and air coolers.
Special Features: NEMA 42 frame includes relay. NEMA 48 Z frame has $1 / 2 \times 17 / \mathrm{s}^{\prime \prime}$ shaft. NEMA 48Y frame has cradle base with holes and slots to match mounting dimensions of either NEMA 48 or 56. Also supplied with $5 / 8^{\prime \prime}$ dia. shaft bushing. NEMA $56 Z$ frame has nonstandard $1 / 2^{\prime \prime}$ dia. shaft with flat and is supplied with $5 / 8^{\prime \prime}$ dia. shaft bushing.
Two speed models are specifically designed for diminishing torque, air-moving applications, such as belted or directdrive fans and blowers.
Commercial Duty Motors: Feature higher starting torque than residential duty motors and offer universal replacement. Cooler running temperature ensures longer life expectancy.

Thermal Protection: Auto
Lasulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Guty: Continuous
Rotation: CW/CCW
Einish: Gray
Brand: GE
17

	Nameplate RPM	NEMA Frame	Enclosure	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	Bearings	Moumting	Shaft Dimansions Dia. x Length	GE Stock No.	Stack No.	List	Each	Shpg. Wt.
W/12	1725	42	Op Dpf	$115 \dagger$	2.1	1.4	Sleeve	Cradle	$3 / 8 \times 11 / 8^{17}$	$\overline{5}$	3K403\#	\$183.00	\$113.40	10.0
	1140	482	Op Dpf	115	2.4	1.4	Ball	Cradle/Stud	$1 / 2 \times 17 / 8$	H152	2K270	155.00	107.50	15.0
$1 / 8$	1140	482	Op Dpf	115	3.8	1.4	Ball	Cradle/Stud	$1 / 2 \times 17 / 8$	H154	$2 K 275$	171.00	118.60	16.0
为	850	56	Op Dpf	115	4.6	. 1.4	Ball	Cradle/Stud	$5 / 8 \times 17 / 8$	H155	2K277	303.00	210.50	24.0
$\begin{aligned} & 16 \\ & \\ & \text { 等 } \end{aligned}$	1725	$\begin{array}{r} 48 \\ -\quad 48 \\ -\quad 48 Z \\ 56 Z \end{array}$	Op Dpf	115	$\quad \begin{array}{r}3.9 \\ \hline .9 \\ \\ \hline\end{array}$	1.35	Sleeve	Rigid	$1 / 2 \times 11 / 2$	4349	2K280	109.00	75.65	11.0
	1725		Op Dpf	115 *		135	Sleeve	Cradle	$1 / 2 \times 11 / 2$	4314	6K566	114.00	79.10	12.0
	1725		Op Dpf	115		1.35	Ball	Cradle/Stud	$1 / 2 \times 17 / 8$	H157	3K116	130.00	90.15	12.0
	1725.		Op Dpf	115 -		1.35	Sleeve	Cradle	$1 / 2 \times 17 / 8$	4350	2K292	116.00	80.45	12.0
	1140	48	Op Dpf	115	4.0	$\begin{array}{r} 1.35 \\ 1.35 \end{array}$	Sleeve Ball	Cradle Cradle/Stud	$\begin{aligned} & 1 / 2 \times 11 / 2 \\ & 1 / 2 \times 1^{7 / 8} \end{aligned}$	$\begin{aligned} & \mathrm{H} 113 \\ & \mathrm{H} 159 \end{aligned}$	$\begin{aligned} & 2 K 285 \\ & 3 K 117 \end{aligned}$	173.00	120.00	19.0
	- 1149	487	\cdots Op Dpf	115	4.0							190.00	131.75	21.0
1/4	1725	48	Op Dpf	115	5.1	1.35	Sleeve	Cradle	$1 / 2 \times 11 / 2$	4305	6K576	109.00	75.65	13.0
	1725	48	Op Dpf	115	5.1	1.35	Sleeve	Rigid	$1 / 2 \times 11 / 2$	4362	2K290	118.00	81.85	13.0
	1725	48	Op Dpf	115	5.7	1.0	Sleeve	Cradle	$1 / 2 \times 11 / 2$	4301	6K461	118.00	81.85	12.0
	1725	56 Z	Op Dpf	115	5.1	1.35	Sleeve	Cradle	$1 / 2 \times 17 / 8$	4363	$6 K 689$	124.00	86.05	13.0
	1725	562	Op Dpf	115	5.7	1.0	Sleeve	Cradle	$1 / 2 \times 1 / 2$	4364	$2 K 293$	120.00	83.25	13.0
	1725	482	Op Dpf	115	5.1	1.35	Ball	Cradle/Stud	$1 / 2 \times 1 / 8$	H161	3K119	141.00	97.80	14.0
	1725	48	Op Dpf	230	2.5	1.35	Sleeve	Cradle	$1 / 2 \times 11 / 2$	4306	2K295	130.00	90.15	13.0
	1725	487	Op Dpf	115/230	5.0/2.5	1.35	Ball	Cradle/Stud	$1 / 2 \times 21 / 4$	4680	6K555	141.00	97.80	13.0
	1140	56	Op Dpf	115	5.6	1.35	Ball	Cradie/Stud	$5 / 8 \times 17 / 8$	H163	2×299	247.00	171.50	25.0
$1 / 3$	3450	48	Op Dpf	115	5.6	1.35	Ball	Cradle	$1 / 2 \times 11 / 2$	H115	10079	131.00	89.55	15.0
	3450	48 Z	Op Dpf	$115 / 230$	6.83.4	1.35	Ball	Cradle/Stud	$1 / 2 \times 21 / 4$	4798	2K304	143.00	99.20	15.0
	1725	48	Op Dpf	115	5.6	1.35	Ball	Cradle	- $1 / 2 \times 1 / 2$	4308	1 1033	148.00	101.15	14.0
	1725	48	Op Dpf	115	6.2	1.0	Sleeve	Cradle	$1 / 2 \times 1 / 2$	4310	6×647	12800	88.80	14.0
	1725	48	Op Dpf	115	6.2	1.0	Sleeve	Rigid	$1 / 2 \times 11 / 2$	4380	6K646	123.00	78.30	15.0
	1725	48Z	Op Dpf	115	6.2	1.35	Ball	Cradle/Stud	$1 / 2 \times 1 / 3$	H165	3K121	159.00	110.30	16.0
	1725	562	Op Dpf	115	6.2	1.35	Ball	C.adle	$1 / 2 \times 11 / 2$	4383	10037	151.00	103.20	16.0
	1725	56 Z	Op Dpf	115	6.2	1.0	Sle we	Cradle	$1 / 2 \times 11 / 2$	4381	2K309	130.00	90.15	15.0
	1725	48	Op Dpf	230	3.1	1.35	Mail	Cradle	$1 / 2 \times 11 / 2$	4309	10034	157.00	107.30	15.0
	1725	48	Op Dpf	230	3.3	1.0	Sleeve	Cradle	$1 / 2 \times 11 / 2$	4311	6 K 653	139.00	96.40	14.0
	1725	562	Op Dpf	230	3.1	1.35	Ball	Cradle/Stud	$1 / 2 \times 11 / 2$	4757	10052	157.00	107.30	16.0
	1725	48Z	Op Dpf	230	3.3	1.35	Ball	Cradle/Stud	$1 / 2 \times 1 / 1 / 3$	H167	2K313	169.00	117.25	16.0
	1725	562	Op Dpf	115/230*	6.2/3.1	1.35	Ball	Cradle/Stud	$1 / 2 \times 21 / 4$	4682	6K560	159.100	110.30	17.0
	1140	56	Op Dpf	115	7.0	1.35	Ball	Cradle/Stud	$5 / 8 \times 17 / 8$	H621	2 K 314	289.00	200.75	32.0

[^18]
COMMERCIAL AND RESIDENTIAL BELT-DRIVE FAN AND BLOWER MOTORS

FAN/BLOWER

 MOTORS
GE SPLIT-PHASE BELT-DRIVE FAN AND BLOWER MOTORS (Cont.)

(*) Euty: air-over.

GE 3-PHASE, AUTOMATIC THERMAL PROTECTION
Typitical Uses: Commercial and industrial air handlers, exhaust fans and blowers.
Bearings: Ball
Mounting: Cradle base
Enclosure:: Open dripproof
Thermal Protection: Auto
insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: GE

HP	Nameplate RPM	NEMA Frame	Voits 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	GE Stock No.	Stock No.	List	Each	Shpg.
$1 / 2$	1725	56	208-230/460	2.1-2.2/1.1	1.25	K1408	3N845	\$251.00	\$187.00	19.0
$3 / 4$	3450	56	208-230/460	26-2.611.3	1.25	K1409	4N016	249.00	185.75	17.0
$3 / 4$	1725	56	208-230/460	2.8-2.811.4	1.25	K1410	3N846	273.00	203.50	22.0
1	3450	56	208-230/460	3.3-3.2/1.6	$12 i$	K1411	4N017	270.00	201.25	22.0
1	1725	56	208-230/460	3.4-3.21.6	1.15	K1412	3N847	286.00	213.25	25.0
11/2	3450	56 H	208-230/460	5.0-4.8/2.4	1.15	K1413	4N018	304.00	226.50	24.0
11/2	1725	145T	208-230/460	5.1-5.0/2.5	1.15	K114	4N019	356.00	265.25	33.0
$11 / 2$	1725	56 H	208-230/460	5.1-5.0/2.5	1.15	K1415	3N848	302.00	225.00	33.0
2	3450	56 H	208-230/460	6.6-6.0/3.0	1.15	K1416	4NO2O	355.00	264.50	32.0
2	1725	145 T	208-230/460	6.5-6.63.3	1.15	K1417	4N021	386.00	287.75	42.0
2	1725	56 H	208-230/460	6.5-6.6/3.3	1.15	K1418	3N849	347.00	258.50	41.0
3	3450	145 T	208-230/460	8.4-7.6/3.8	1.15	K1419	4N022	386.00	287.75	46.0
3 5	1725 3450	${ }^{145 T}$	208-230/460	${ }^{9.6-9.24 .6 .6} 1$	${ }_{1.0}^{1.15}$	K1420	${ }_{4}^{4 N O 23}{ }^{\text {4 }}$	381.00 489.00	283.75 $\mathbf{3 6 4 . 2 5}$	38.0 57.0

[^19]
FAN/BLOWER MOTORS

COMMERCIAL BELT-DRIVE FAN AND BLOWER MOTORS

SPLIT-PHASE, OPEN DRIPPROOF, ADJUSTABLE MOUNTING RING

Typical Uses: Replacing NEMA 48 and 56 frame belt-driven furnace blower motors.
Special Feafures: Designed with the contractor in mind. Adjustable resilient mounting rings can be varied as much as $11 / 16^{17}$ to fit most existing base lengths. All models have extra features shown for maximum flexibility on field service calls. Bearings: All-angle sleeve
Thermal Protection: Auto
Insulation Class: B
NEMA Frome: 48Y
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous Rotation: CW/CCW Finish: Gray enamel Brarid: Dayton

CONTRACTOR FRIENDLY ${ }^{+\pi}$ FEATURES

- Adjustable mounting ring. Align shaft end resilient ring and adjust other resilient ring along extended hub until it matches length of old motor.
- Two ring diameters. Supplied with $21 / 2^{11}$ diameter rings. If $21 / 4^{1 "}$ diameter is required, remove snap-on split bands (included).
- Two shaft diameters. Motor has 1/2" dia. shaft with flat. For $5 / 8^{\prime \prime}$ dia. use shaft adapter with key (included).

= HP	Nameplate RPM	Volts 60 Hz	Fulil-Load Amps ot Namoplite Volts	Service Factor	Resiliant Mounting Rings 06	Length Less Shaft	Stock No.	List	Each	Shpo Wt.
"1/4	1725	115	5.1	1.35	$67 / 16$ to $71 / 2^{\prime \prime}$	$8{ }^{\prime \prime}$	64890	\$91.00	\$58.65	12.0
$1 / 3$	1725	115	5.5	1.35		$81 / 2$	$6 K 892$	98.00	70.15	16.0
-7/2	1725	115	8.0	1.25	715/16 to 9	91/2	$6 K 895$	182.00	82.10	17.0
		59x			ansin 0 nal prot	$\begin{aligned} & \text { ded } \\ & \text { omict } \end{aligned}$	S.			

E

SPLIT-PHASE, OPEN DRIPPROOF, PDQ ADJUSTABLE MOUNTING RING

Tgpical Uses: Replacing NEMA 48 and 56 frame belt-driven furnace blower motors.
Special Features: Distance between resilient mounting rings can be varied as much as $1 \%^{n}$ to fit most existing base lengths. All models have extra features shown for miaximum flexibility on field service calls. Bearings: Ball
Thermal Protection: Auto
Insulation Class: B
NEMA Frame: 48Y
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: GE
PARTS AVAUABLE.
call
1-800-323-0620

- Adjustable mounting ring. Align shaft end resilient ring and adjust other resilient ring along extended hub until it matches length of old motor.
- Two ring diameters. Supplied with $21 / 2^{11}$ diameter rings. If $2^{1 / 4^{\prime \prime}}$ diameter is required, remove snap-on split bands (included).
- Two shaft diameters. Motor has 1/2" diameter shaft with flat. For $5 / 8^{\prime \prime}$ diameter use shaft adapter with key (included).

HP	Nameplate RPW	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Sarvice Factor	Resilient Mounting Rings 0 C	Lengut Less Shaft	$\begin{aligned} & \text { GE } \\ & \text { Stock } \\ & \text { No. } \end{aligned}$	Stock No.	List	Each	Shpg. Wt.
$1 / 4$	1725	115	5.0	1.35	$6^{5 / 16}$ to $78 / 9^{4}$	3	4730	10047	\$87.00	\$62.25	12.0
1/3	$\begin{aligned} & 1725 \\ & 1725 \end{aligned}$	115 230	$\begin{aligned} & 5.8 \\ & 3.1 \end{aligned}$	1.35 1.35		$\begin{aligned} & 8_{11 / 16}^{11 / 16} \\ & 8^{11 / 16} \end{aligned}$	4731 4738	$\begin{aligned} & 10048 \\ & 10050 \end{aligned}$	$\begin{array}{r} 93.00 \\ 153.00 \end{array}$	$\begin{aligned} & 75.20 \\ & 12.65 \end{aligned}$	15.0 15.0
1/2	1725 1725	115 230	$\begin{aligned} & 7.9 \\ & 4.0 \end{aligned}$	1.25	$73 / 8$ to $83 / 4$ $7 / 8$ to $83 / 4$	$\begin{aligned} & 91 / 16 \\ & 91 / 16 \end{aligned}$	4732 4739	$\begin{aligned} & 10049 \\ & 10051 \end{aligned}$	124.00 191.00	91.25 136.90	17.0 19.0

GRAINGER HAS OVER 330 BRANCHES NATIONWIDE

We're well stocked with items you use everyday and our salespeople are knowledgeable, courteous professionals who care about your business. To find the branch nearest you, check the white pages in your local telephone directory under "Grainger."

FACE-MOUNTED FAN MOTORS

- Dayton models provide direct replacement in many Jenn-Air and stimilar commercial kitchen exhaust ${ }^{2}$ ventilators
NEMA service factors up to 1.4 provide a reserve margin for applications where intermittent overloading or fluctuating (high/low) voltage conditions may occur

Typical Uses: Exhaust ventilators in commercial cooking areas and other moder-ate-starting torque equipment that can be directly connected to a NEMA 56 CZ facemounted motor. (Not intended for power transmission applications.)

Bearings: Ball

Enclosure: Open dripproof Thermal Protection: Auto NEMA Frame: 56CZ Shaft Dimensions: $5 / 8 \times 21 / 4^{n}$
Ambitent: $40^{\circ} \mathrm{C}$ Duty-Continuous Rotafion: CW/CCW Finisf: Gray enamel Brand Dayton and GE

FAN/BLOWER MOTORS

YOKE-MOUNTED FAN AND OSCILLATING AIR CIRCULATOR MOTORS

YOKE-MOUNTED FAN MOTORS

Typical Uses: Air circulators where motor is mounted directly to fan column. Supplied with durable Dayton yoke-type welded bracket or strap. Studs for mounting fan guard directly to shaft endshield. Also used on exhaust fans, unit heaters, and other air-moving applications.
Service Factor: 1.0
Thermal Protection: Auto
NEMA Frame: 48YZ (except shaded pole models are 4.4^{n} diameter and No. 1D172 is $63 / 8^{n}$)
Ambient: $40^{\circ} \mathrm{C}$ or $60^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CW/CCW (except shaded pole models are CW facing shaft)
finish: Gray enamel
Brand: Dayton

	$\begin{aligned} & \text { Ren } \\ & \text { Niantapate } \\ & \text { RPM } \end{aligned}$	MEMA Frame	Rotation Facing Shaft	Enclosure	Vofts 60 Hz	Full-Load Amps at Nameplate Yoits	Ambient	Bearing	Ins. Class	Body Dia.	$\begin{aligned} & \text { Shaft } \\ & \text { Dimensions } \\ & \text { Dia. } \times \mathbf{L} \end{aligned}$	Overall Length	Stock No .	List	Each	
1/4		48YZ	CW/CCW	OPAO	115	4.5	40	Sleeve Sleeve Ball	$\begin{aligned} & \mathbf{A} \\ & \mathbf{A} \\ & \mathbf{A} \end{aligned}$	$\begin{aligned} & 55 / 8^{n} \\ & 55 / 8 \\ & 57 / 8 \end{aligned}$	$\begin{aligned} & 1 / 2 \times 2^{\prime} \\ & 1 / 2 \times 2 \\ & 1 / 2 \times 2 \end{aligned}$	$\begin{aligned} & 107 / 16^{2} \\ & 107 / 16 \\ & 103 / 8 \end{aligned}$	$\begin{aligned} & \text { EXC43 } \\ & \text { EXY06 } \\ & \text { GK806 } \end{aligned}$	$\begin{array}{r} \$ 106.00 \\ 120.00 \\ 136.00 \end{array}$	$\begin{aligned} & 5189 \\ & 9205 \\ & 16505 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 15.0 \\ & 14.0 \end{aligned}$
	\% 1725	48 YZ	CW/CCW	TEAO	115	4.5	40									
	- 1725	48YZ	CW/CCW	TEAO	115	4.3	40									
$1 / 3$	\% 1725	$\begin{aligned} & 48 Y Z \\ & 48 Y Z \end{aligned}$	$\begin{aligned} & \text { CW/CCW } \\ & \text { CW/CCW } \end{aligned}$	$\begin{aligned} & \text { OPAO } \\ & \text { TEAO } \end{aligned}$	115	6.3	40	Sleeve Sleeve	A	$\begin{aligned} & 55 / 8 \\ & 55 / 8 \end{aligned}$	$\begin{aligned} & 1 / 2 \times 2 \\ & 1 / 2 \times 2 \end{aligned}$	$\begin{aligned} & 101 / 16 \\ & 107 / 16 \end{aligned}$	$\begin{aligned} & 6 K 410 \\ & 6 K 007 \end{aligned}$	128.00	9838	18.0
	171725				115	4.8	40							138.00	40635	18.0
$1 / 2$	学 1725	$\begin{aligned} & 48 \mathrm{YZ} \\ & 48 \mathrm{YZ} \\ & 48 \mathrm{YZ} \end{aligned}$	$\begin{aligned} & \mathrm{CW} / \mathrm{CCW} \\ & \mathrm{CW} / \mathrm{CWW} \\ & \mathrm{CW} / \mathrm{CWW} \end{aligned}$	$\begin{aligned} & \text { OPAO } \\ & \text { TEAO } \\ & \text { TEAO } \end{aligned}$	115	8.3	40	Sleeve Sleeve Ball	$\begin{aligned} & A \\ & A \\ & A \end{aligned}$	$\begin{aligned} & \overline{5 j / 8} \\ & \overline{5} 5 / 3 \\ & \overline{5} / 3 \end{aligned}$	$\begin{aligned} & 58 \times 2 \\ & 5 / 8 \times 2 \\ & 5 / 8 \times 2 \end{aligned}$	$\begin{aligned} & 107 / 16 \\ & 101 / 16 \\ & 105 / 16 \end{aligned}$	$\begin{aligned} & \text { 6K405 } \\ & \text { 6K809 } \\ & \text { CK411 } \end{aligned}$	145.00	111.90	17.0
	$\cdots 1725$				115	6.6	40							190.00	146.85	220
	-				115/230	6.88.4	40							215.00	16625	18.0
\because 䊾																
$1 / 4$	-07075/2Spd	$\begin{aligned} & 48 Y Z \\ & 48 Y Z \\ & 48 Y Z \end{aligned}$	$\begin{aligned} & \mathrm{CW} / \mathrm{CCW} \\ & \mathrm{CW} / \mathrm{CCW} \\ & \mathrm{CW} / \mathrm{CCW} \end{aligned}$	TEAO TEAO TEAO	$\begin{aligned} & 115 \\ & 115 \\ & 115 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & 4.0 \end{aligned}$	40	Sleeve Ball Sleeve	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 55 / 8 \\ & 50 / 8 \\ & \overline{50 / 8} \end{aligned}$	$\begin{aligned} & 1 / 2 \times 2^{1 / 2} \\ & 1 / 2 \times 2^{1 / 2} \\ & 1 / 2 \times 21 / 2 \end{aligned}$	$\begin{aligned} & 105 / 16 \\ & 109 / 16 \\ & 105 / 16 \end{aligned}$	$\begin{aligned} & 34504 \\ & 4+1156 \\ & 10171 \end{aligned}$	$\begin{aligned} & 143.00 \\ & 159.00 \\ & 168.00 \end{aligned}$	1102516.0	
	$1075 / 2 \mathrm{sod}$						40								12275	15.0
	1075/2-Spd						60								122.75	21.0
$1 / 3$	1075/2Spd	48YZ	CW/CCW	TEAO	115	5.3	40	Sleeve	B	$5^{3 / 3}$	$1 / 2 \times 2^{1 / 2}$	105/16	391409	151.00	10980	180
$1 / 2$	1075/2-Spd	$\begin{aligned} & 48 \mathrm{YZ} \\ & 48 \mathrm{YZ} \\ & 56 \mathrm{YZ} \end{aligned}$	CW/CCW CW/CCW CW/CCW	$\begin{aligned} & \text { TEAO } \\ & \text { TEAO } \\ & \text { TEAO } \end{aligned}$	115	7.1	40	Sleeve	B	55/8	$5 / 8 \times 21 / 2$	113/16	314505	171.00	13185	24.0
	1075/2-Spd				115	7.1	40	Ball	B	55/8	$5 / 8 \times 21 / 2$	1013/16	$4{ }^{4} 1197$	187.00	14430	23.0
	1075/2Spd				115	5.6	60	Sleeve	B	$63 / 5$	$5.8 \times 21 / 2$	11916	10172	261.00	190.50	32.0
,																
1/15	$\begin{gathered} 1550 / 2-\mathrm{Spd} \\ 1550 \end{gathered}$	$-$	$\begin{aligned} & C W \\ & C W \end{aligned}$	$\begin{aligned} & \text { OPAO } \\ & \text { OPAO } \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \end{aligned}$	$\frac{2.3}{2.3}$	$\begin{array}{r} 40 \\ 40 \end{array}$	Sleeve Sleeve	$\begin{aligned} & \mathbf{A} \\ & \mathbf{A} \end{aligned}$	$\begin{gathered} f^{3 / 3} \\ 4^{3 / 9} \end{gathered}$	$\begin{aligned} & 3 / 8 \times 13 / 8 \\ & 3 / 8 \times 1 / 4 \end{aligned}$	$\begin{aligned} & 615 / 16 \\ & 61 / 2 \end{aligned}$	$\begin{aligned} & 3: 4827 \\ & 3: 1826 \end{aligned}$	95.00	71.80	7.0
														81.00	61.25	6.0

OSCILLATING AIR CIRCULATOR MOTORS

Typical Uses: No. 4 C 354 is for use on Dayton 20 and $24^{\prime \prime}$ oscillating fans. No. 5 C 040 is for use on Dayton $30^{\prime \prime}$ oscillating fans.
Special Fectures: Hardened metal precision gearing and durable clutch assembly. Four extended studs $35 / \mathrm{s}^{4}$ OC for mounting guard. 10 ft., 3 -conductor cord with grounding type molded plug. 90 or 45° sweep or to blow straight. Two-speed pull chain switch.
Motor Type: PSC
Enclosure: TEAO
Thermal Protection: Auto
Finish: Gray enamel
Brand: Dayton

HP	Nameplate RPM	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Shaft Dia.	Ins. Class	Steck No.	List	Each	Shpg. Wh
1/4		115	4.4	1/3"	B	46354	\$277.00	\$204.75	22.0
1/2	1075/2 Spd	115	6.0	518	B	50040	299.00	221.00	31.0

DIRECT-DRIVE FAN AND BLOWER MOTORS

SPLIT-PHASE, AUTOMATIC THERMAL PROTECTION

Typical Uses: For exhaust fans, air circulators, and other air-over fan applications.
Special Features: Supplied with extended studs for mounting fan guard from shaft endshield.
Two speed models are specifically designed for diminishing torque, air-moving applications, such as belted or directdrive fans and blowers.
Type: Split-phase
Mounting: Cradle base with stids (except Nos. 2K291, 2 K 298 , and 2 K 302 are rigid without studs)
Thermal Protection: Auto
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rototion: CW/CCW
Finish: Gray
Brand: Dayton and GE:

$\mathbf{H P}=$	Namplate RPM	NEMA Frame	Enclosure	Volts 60 Hz	Full-Load Amps at Nameplate Volts		Service Factor	Bearings	Insulation Class	Shaft Dimensians Dia. \times Length	Stock No.	List	Each	$\begin{aligned} & \text { Shpg. } \\ & \text { Wht } \end{aligned}$
1/6\%	1140 1140	48Y*	$\begin{aligned} & \text { TEAO } \\ & \text { TEAO } \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 4.6 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	Sleeve Sleeve	${ }_{8}{ }_{B}$	$\begin{aligned} & 1 / 2 \times 11 / 2^{2} \\ & 12 \times 1 / 2 \end{aligned}$	$\begin{aligned} & 6 \mathrm{~K} 688 \\ & 1 \mathrm{~K} 139 \end{aligned}$	$\begin{array}{r} \$ 159.00 \\ 159.00 \end{array}$	$\begin{aligned} & \$ 108.30 \\ & 168.35 \end{aligned}$	18.0 18.0
14\%				115			1.0	Sleeve		1/2x $1^{1 / 2}$	$6 \mathrm{6K665}$	112.00		15.0
$1 / 4=$	1725	${ }_{48 \mathrm{Y}^{*}}$	TEAO			4.8			B				76.25 85.75	
-	1725	$56 \mathrm{Z} \dagger$	teao	115		4.7	1.0	Sleeve	B	$1 / 2 \times 1 / 2$	1 K 140	116.00	79.00	16.0
-	175	$56 \mathrm{Z} \dagger$	TEAO	115		4.3	1.0	Ball	8	$1 / 2 \times 11 / 2$	1 K 141	126.00	85.80	16.0
	1725	56	TEAO	1151230		4.4/2.2	1.35	Ball	B	$58 \times 17 / 8$	6K687	148.00	113.45	18.0
\%	1140	48Y*	TEAO	115		6.1	1.0	Sleeve	B	$12 \times 1 / 2$	6×692	213.00	145.10	26.0
	1140	56Z \dagger	TEAO	115		6.0	1.0	Sleeve	B	1/2×1/2	1 K 142	213.00	145.15	21.0
$1 / 3^{\text {in }}$	1725	48Y ${ }^{\text {* }}$		115		5.2	1.0	Sleeve	B	$12 \times 1 / 2$	6K666	135.00	94.65	19.0
\%	1725	48Y*	TEAO			5.2	1.0	Ball	B	$1 / 2 \times 1 / 2$	3 K 356	146.00	101.35	21.0
	1725	56Z \dagger	$\begin{aligned} & \text { TEAO } \\ & \text { TEAO } \end{aligned}$	45		5.5	1.0	Sleeve	A	$12 \times 1 / 2$	6 K 312	140.00	94.60	18.0
3	1725:	56Z \dagger	$\begin{aligned} & \text { TEAO } \\ & \text { TEAO } \end{aligned}$	115		5.5	1.0	Ball	B	$1 / 2 \times 1 / 2$	1 K 143	146.00	101.35	18.0
	1725	$56 \mathrm{Z} \dagger$	$\begin{aligned} & \text { TEAO } \\ & \text { TEAO } \end{aligned}$	1230		${ }_{5}^{2.8}$	1.0	Sleeve	B	$1 / 2 \times 1 \frac{1 / 2}{}$	1 K 144	137.00	93.30 12730	20.0 190
\pm	1725		$\begin{aligned} & \text { TEAO } \\ & \text { TEAD } \end{aligned}$				1.35		B	$58 \times 17 / 8$	6K691	166.00	127.30	19.0
1/2	${ }_{1725}^{1725}$	56 56	$\begin{aligned} & \text { TEAO } \\ & \text { TEAO } \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \end{aligned}$	6.56.5		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	Sleeve Ball	${ }_{\text {B }}$		$\begin{aligned} & 6 K 667 \\ & 3 K 357 \end{aligned}$	$\frac{184.00}{200.00}$	125.25 153.50	26.0 26.0
62a	Sone									ismatic enemand	 		- 3	
$\begin{aligned} & 1725 \\ & \text { RPP } \end{aligned}$	$\begin{aligned} & 1100 \\ & 8 P W_{M} \end{aligned}$	Nameplate RPM	NEMA Frame	Enclosure	Votts COHz^{2}	Full-Load Amps at Nameplate RPM	Service Factor	Bearings	Insulation Class	Shaft Dimensions Dia. x Length	Stock No.	List	Each	Shipg. Wh
1/4	1/12	1725/1140	$\begin{aligned} & 48 \mathrm{Y}^{*} \\ & 56 Z^{*} \\ & 56 \mathrm{P}^{2} \end{aligned}$	$\begin{aligned} & \text { TEAO } \\ & \text { TEAO } \\ & \text { TEAO } \end{aligned}$	115	4.622.	1.0	Ball	BBB	$1 / 2 \times 11 / 2{ }^{1}$	3K006	\$176.00	\$134.90	19.0
$1 / 4$	1/12	1725/140			115	4.783 .2	1.0	Sleeve		12 $\times 1 / 2$	1K145	160.00	109.15	23.0
1/3	1/8	1725/1140			115	6.4/4.5	1.0	Sleeve		12×14	1K146	206.00	140.35	23.0

(*) NEMA 48 frame motors have cradle base with holes and slots to match mounting dimensions of ether NEMA 48 or 56 frame.
(\dagger) NEMA 562 frame motors have nonstandard $122^{\prime \prime}$ dia. shaft with flat

+6 5					GE BRAND, SINGIE SPEED				20.cis				3	
HP	Nameplate RPM	NEMA Frame	Enclosure	Volts 60 Hz	Full-Load Amps at Nameplata Volts	Service Factor	Bearings	ins. Class	Shatt Dimensions Dia. \times Length	$\begin{aligned} & \text { GE } \\ & \text { Stock } \\ & \text { No. } \end{aligned}$	Stock No.	List	Each	Shpg. Wt.
1/6	1725	48	TEAO	115	3.5	1.0	Ball	B	$1 / 2 \times 1 / 2{ }^{2}$	H196	2K281	\$130.00	\$79.55	19.0
	1725	48	TEFC	115	4.0	1.0	Ball	A	$12 \times 1 / 2$	H291	1 1084	15800	108.00	15.0
	1140	48	TEAO	115	3.7	1.0	Ball	B	12x $11 / 2$	H198	3 K 726	190.00	116.25	17.0
1/4	1725	48	TEFC	115	5.1	1.0	Ball	B	12x1\%	H234	3 K 389	166.00	101.60	17.0
	1725	48	TEFC	115	5.1	1.0	Ball	B	$1 / 2 \times 1 / 2$	H 121	2K291 \ddagger	168.00	99.15	15.0
	1725	48	TEAO	115	5.1	1.0	Bail-	B	$1 / 2 \times 11 / 2$	H135	$3 \mathrm{K010}$	141.00	86.30	15.0
	1725	48	TEAO	230	2.3	1.0	Bal	B	$12 \times 1 L_{2}$	H277	$21 / 296$	149.00	91.20	16.0
	175	48	TEFC	230	2.7	1.0	Ball	B	12×112	H243	. 21×2989	171.00	104.65	15.0
	1140	56	TEAO	115	5.6	1.0	Ball	B	58×1-3	H137	3K743	247.00	151.25	26.0
1/3										H194			100.35	15.0
	1725	48	TEAO	115	6.2	1.0	Ball	8	12×14	H139	3 K 013	159.00	97.30	18.0
	1725	56	TEFC	115	5.9	1.0	Ball	8	588 $17 / 5$	H236	2×307	203.00	124.25	19.0
	1725	48	TEAO	230	2.7	1.0	Ball	B	$12 \times 1 / 2$	H141	3 K 747	169.00	103.40	18.0
1/2	1725	56	TEAO	115/230	8.0/4.0	1.0	Ball	B	58×1\%/	H247	$3 \mathrm{KO23}$	227.00	138.95	22.0

(\ddagger) Rigid welded base without studs.

FAN/BLOWER MOTORS

DIRECT-DRIVE FAN AND BLOWER MOTORS

SPLIT-PHASE, NO THERMAL PROTECTION

Typical Uses: For exhaust fans, air circulators, and other air-over fan applications.
Special features: Supplied with stüds for mounting fan guard from shaft endshield. Two speed models are specifically designed for diminishing torque, air-moving applications, such as belted or directdrive fans and blowers.
Type: Split-phase
Mounting: Cradle base with studs
Enclosure: TEAO
Service Factor: 1.0
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CW/CCW
Finish: Gray enamel
Brand: Dayton and GE

4.4" DIAMETER FAN AND BLOWER MOTORS

Sturdy all-steal construction

- Bearings surrounded by Permawick ${ }^{\circledR}$ lubrication
Stators press-fitted into a rugged steel sleeve
Typical Uses: New and replacement use on a wide range of small fan and blower applications.
Type: Shaded pole
Bearings: All-angle, self-aligning sleeve (except No. 4 M 222 has ball bearings)
Mounting: Studs for mounting from shaft endshield or attaching fan guard and cradle base.
Enclosure: Open or TEAO
Service Factor: 1.0
Thermal Protection: Auto
Ambient: $40^{\circ} \mathrm{C}$.
Duty: Air-over or fan-cooled
Cinish: Gray enamel
3rand: Dayton
=

$3 / 8$ ID $x=1 / 2^{n}$ OD adapter bushing for adaptng $3 / 8^{\prime \text { Hidiameter shaft to }} 1 / 2^{\text { }}$ diameter. las hole for set screw. 11/8 long. Dayton rand.
Vo. 6×452. Shpg. wt. 0.1 lbs . List $\$ 5.50$. Each..

[^20]
FAN/ELOVER MOTORS

3.3" DIAMETER FAN AND BLOWER MOTORS

SHADED POLE, OPEN OR TEAO, MECHANICALLY REVERSIBLE, SINGLE SPEED

- Contractor Friendly ${ }^{\text {ma }}$ Features
- Mechanically reversible OEM and replacement use for a wide variety of air-moving applications
Typical Uses: Designed with the contractor in mind for increased versatility and range of air-moving applications.
Special features: Unique design for reversing the rotation of the motor shaft. Easily removable clips enable quick removal of motor endshield allowing the rotor to be reversed, thereby changing the rotation. A specially designed stator/rotor ensures nameplate performance in either direction.
Bearings: All-angle, self-aligning sleeve Mounting: Stud, $3 / 4^{n}$ on both endstieields Service factor: 1.0 .
Thermal Profection: Autó
Insulation Classi: A
Athbient: $40^{\circ} \mathrm{C}$ *
Duty: Continuous air-over
Finitish: Gray enamel
Brand: Dayton

HP		Rotation*	$60 \mathrm{~Hz}$	Amps at ameplate Vo	Mousting Pattera Locetiont	$\begin{gathered} \text { Shaft } \\ \text { Dimensions } \\ \text { Dia. XL } \end{gathered}$	Length Less Shaft	Stack No.	List	Each	$\begin{aligned} & \text { Shpg } \\ & \text { Fit } \end{aligned}$
受,											
$1 / 100$	1550	CW/CCW	115	0.64	BE	$1 / 4 \times 2^{\prime \prime}$	23/8		22800		
1/70	1550	CW/CCW	115	0.68	BE	$1 / 4 \times 2$	23				
1/50	1550	CW/CCW	115	0.84	1 BE	$1 / 4 \times 2$	23/4	N215	32.00	24.55	' 2.5
1/100	1550	CW/CCW	115	0.64	BE	14×2	23/8	M216	29.00	22.25	2.0
$1 / 70$	1550	CW/CCW	115	0.68	1 BE	$1 / 4 \times 2$		1217		24.55	3.6
1/40	1550	CW/CCW	115	0.95	1 BE	516×2	3	M218	-35.00	26.90	3.3

(${ }^{*}$) Motors are set up CW rotation facing shaft end (welded end). (${ }^{*}$) BE=Both Ends.

SHADED POLE, OPEN OR TEAO, 3 SPEED
Typical Uses: Refrigerators, freezers, vending machines, food and beverage coolers, blowers and fans.
Bearings: All-angle sleeve
Mounting: Stud
Service Factor: 1.0
Thiermal Profection: Auto
Insisulation Class: A (except No. 4M619 is B).
Body Diameter: 3.3" (GE 59 frame)
Ambient: $50^{\circ} \mathrm{C}$
Duty: Continuous air-over
Finish: Gray
Brand: GE

HP	Nameplate RPM	Rotation Facing Shaft*	Enclosure	Volts 60 Hz	Full-Load Amps at Nameplate Volts	$\underset{\text { Pattern }}{\mathbf{M}}$	ting Location 7	Shaft Dimensions Dia. x	Length Less Shaft	GE Stock No	Stock No.	List	Each	Shpg: Wt.
1/80	1550/3Spd	CCW	OPAO	115	0.8	1	BE	$1 / 4 \times 11 / 3^{\prime \prime}$	21/4n	6202	4M600	\$55.00	\$34.10	2.0
	1550/3-Spd	CW	OPAO	115	08	1	BE	$1 / 4 \times 1 / 2$	21/4	6203	4M601	55.00	34.10	2.0
	1550/3-Spd	CCW	TEAO	[15	0.8	1	BE	$1 / 4 \times 2$	21/4	6253	4M602	56.00	34.70	2.0
	1550/3-Spd	CW	TEAO	115	0.8	1	BE	$1 / 4 \times 2$	$31 / 4$	6254	4M603	56.00	34.70	2.2
1/60	1550/3-Spd	CW	OPAO	115	1.0	1	BE	$1 / 4 \times 11 / 2$	$21 / 2$	6206	4M604	58.00	36.00	2.5
1/50	15503-Spd	CCW	OPAO	115	1.0	1	BE	1/4×21/2	$23 / 4$	6207	4M605	63.00	39.10	3.0
	1550/3-Spd	CW	OPAO	115	1.0	1	BE	$1 / 4 \times 21 / 2$	$23 / 4$	6208	4M606	63.00	39.10	3.0
	$1550 / 3$ Spd	CCW	TEAO	115	1.0	1	BE	$1 / 4 \times 2$	$21 / 2$	6255	$4 \mathrm{M607}$	61.00	37.80	28.
	1550/3-Spd	CW	TEAO	115	1.0	1	BE	$1 / 4 \times 2$	$21 / 2$	6256	4M608	61.00	37.80	2.8
1/40	$\begin{aligned} & 1550 / 3-\mathrm{Spd} \\ & 1550 / 3-\mathrm{spd} \end{aligned}$	CW	TEAO	115	1.3	1	${ }_{\text {BE }}$	$\begin{aligned} & 1 / 4 \times 1 / 2 \\ & 5 / 16 \times 1^{1 / 4} \end{aligned}$	$23 / 4$ 24 $2 / 4$	$\begin{aligned} & 6257 \\ & 6211 \end{aligned}$	4M609	64.00 58.00	39.70 36.00	3.0 3.0
1/35	1550/3-Spd	CCW	TEAO	115	1.5	1	3 E	$1 / 4 \times 21 / 4$	23/4	6258	4M610	64.00	39.70	3.0
	1550/3-Spd	CCW	OPAO	115	1.5	,	BE	$5116 \times 21 / 2$	$21 / 2$	6212	4N612	58.00	36.00	2.5
		CW	OPAO	115	1.5	,	BE	$516 \times 21 / 3$	$21 / 2$	6213	4M613	58.00	36.00	2.5
	1550/3-Spd	CW	OPAO	115	1.5	1	BE	$516 \times 11 / 2$	$23 / 4$	6215	$4 \mathrm{M615}$	64.00	39.70	3.0
1/25	1550/3-Spd	CCW	OPAO	115	1.8	1	BE	$516 \times 1 /{ }^{1 / 2}$	$33 / 4$	6216	49616	63.00	39.10	3.0
	1550/3-Spd	CW	OPAO	115	1.8	1	BE	$516 \times 1^{1 / 2}$	$23 / 4$	6217	4 N 617	63.00	39.10	3.0
1/20	155033 Spd	CCW	OPAO	115	1.7	$\stackrel{2}{2}$	BE	$5 / 16 \times 1$	$31 / 2$	6218	$4 \mathrm{M618}$	75.00	46.50	4.0
	$1550 / 3$-spd	CW	OPAO	115	2.1	$\stackrel{2}{2}$	BE	$3 / 16 \times 3$	3	6219	4M619	68.00	42.15	2.8
	1550/3-Spd	CCW	TEAO	115	1.7	2	BE	516×1	$31 / 2$	6259	4M620	77.00	47.70	4.0

[^21]
3.3" DIAMETER FAN AND BLOWER MOTORS

FAN/BLOWER MOTORS

SHADED POLE, OPEN AIR-OVER, SINGLE AND 2 SPEED

- Sturdy all-steel construction
- Bearings surrounded by Permawick ${ }^{\text {® }}$ lubrication
- Stators press-fitted into a rugged steel sleeve

Typical Uses: OEM and replacement use in a wide variety of air-over fan and blower applications such as bathroom fans and rangehoods.
Type: Shaded pole
Mounting: Stud, lug, or flange
Bearings: All-angle, self-aligning sleeve
Enclosure: Open air-over
Service Factor: 1.0
Thermal Protection: Auto
Ambient: $40^{\circ} \mathrm{C}$
Dutye-Continuous air-over
Finikh: Gray enamel
Brand: Dayton

CaUTION:
Not for fans in unattended areas.
Refer to page 5 for UL507 Standard,
proper themal protection, and other
motor selection information.

	Ker	$\begin{gathered} \text { Nameplate } \\ \text { RPPTI } \end{gathered}$	Rotation Facing Stuath	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Ins. Class	Mounting Pattern Location\#	Shaft Dimensions	Langth Less Shatt	Stock No.	List	Each	Shpg. Wt.
												$\$ 30.40$	$\frac{\square}{3.0}$
1/125	E	3000	CCW	115	0.42	B	4	$1 / 4 \times 1{ }^{\text {² }}$	$23 / 8^{\text {n }}$	4M298	\$40.00		
	A	3000	$\begin{aligned} & C W \\ & C W \\ & C W W \end{aligned}$	115115115115	$\begin{aligned} & \hline 0.59 \\ & 0.73 \\ & 0.73 \\ & 0.73 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	BE	$\begin{aligned} & 1 / 4 \times 2 \\ & 1 / 4 \times 2 \\ & 1 / 4 \times 2 \\ & 1 / 4 \times 2 \end{aligned}$	$\begin{aligned} & 23 / 4 \\ & \begin{array}{l} 33 / 8 \\ 23 / 8 \\ 23 / 8 \\ 23 / 8 \\ \hline \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3M537 } \\ & 3 M 534 \\ & 3 M 535 \\ & 3 M 536 \end{aligned}$	$\begin{aligned} & \hline 27.00 \\ & 26.00 \\ & 26.00 \\ & 26.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.08 \\ & 19.94 \\ & 19.94 \\ & 19.94 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.0 \\ & 1.9 \\ & 1.9 \end{aligned}$
	A	1550					$\begin{aligned} & \begin{array}{l} \mathrm{BE} \\ \mathrm{SE} \\ \mathrm{SE} \\ \mathrm{BE} \\ \hline \end{array} . \end{aligned}$						
	A	1550											
	A	1550											
1/70	A	3000	$\begin{aligned} & \mathrm{CW} \\ & \mathrm{CW} \\ & \mathrm{CW} \\ & \mathrm{CCW} \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \\ & 115 \\ & 115 \end{aligned}$	0.850.850.750.75	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{SE} \\ & \mathrm{OSE} \\ & \mathrm{BE} \\ & \mathrm{BE} \end{aligned}$	$1 / 4 \times 2$ 14×2 $1 / 4 \times 2$ $1 / 4 \times 2$	$\begin{aligned} & 3 \\ & 3 \\ & 23 / 3 \\ & 23 / 8 \end{aligned}$	$\begin{aligned} & 3 M 540 \\ & \text { 3M541 } \\ & \text { 3M538 } \\ & 3 M 539 \end{aligned}$	$\begin{aligned} & 30.00 \\ & 31.00 \\ & 27.00 \\ & 27.00 \end{aligned}$	$\begin{aligned} & 22.45 \\ & 23.36 \\ & 20.71 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.2 \\ & 2.2 \end{aligned}$
	A	3000											
	A	1550											
	A	1550											
1/50	A	3000	$\begin{aligned} & \mathrm{CW} \\ & \mathrm{CW} \\ & \mathrm{CW} \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \\ & 230 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.86 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { SE } \\ & \text { BE } \\ & \text { SE } \end{aligned}$	14×2 $5 / 16 \times 2$	$\begin{aligned} & 3 \\ & 23 / 4 \\ & 21 / 4 \end{aligned}$	$\begin{aligned} & 3 M 729 \\ & 3 M 542 \\ & 3 M 726 \ddagger \end{aligned}$	$\begin{aligned} & 30.00 \\ & 29.00 \\ & 42.00 \end{aligned}$	$\begin{aligned} & 22.44 \\ & 22.25 \\ & 32.25 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$
	${ }_{\text {A }}^{\text {A }}$	1550											
	C	1550					1 SE						
$1 / 40$	A	3000	$\begin{aligned} & \mathrm{CW} \\ & \mathrm{CW} \\ & \mathrm{CW} \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \\ & 115 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.3 \\ & 1.1 \end{aligned}$	AAA	$\begin{aligned} & \mathrm{BE} \\ & \mathrm{SE} \\ & \mathrm{BE} \end{aligned}$	$\begin{aligned} & 1 / 4 \times 2 \\ & 1 / 4 \times 2 \\ & 1 / 4 \times 2 \mathrm{ea}^{*} \end{aligned}$	$\begin{aligned} & 33^{1 / 4} \\ & 31 / 4 \end{aligned}$	$\begin{aligned} & 3 M 545 \\ & 3 M 728 \\ & 3 M 730 \ddagger \end{aligned}$	$\begin{aligned} & 31.00 \\ & 36.00 \\ & 34.00 \end{aligned}$	$\begin{aligned} & 22.90 \\ & 27.10 \\ & 25.65 \end{aligned}$	$\begin{aligned} & 3.8 \\ & \begin{array}{l} 2.9 \\ 2.5 \end{array} \end{aligned}$
	C	3000											
	C	3000					1 BE						
	A	1550	CW	115	1.1	A	BE	$5 / 16 \times 2$	$2{ }^{2}$	$3 M 543$	$\stackrel{29.00}{ }$	22.25	9.5
	A	1550	CCW	115	1.1	A	1 BE	$5 / 16 \times 2$	$24 / 4$	3M544	29.00	22.25	2.5
	C	1550	${ }_{\text {CW }} \mathrm{CW}$	115	1.1	A	1 SE	$5 / 16 \times 2$	3/4	3M722\#	40.00	30.75	28
	C	1550	CCW*	115	1.1	A	1 BE	$5 / 16 \times 2$ ea*	$31 / 4$	3M724)	48.00	36.85	4.0
1/30	C	3000	$\begin{aligned} & \mathrm{CW} \\ & \mathrm{CW} \\ & \mathrm{CW} \end{aligned}$	$\begin{aligned} & 230 \\ & 115{ }^{* *} \\ & 115 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{SE} \\ & \mathrm{SE} \\ & \mathrm{BE} \end{aligned}$	$\begin{aligned} & 5 / 16 \times 2 \\ & 5 / 16 \times 2 \\ & 5 / 16 \times 2 \end{aligned}$	$\begin{aligned} & 31 / \mathrm{s}, \\ & 31 / 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 3M725 } \\ & \text { 3M777 } \\ & \text { 3M546 } \end{aligned}$	$\begin{aligned} & 43.00 \\ & 43.00 \\ & 33.00 \end{aligned}$	$\begin{aligned} & 32.55 \\ & 32.55 \\ & 25.35 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.4 \\ & 3.2 \end{aligned}$
	$\underset{\text { G }}{\text { C }}$	$\begin{aligned} & 3000 \\ & 1550 \end{aligned}$											
1/25	D	3000	CW	115	1.37	B	SE	$1 / 4 \times 1$	$3^{3 / 1}$	4M300t	48.00	36.30	3.6
	G	1550	CW	115	1.7	A	2 BE	216×2	3\%10	3M547	36.00	27.65	
	B	1550	CW	115	1.9	A	2 SE .	$5 / 16 \times 2$	$31 / 1$	3M778 ${ }^{\text {\% }}$	45.00	34.55	3.8
	G	1550	CW*	115	2.0	A	$2 \mathrm{BE}{ }^{\text {- }}$	$5 / 16 \times 2 \mathrm{ea}^{*}$	$3^{1 / 2}$	3M083	44.00	33.75	3.6
1/15	G	3000	$\stackrel{C W}{C W W}$	$\begin{aligned} & 115 \\ & 115 \end{aligned}$	2.4	A	23	$\begin{aligned} & 5 / 16 \times 2 \\ & 5 / 16 \times 19 / 4 \end{aligned}$	$\begin{aligned} & 3^{3 / 8} \end{aligned}$	3M5484M301	$\begin{aligned} & 36.00 \\ & 4.00 \end{aligned}$	27.45$\mathbf{3 3 . 7 5}$	3.83.8
	F	1550											
	4*		x^{2}		TWO SPEED					3M549 \dagger	36.50		
1/30	A	1550/2-Spd	CW	115	1.4	A	$2 \quad \mathrm{SE}$	5/16 $\times 2$	3			28.05	3.2

[^22]
FAN/BLOWER MOTCRS

3.3" DIAMETER FAN AND BLOWER MOTORS AND KITCHEN EXHAUST FAN MOTORS

SHADED POLE AND PSC, OPEN FAN-COOLED OR OPEN AIR-OVER, SINGLE SPEED

- Open fan-cooled motors have internal fan for mechanical duty applications Sturdy all-steel construction
Typical Uses: OEM and replacement use in a wide variety of fan and blower applications. Internal fan in open fan-cooled motors makes them suitable for mechanical duty applications such as pumps, diaphragm compressors, taboratory equipment and business machines.
Bearings: All-angle, self-aligning sleeve Mounting: Studs on one or both endshields Service Factor: 1.0
Thermal Protection: Auto
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Finish: Gray enamel
Brand: Dayton

(1) Also operable on 50 Hz at $5 / 6$ of 60 Hz speed and HP. (\ddagger) Stock No. 6×652 capacitor is required. (\ddagger) $\mathrm{BE}=$ Both Ends; SE $=$ Shaft End. (\#) Has conduit box

Shaded pole, teao or open, single speed, ventilation/Kitchen exhaust fan motors

Cordset and plug included
Typical Uses: Residential and commercial vent fans manufactured by Broan, Nutone, Penn Ventilator, Miami-Carey, Martin, Patton, Lakewood, Fasco, Bemis, and others. TEAO models are for use in dirty, dusty, noncombustible environments.
Bearings: All-angle, self-aligning sleeve
Mounting: Stud (except No. 4 M195 is resilient ring and has double shaft) Service Factor: 1.0
Thermal Protection: Auto
Body Diameter: 3.3"
Ambient: $40^{\circ} \mathrm{C}$
Finish: Gray enamel
Brand: Dayton

HP	Key	Nameplate RPM	Rotation Facing Shaft	Enclosure	Volts 60 Hz	Full-Laad Amps at Nameplate Votts	l:ts. Class	Pattern	ting Location ${ }^{\text {! }}$	Shaft Dimens. Dia. x L	Length Less Shaft	Stock No.	List	Each	Shpg. Wt.
1/100	A	1550	CW	TEAO	115	0.73	A	1	BE		$23 /{ }^{17}$	$3 M 552$	\$28.00	\$21.47	2.0
1/100	A	1550	CCW	TEAO	115	0.73	1	1	BE	$1 / 4 \times 2$	23/8	3M660	28.00	21.47	2.0
1/100	B	1550	CCW	Open	115	0.48	B	2	OSE	$1 / 4 \times 2$	$2^{3 / 8}$	$4 \mathrm{M192}$	30.00	23.01	2.0
1/50	B	1550	CCW	Open	115	0.85	B	2	OSE	$1 / 4 \times 2$	$23 / 8$	4M193	31.00	23.77	2.0
1/25	A	1550	CW	TEAO	115	1.35	B	9	OSE	$1 / 4 \times 3$	3	4M194	37.00	28.45	3.3
1/25	C	1550	CW*	Open	115	1.60	B	3	BE	$1 / 4 \times 3$ ea	$21 / 4$	4N195	38.00	29.20	2.7

[^23]
3.3" DIAMEFER FAN AND BLOWER MOTORS

FAN/BLOWFR

 MOTORSDesigned to operate in dirty, dusty, noncombustible environments

Typical Uses: OEM and replacement use in a wide variety of fan and blower applications.
Type: Shaded pole
Bearings: All-angle, self-aligning sleeve Mounting: Studs on one or both endshields Enclosure: TEAO
Service Factor: 1.0
Thermal Protection: Auto
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Finish: Gray enamel
Brand: Dayton

${ }^{(}{ }^{*}$) Includes cordset and plug. (\dagger) Has 5.0 cubic-inch junction box. (\dagger) $\mathrm{BE}=$ Both Ends; OSE = Opposite Shaft End; SE = Shaft End.
MANY BRANDS OF LIGHTING PRODUCTS AVAILABLE
halo - appleton - rayovac - ge o kenall

FAN/ELOWER MOTORS

3.3" DIAMETER FAN AND BLOWER MOTORS

- Sturdy all-steel construction
- Bearings surrounded by Permawicke lubrication
- Stators press-fitted into sturdy steel sleeve
Typical Uses: OEM and replacement use in a wide variety of fan and blower applications. Internal fan makes these motors suitable for mechanical duty applications such as pumps, diaphragm compressors, laboratory equipment, and business machines.
Type: Shaded pole or PSC
Bearings: All-angle, self-aligning sleeve or ball
Mounting: Cradle base or stud (see mounting patterns below)-

Enclosure: TEFC

Service Factor: 1.0
Thermal Protection: None (except No. 4M202 is auto-thermal protection)
Body Diameter: 4^{n} including fan shroud
Shaft Dimensions: $5 / 16 \times 2^{\text {" }}$
Ambient: $40^{\circ} \mathrm{C}$
Duly: Continuous
Finish: Gray enamel
FBrand: Dayton

CAUTION:

CAUTION:
Not for fans in unatiended areas. Reter to page 5 for UL507 Standard, Reier to page 5 for UL507 Standard,
proper thermal protection, and other proper thermai protection, and
motor selection information.

MOUNTING PATTERNS

Fig. 1, Stud

Fig: 2, Stud

Fig. 3, Base

(*) Also operable on 50 Hz at $5 / 6$ of 60 Hz rated speed and HP . (\dagger) Capacitor meluded. (\dagger) SE = Shaft End. (\#) Auto-thermal protection.

MANY BRANDS OF HAIND TOOLS AVAILABLE

UNIT BEARING MOTORS

DAYTON BRAND, SHADED POLE

- Aluminum housing

Typical Uses: Refrigerator and freezer fans, commercial refrigeration equipment, room and hood ventilators, room heaters, evaporative coolers, humidifiers, dehumidifiers, and other equipment having 6 to $10^{\prime \prime}$ hubless fan blades.
Special Features: Precision machired diecast aluminum housing. Pre-oiled using large capacity felt wicking system. Kit included in carton contains vibration dampener, speed nut, and four No. 8-36 mounting screws, except No. 3 M 627 which requires only three screws (included).

Mounting: All-angle. Four tapped No. 8-36 mounting holes $2^{13} / 16^{17} \mathrm{OC}$ at lead end and rigid foot base (except 2 watt model).
Enclosure: TEAO
Service Factor: 1.0
Insulation Class: A
Body Diameter: $3^{1 / 21} 2^{11}$
Shaft Dimensions: $1 / 4 \times 7 / 16^{n}$ threaded
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Finish: Gray
Brand: Dayton
CSA Certified: 9 thru 16 watt models only

(*) Models with 2 through 6 rated output watts also operable on 50 Hz .

MORRILL MOTORS BRAND, HIGH EFFICIENCY, SHADED POLE

- Afuminum housing

Typital Uses: Domestic refrigerator and freezer fans, commercial refrigeration equipment, room and hood ventilators, room heaters, evaporative coolers, humidifiers, dehumidifiers, and on other equipment having 6 to $10^{\prime \prime}$ fan blades.
Special Features: High efficiency design. Precision machined die-cast aluminum housing. Positive flow lubrication system with large pre-oiled felt wick reservoir and hardened motor shaft for long life without re-oiling. Kit included in carton contains speed nut and four No. 8-36 thread-mounting mounting screws.

Mounting: Horizontal or vertical shaft-up. Five mounting holes, $2^{1 / 2^{\prime \prime}}$ OC at lead end and two rigid foot bases, top and bottom, with four mounting holes.
Enclosure: TEAO
Thermal Protection: 2 thru 6 watt models, impedance; 9 watt models, auto
Insulation Class: B
Body Diameter: $3^{1 / 22^{\prime \prime}}$
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Finish: Unpainted aluminum
Brand: Morrill
UL Recognized: E81645 or E81653

Rated Output Watts	HP	Nameplate RPM	Rotation Facing Shaft End*	$\begin{aligned} & \text { Volts } \\ & 50 / 60 \\ & \mathrm{~Hz} \end{aligned}$	Full-Load Amps at Nameplate Volts	Threader Shaft Dimens.	Length Less Shaft	Morrill Model	Stock No.	List	Each	Shpg. Nt
2	1/370	1550	CCW	115	0.16	1/4 $\times 3 / 8{ }^{\prime \prime}$	$3{ }^{1 /}$	SPBB2H1775A	- 3M987t	\$21.00	\$14.93	1.6
5	$\begin{aligned} & 1 / 150 \\ & 1 / 150 \end{aligned}$	1550 1550	CW	115	0.34 0.34	$1 / 4 \times 3 / 8$ $1 / 4 \times 3 / 8$	3	SP-B5HUEMR1 SP-B5HUEM1	- 3 3 31331	$\begin{aligned} & 27.00 \\ & 27.00 \end{aligned}$	19.21	1.9
6	$\begin{aligned} & 1 / 25 \\ & 1 / 25 \end{aligned}$	$\begin{aligned} & 1550 \\ & 1550 \end{aligned}$	$\begin{aligned} & \mathrm{CW} \\ & \mathrm{CCW} \end{aligned}$	115	$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$1 / 4 \times 3 / 8$ $1 / 4 \times 3 / 8$	3	SP-B6HLEMR1 SP-B6HLEM1	- 3 M 1 H33	29.00 29.00	$\begin{aligned} & 20.61 \\ & 20.61 \end{aligned}$	2.3 2.2
9	$\begin{aligned} & 1 / 83 \\ & 1 / 83 \\ & 1 / 83 \\ & 1 / 83 \end{aligned}$	1550 1550 1550 1550	CW CCW CW CCW	115 115 230 230	0.53 0.53 0.27 0.27	$1 / 4 \times 3 / 8$	$3^{1 / 2}$ $31 / 2$ $31 / 2$ $3^{1 / 2}$	SP-B9HLEMRI SP-B9HUEM1 SP-B9HUEMR2 SP-B9HLEM2	$3 N 335$ $-3 M 336$ $-3 N 337$ $-3 M 338$	30.00 30.00 31.00 31.00	21.29 21.29 22.03 22.03	2.2 9.9 1.9 -2.2

[^24]
FAN/ELOWER MOTORS

UNIT BEARING MOTORS

Typical Uses: Domestic refrigerator and freezer fans, commercial refrigeration equipment, room and hood ventilators, room heaters, evaporative coolers, humid ifiers, dehumidifiers and other equipment having 7 to $10^{"}$ hubless fan blades.
Special features: Precision machined, castiron or aluminum housings. Pre-oiled for long use without re-oiling.
Mounting: All-angle. Three No. 8-36 mounting holes $2^{1 / 2^{\prime \prime}}$ OC at lead end and rigid foot base (except 2 watt models)

Type: Shaded pole or PSC
Enclosure: TEAO
Service Factor: 1.0
Thermal Protection: 2 thru 9 watt and 4M530, impedance; 16 watt models, auto
Body Diameter: $3^{1 / 22^{n}}$ (GE 51 frame)
Shaft Dimensions: $1 / 4-20 \times 1 / 2^{\prime \prime}$ threaded shafts
Ambient: $50^{\circ} \mathrm{C}$
Duty: Continuous air-over
Finish: Black enamel (Nos. 4M235, 3M394 are natural finish)
Brand: GE

(*) Includes spectal grounding provsion and is an OEM replacement of 3-pin leadiess unit bearing motors found in $G E$ and Hotpoint brand refrigerators.
(\uparrow) GE motors are nameplated rotation viewing lead end. (\ddagger) RPM at rated load, no load RPM is approximately 1550 .
CAUTIONENot for fans Jh Unattended areas.

Fraser-Johnston. Heatung and Ar Conditioning

MANY BRANDS OF A/C AND REFRIGERATION PRODUCTS AVAILABLE

Whirlpool
the coolone

UNIT BEARING MOTORS

GE BRAND, SHADED POLE

Typical Uses: Room air conditioners, fans, air coolers, unit heaters, condenser units, and other air-over motor applications.
Mounting: All-angle, resilient ring and four No. 8-32 holes $2^{7} / 8^{n}$ bolt circle for shaft end mounting. Nos. 3 M179, 3M183, 3M186, 3 M187, and 3M189 are hole mount only. Bases and accessories available on pages 185 and 187.

Service Factor: 1.0
Thermal Protection: Auto
Insulation Class: A
Body Diameter: $4^{\prime \prime}$ (GE 11 frame)
Ambient: $50^{\circ} \mathrm{C}$
Duly: Continuous air-over
Finish: Black enamel
UL Recognized: Thermal protection (E27885); insulation system (E37513); and construction (E46035)

Watts	HP	$\underset{\mathbf{H P}}{\mathrm{Mil}}$	Nampoplate RPM	Rotation Faciag Shaft End	Enclosure	Volts 60 Hz	Full-Load Ampss at Namepiata Yolts	13/40ia. Resil. Rings OC	Shaft Dimens.	Length Less Shaft	$\begin{aligned} & \text { GE } \\ & \text { Stock } \\ & \text { No. } \end{aligned}$	Stock No.	List	Each	Shpg. Wt
18	1/40	25	1550	CCW	Open	115	1.3	$4^{1 / 2^{\prime \prime}}$	$5 / 16 \times 1{ }^{1 / 4}{ }^{*}$	$4^{13 / 16^{*}}$	1531	$3 \mathrm{M170}$	\$119.00	\$73.75	4.0
			1550	CW	Open	115	1.3	$41 / 2$	$5 / 16 \times 11 / 4$	413/66	1541	3N171	119.00	73.75	4.2
			1550	CW	TEAO	115	1.3	$4^{1 / 2}$	$5 / 16 \times 11 / 4$	$413 / 16$	1009	$3 \mathrm{M172}$	157.00	97.25	4.0
			1550	CCW	Open	208-230	0.6	$41 / 2$	$5 / 16 \times 11 / 4$	43/16	1532	3M175	121.00	74.95	4.2
			1650	CW	Open	208-230	0.6	$41 / 2$	$5 / 16 \times 1 / 4$	43/16	1542	3 M 176	121.00	75.00	4.0
			1550	CW	TEFC	115 208-230	1.30 .6	$51 / 2$	$5 / 16 \times 11 / 4$	$57 / 8$	1012	3M173	186.00	115.25	4.5
\cdots			1550	CCW	TEAO	115/208-230	1.30.6	$41 / 2$	$5 / 16 \times 11 / 4$	$4^{13 / 16}$	1011	3M174	176.00	109.05	4.2
25	1/30	35	1550	cW	Open	115	1.6	$41 / 2$	$5 / 16 \times 11 / 4$	$4^{13 / 16}$	1007	$3 \mathrm{M177}$	158.00	97.90	4.0
\%			1550	CCW	Open	115	1.7	45/8	$5 / 16 \times 11 / 4$	$5^{1 / 16}$	1431	3 M 114	129.00	79.95	4.3
			1550	CW	Open	115	1.7	45/8	$5 / 16 \times 11 / 4$	51/66	1441	3 M 116	129.00	79.95	4.8
管			1550	CW	TEFC	115	1.7		$5 / 16 \times 1{ }^{1 / 4}$	511/18	1013	3M179	161.00	99.75	4.5
\bigcirc			1550	CCW	Open	208.230	0.9	45/8	$5 / 16 \times 1{ }^{1 / 4}$	51/16	1432	$3 \mathrm{M115}$	132.00	81.80	
			1550	CW	Open	208-230	0.9	45/8	$5 / 16 \times 1 / 4$	5 $2 / 16$	1442	3 M 117	132.00	81.80	4.5
\%			1550	CCW	Open	208-230	0.8		$5 / 16 \times 11 / 4$	$315 / 15$	1006	3M183	165.00	102.25	4.1
			1550	CCW	TEFC	115/208-230	-1.70.9	$5^{33 / 16}$	$5 / 16 \times 1 / 4$	$61 / 8$	1020	3M180	197.00	122.05	5.1
\%			1550	CW	TEFC	115/208-230	1.7\%.9	533/16	$5 / 16 \times 11 / 4$	$6^{1 / 8}$	1021	3m181	197.00	122.05	5.0
35	1/20	35	1550	CCW	Open	115	2.2	43/4	$5 / 16 \times 2$	51/16	1331	3 M 184	147.00	91.05	4.5
			1550	CW	Open	115	2.2	43/4	$5 / 16 \times 2$	$5^{1 / 16}$	1341	3 M 185	147.00	91.05	5.0
榙 W			1550	CW	Open	115	2.2	-	$5 / 16 \times 1{ }^{1 / 4}$	$4^{13 / 16}$	1017	3 M 186	150.00	92.90	4.5
			1550	CCW	Open	208-230	1.1	45/8	$5 / 16 \times 2$	51/16	1332	$3 M 952$	150.00	92.90	4.5
			1550	CW	Open	208-230	1.1	45/8	$5 / 16 \times 2$	$51 / 16$	1342	$3 \mathrm{M188}$	150.00	92.90	4.5
			1550	CCW	Open	${ }_{1}^{208-230}$	1.1		$5 / 16 \times 11 / 4$	413/16	1016	$3 \mathrm{M189}$	171.00	105.95	4.5
			1550	CW	TEFC	115208-230	2.21 .1	-	$5 / 16 \times 1^{1 / 4}$	$515 / 16$	1019	3 M 187	193.00	119.60	5.0
59	1/15	35	1550	CCW	Open	208-230†	1.2	5	$5 / 16 \times 1{ }^{1 / 2}$	53/3	1232	3M986	157.00	97.25	5.3

${ }^{(}{ }^{*}$) GE motors are nameplated rotation viewing lead end (t) $60 / 50 \mathrm{~Hz}$.

S 34

EMS BRAND, SHADED POLE

Typical Uses: Commercial refrigeration fans, refrigerated vending machines, ice makers, drink dispensers, condensing units, room heaters, environmental cabinets, and other equipment having 7 to $12^{\prime \prime}$ fan blades.
Special features: Precision machined castiron housing. Pre-oiled felt wick for extended use without re-oiling. Nos. 4M159 and 4M160 have flat shafts; all others have threaded.

Mounting: Horizontal; rigid foot base
Service Factor: 1.0
Thermal Protection: Auto
Insulation Class: A
Body Diameter: 37/8"
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over Finish: Black enamel
UL Recognized: Thermal protection (E128044) and construction (E131620)

Rated Output Watts	HP	Nameplate RPM	Rotation Facing Shaft End	Enclosure	Volts 60 Hz	Full-Load Amps at Nameplate Voits	sheft Dimensions Dit . x Length	Langth Lass Shaft	EMS Mode!	Stock No.	List	Each	Shpg. Wt.
16	$\begin{aligned} & 1 / 47 \\ & 1 / 47 \end{aligned}$	1500 1500	$\begin{aligned} & \mathrm{CCW} \\ & \mathrm{CCW} \end{aligned}$	TEAO	115 230	0.8 0.4	$1 / 4 \times 1 /{ }^{1 / 2}$	$\begin{aligned} & 31 / 3^{n} \\ & 3^{1 / 2} \end{aligned}$	$\begin{aligned} & \text { ESP-L16EM1 } \\ & \text { ESP-L16EM2 } \end{aligned}$	$\begin{aligned} & 4 M 153 \\ & 4 M 154 \end{aligned}$	$\begin{gathered} \$ 58.00 \\ 64.00 \end{gathered}$	$\begin{array}{r} \$ 41.80 \\ 46.10 \end{array}$	4.5
25	$\begin{aligned} & 1 / 30 \\ & 1 / 30 \end{aligned}$	$\begin{aligned} & 1500 \\ & 1500 \end{aligned}$	$\begin{aligned} & \mathrm{CCW} \\ & \mathrm{CCW} \end{aligned}$	TEAO	115 230	1.1	1/4 $1 / 4 \times 1 / 2$	31/2	ESP-L25EM1	$\begin{aligned} & 4 M 155 \\ & 4 M 156 \end{aligned}$	78.00	51.85 53.30	4.5
35	1/22	$\begin{aligned} & 1500 \\ & 1500 \end{aligned}$	$\begin{aligned} & \mathrm{CCW} \\ & \mathrm{CCW} \end{aligned}$	TEAO	$\begin{aligned} & 115 \\ & 230 \end{aligned}$	1.4	$\begin{aligned} & 1 / 4 \times 1 / 2 \\ & 1 / 4 \times 1 / 2 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 31 / 2 \end{aligned}$	$\begin{aligned} & \text { ESP-L35EMI } \\ & \text { ESP-L35EM2 } \end{aligned}$	$\begin{aligned} & 4 M 157 \\ & 4 M 158 \end{aligned}$	76.00 77.00	$\begin{aligned} & 54.75 \\ & 55.45 \end{aligned}$	4.5 4.5
50	$\begin{aligned} & 1 / 15 \\ & 1 / 15 \end{aligned}$	1500 1500	$\begin{aligned} & \mathrm{CCW} \\ & \mathrm{CCW} \end{aligned}$	$\begin{aligned} & \text { OpAO } \\ & \text { OpAO } \end{aligned}$	115 230	1.7	$\begin{aligned} & 3 / 8 \times 11 / 2 \\ & 3 / 8 \times 1_{1} \end{aligned}$	3314	OL50EM1	4M159	30.00 83.00	57.60 59.80	$\begin{gathered} 5.8 \\ 5.8 \end{gathered}$

FAN/BLOWER MOTORS

C-FRAME MOTORS

SHADED POLE, C-FRAME (3" HIGH), OPEN AIR-OVER, SINGLE AND TWO SPEED

Typical Uses: Small fans and blowers found in bathroom ventilators, rangehoods, electric heaters, hair dryers, slide projectors, air cleaners, humidifiers and refrigeration equipment. Ball bearing models are designed for extended life in temperaturesensitive applications such as business machine cooling systems, audio visual equipment, and wood burning stoves.
Special Features: Coils are bobbin-wound for uniformity and are wrapped with flame retardant material.
Bearings: Sleeve type are sintered bronze with large felt wick oil reservoir; ball bearings are permanently lubricated and double-shielded. All have zinc die-cast bearing brackets.
Mounting: Studs from shaft end, two $9 / 64^{*}$ dia. mounting holes on eactr side of stator $17 / 8^{4}$ OC. All-angle.
Service factor: 1.0
Ambient: $4 \theta^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CW facing shaft
Brand: Daytón
-IL Recognized: (E47479) for construction; (E40077) for impedance protection;
(E37403) for thermal protection

CAUTION:

CAUTION:
Not tor fans in unattended areas." Roter to page 5 for ULS07 Standard. Reter to page
proper thermal protection, and other proper thermaion pintermation.

HP	Narnoplate RPM	Thermal Protection	Volts 60 Hz	FullLaad Amps	Stack Size	Shaft Dinuensions Dia, x length	Length Less Shaft	Stack No.	List	Each	Sing. W.
1/500	3000	Impedance	115	0.26	$3 / 8{ }^{\prime \prime}$	$3 / 16 \times 1^{\prime \prime}$	11/4"	4M067	\$10.50	\$9.37	0.8
1/250	3000 3000	Impedance Impedance	115 230	0.32 0.15	$1 / 2$	$3 / 16 \times 1$ $3 / 16 \times 1$	$17 / 16$ $1 / 16$	4M068	11.00 11.30	9.63 9.88	1.0
1/150	3000 3000	Impedance	115 230	0.43 0.21	$\begin{aligned} & 5 / 8 \\ & 5 / 8 \end{aligned}$	$3 / 16 \times 1$ $3 / 16 \times 1$	$19 / 16$ $19 / 6$	$4 \mathrm{4M070}$	11.70	10.30 10.51	1.2
1/100	3000	Lmpedance	115	0.47	7/8	$3 / 16 \times 1$	13/16	$4 \mathrm{MO72}$	15.00	12,44	1.6
1/70	3000	Auto	115	0.88	$7 / 8$	$3 / 16 \times 1$	$113 / 18$	$4 \mathrm{MO73}$	16.30	14.45	16
	3000	Auto	230	0.44	$7 / 8$	316×1	$1{ }^{13} 9_{16}$	4M074	16.60	14.67	1.5
	3000/2-Spd	Auto	115	0.76	7/8	$3 / 16 \times 1$	$1{ }^{12 / 16}$	4 M 1075	16.70	14.73	1.5
1/40	3000.	Auto	115	1.10	11/2	$1 / 4 \times 1$	$2^{7 / 16}$	$4 \mathrm{M076}$	20.30	17.90	2.5
1/20	3000	Auto	115	2.9	2	$1 / 4 \times 1$	3	5 N 064	28.00	24.00	3.5
1/250	3000	Impedance	115	0.42	1/2	$3 / 16 \times 2$	$17 / 18$	$4 \mathrm{H}^{1} 077$	20.40	18.17	2.0
1/150	3000	Impedance	115	0.51	5/8	$3 / 16 \times 2$	19/16	$4 \mathrm{M078}$	21.80	19.26	1.3
1/70	3000	Auto	115	0.88	$7 / 8$	$3 / 16 \times 2$	$1{ }^{13 / 16}$	4M079	25.90	22.86	1.7
1/40	3000	Auto	115	1.10	$11 / 2$	$1 / 4 \times 2$	27/16	4MOSO	30.70	27.05	2.7

SHADED POLE, C-FRAME (3 " HIGH), OPEN AIR-OVER, OEM REPLACEMENT

Typical Uses: OEM replacement motors in popular kitchen and bath vent fans manufactured by Broan, Nutone, Aubrey, and Easco.
: Special Features: Short cordset with two prong male plug. Bobbin-wound coil is wrapped with flame retardant material.
Bearings: Bronze sleeve with large felt wick oil reservoir.

OEM Mit.	$\begin{gathered} \text { OEM } \\ \text { Part No. } \end{gathered}$	HP	$\begin{aligned} & \begin{array}{l} \text { Name- } \\ \text { plate } \\ \text { RPMM } \end{array} \end{aligned}$	Rotation Facting Shatt	$\begin{aligned} & \text { Yons } \\ & \text { co } \end{aligned}$	$\begin{aligned} & \text { Full- } \\ & \text { coad } \\ & \text { Amps } \end{aligned}$	$\begin{aligned} & \text { Stack } \\ & \text { Size } \end{aligned}$	$\begin{gathered} \text { Shaft } \\ \text { Dimensions } \\ \text { Dia. x Lenggth } \end{gathered}$	$\begin{gathered} \text { Stock } \\ \text { No. } \end{gathered}$	List	Each	Stpg.
Nutone	C65878	1150	2800	CCW	115	0.78	122°	$7 / 32 \times 1 / 4$	4 m 209	\$17.70	\$15.64	1.0
Fasco	068481027	${ }^{1 / 125}$	$\stackrel{2750}{ }$	CW	115	0.74	$1 / 2$	$316 \times 11 / 8$	${ }^{4} 1212$	14.70	${ }^{13.01}$	1.0
Nutane, Air-King	Various	1/150	2750	CW	115	0.47	5/8	$7 / 32 \times 21 / 4$	4 M 180	15.00	14.15	1.3
Braan	${ }_{200080207}$	$1 / 50$	$\underline{2800}$	CCW	115	0.66	誯	3/16 ${ }^{19176}$	4M210	15.30	${ }_{13}^{13,12}$	1.2
Aubray	$2200-92$	1/50	2850	CW	115	0.68	58	3/16x	4M211	15.00	1322	1

SHADED POLE, C-FRAME (3 " HIGH), OPEN AIR-OVER

Typical Uses: Direct replacement for Carrier high efficiency combustion furnaces.
Special Features: Plug provides exact interchange ability with the OEM motor. Double shaft extension.
Bearings: Ball

Mounting: Hole
Service Factor: 1.0
Ambient: $40^{\circ} \mathrm{C}$
Rotation: CW view facing lead end Brond: Dayton
UL. Recognized: (E47479) for construction;
(E37403) for thermal protection

MP	$\begin{aligned} & \text { Name- } \\ & \text { plate } \\ & \text { RPM } \end{aligned}$	Thermal Pratection	Volts 60 Hz	FulliLoad Amps	Stack Size	Shalt Dimensions Dia. x Length	Langth Less Shaft	Stock Mo.	List	Each	Shpg. W2.
$1 / 40$ $1 / 40$	3200 3200	Auto	120 230	2.5	$11 / 4$	732 3 3 $34.5 / 16 \times 2^{n}$	21/3"	5M065	24.00 45.00	\$32.80	3.1
$1 / 40$	3200	Alto	230	1.4	11/2	$7 / 32 \times 3 / 4,5 / 16 \times 2$	$21 / 2$	5 5066	45.00	33.95	3.0

UNIT BEARING MOTORS AND VENTILATION／REFRIGERATION MOTORS

UNIT BEARING AGITATOR MOTORS

Typical Uses：Direct replacements on ice bank beverage dispensers．
Special Features：Cast－iron unit bearing con－ struction with machined stainless steel shaft．Original equipment on Cornelius， Lancer，Alco，Wilshire，Booth，K－Way，and Multiplex．Eleven \＃8－36 mounting screws included．
Mounting：Rigid foot base，vertical shaft down
Enclosure：Totally enclosed

Service Factor： 1.0
Thermal Protection：Auto
Insulation Class：A
Body Diameter：37／8＂
Ambient： $40^{\circ} \mathrm{C}$
Duty：Continuous
Rotation：CCW view facing shaft end Finish：Black enamel
Brand：Electric Motors and Specialties
UL Recognized：E131620 for construction；
E128044 for thermal protection

Watts	Nameplate RPM	Volts $60,50 \mathrm{~Hz}$	Full－Load Amps at Nameplate Voits	Shaft Dimansions Dia．x Length	EMS Model	Stock No．	List	Each	Shpg． Wt．
15 15	1550 150	115 115	0.6	$5 / 16 \times 7^{\prime \prime}$ w／1／4－20 thread $5 / 16 \times 5^{n}$ w／l $1^{\text {f flat }}$	ESPLI6EM－JRIB1 ESPL15EMJR1B2	$\begin{aligned} & 5 M 067 \\ & 6 \end{aligned}$	$\$ 95.00$	$\$ 68.40$	$\begin{aligned} & 5.0 \\ & 4.9 \end{aligned}$
15	1550	115	0.6	$5 / 16 \times 5^{\prime \prime} w / 1^{\prime \prime}$ flat	ESPLL5EMJR1B2	5M068	92.00	66.25	4.9

VENTILATION／REFRIGERATION MOTORS

IT UNIVERSAL EVAPORATIVE FAN MOTOR KIT
itypical Uses：Replaces hun－ dreds of various OEM motors as well as GEM EM－ 240 Series， MARS \＃90999，SUPCO \＃SM－ 699 ，and Acme－Miami AM－4240 Series C－frame with 3^{n} overall fieight．
Special Features：Contains all tecessary hardware，adapters， Gackets，and complete instal－ Iation instructions． $2^{\prime \prime}$ break－ off shaft．
$\stackrel{y}{2}$
UNIVERSAL REFRIGERATION FAN MOTOR KIT
Typical Uses：Replaces hundreds of standard C－frame motors as well as $3.3,3.5$ ，and $4^{\prime \prime}$ diame－ ter motors．
Special Fectures：Contains 4 and $5^{*} / 2^{\prime \prime}$ fan blades，hub adapter， screws，H－brackets，washers， and wire nuts for a wide vari－ ety of mountings．

UNCASED SMALL FAN MOTOR

Typical Uses：Driving small fans and blowers found in bath－ room ventilators，rangehoods， electric heaters，hair dryers， slide projectors，air cleaners， humidifiers，and refrigeration equipment．
Special Features：Two coil con－ struction．
struction.

Type：Shaded pole
Bearings：Sleeve
Enclosure：Open air－over
Duty：Continuous

HP	Name－ plate RPM	Rotation Facing Shaft End	Thermal Protection	Volts 60 Hz	Full－Load Amps at Nameplate Volts	Service Factor	ins． Class	Shatt Dimensions Dia．x Length	Stock No．	List	Each	Shpg． Wt
：			＊UNVERSAEEVAPQRATOR FAN MOTOR KIT									
1／250	3000	Mechanically Reversible	Impedance	115	0.32	1.0	A	－	4M249	\＄25．40	\＄22．33	1.5
			UNIVERSALREFRIGERATION FAN MOTOR KII									－5xax
1／150	3000	Mechanically Reversible	Impedance	115	0.35	1.0	B	$3 / 16 \times 1 / k^{\prime}$	$4 \mathrm{M987}$	2330	19.84	1.5
	\therefore ．．．		＊									小至豆
1／70	3000	CW	Auto	115	1.0	1.0	A	$1 / 4 \times 2^{*}$	3M566	26.00	19.46	1.7
SEE WARRANTY INFORMATION ON PAGE OPPOSITE INSIDE BACK COVER											117	

C-FACE MOTORS

SPLIT-PHASE C-FACE MOTORS

- $21 / 4^{n}$ shaft length $\times 5 / 8^{n}$ diameter

Typical Uses: Commercial fans, blowers, and other air-moving applications that can be directly mounted to a C-face endmounted motor.
Bearings: Ball
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: GE

CAUIION: K K forfans in unottended areas.

Refer to poge 5 for UL 507 Standard, proper thermat protection, and other motor selectioninformation.

GRAINGER STOCKS A BROAD LINE OF DAYTON AND GE MOTORS

Dayton

Top Performance. Dayton motors are built to exceed industry standards such as NEMA (National Electrical Manufacturers Association). Used as a replacement motor in a wide variety of applications, each Dayton motor must outperform the best motor it may be called upon to replace, hence "best of the best" performance. You can be confident that the Dayton motor will work as well as, or better than, the motor you are replacing.
Top Quality Verified by Engineers. Grainger's Engineering Dept., with its "state-of-the-art" test lab, confirms that Dayton motors consistently meet or exceed top performance standards. Engineering also confirms the motors have applicable agency approvals such as UL and CSA.
Clearly Identified. Dayton motors are clearly identified by full fact carton labels and nameplates with wiring diagrams. Maintenance and installation instructions appear in every motor carton.
Broad line Offering. Dayton offers one of the broadest lines of motors in the industry. One brand can be used for nearly all your motor replacement needs.
Time Proven Performance. Established in 1937, Dayton has grown to be one of the most dependable names in the motor industry.

Broad line Offering. Grainger now offers over 2400 stock GE brand motors including AC and DC motors from 1/370 HP to 450 HP in Energy \$aver ${ }^{\text {nx }}$ and standard efficiency designs including severe duty, explosion proof, farm duty, HVAC, and many others.
National Recognition. GE is considered the leading national brand motor with the largest installed customer base. The GE brand is widely known for quality and reliability.
Clearly Identified. GE motors are clearly identified by full fact carton labels and nameplates. Easy-to-read wiring diagrams are included.
Premium Efficiency Leader. GE has long been recognized as an industry leader in premium efficiency motors with a wide variety of ratings and types to suit many applications.
Heritage of Excellence. General Electric is one of the pioneers in the electrical industry with a proud 100 year history dating back to the time of founder Thomas Edison.

CAPACITOR-START C-FACE MOTORS

- Copper windings
- Removable base on 145TC and larger frame sizes
- Service factors up to 1.35

Typical Uses: For powering industrial and commercial pumps, speed reducers, blowers, machine tools, and other equipment that can be directly connected to an endmounted motor.

Type: Capacitor-start
Bearings: Double-shielded ball
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: Dayton

HP	Nameplate RPM	NEMA Frame	Themal Protection	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	Ins. Class	Stock No.	List	Each	Shipg. Wt
$1 / 3$	- $\begin{array}{r}1725 \\ -1725\end{array}$	${ }_{56 \mathrm{C}}^{56}$	None Auto	1158230 115230	$6.8 / 3.4$ 6.83 .4	1.35 1.35	${ }_{\text {A }}$	5K339 6K005	170.00 177.00	130.00 135.35	18.0 19.0
$1 / 2$	1725	56 C	None	1151230	$9.0 / 4.5$	1.25	A	5K340	193.00	147.55	21.0
3/4	1725	66C	None	1151230	11.2/5.6	1.25	A	5K435	233.00	178.25	25.0
1	1725	56 C	None	115250	13.6/6.8	1.15	A	$5 \mathrm{K673}$	260.00	199.0	30.0
11/2	1725	56 C	None	115.230	$20.4 / 102$	1.15	B	1 K 073	299.00	228.75	37.0
2	1725	56 C	None	$115 / 230$	21.4/10.7	1.15	B	1K074	367.09	281.00	40.0
1/3	1725	56 C	None	115.230	6.83.4	1.35	A	5K109	188.00	14220	20.0
$1 / 2$	1725	56 C	None	115.230	9.044 .5	1.25	A	5K110	212.00	162%	22.0
3/4	1725	56 C	None	115.230	11.25 .6	1.25	1	1K084	243.00	186.25	28.0

$\begin{aligned} & 1 \\ & 11 / 2 \\ & 2 \\ & 3 \end{aligned}$	1740	$145 \mathrm{TC}+$	None	115230	14.47 .2	1.15	B	$4 \mathrm{K811}$	228.00	21425	40.0
	1740	$145 \mathrm{TC} \dagger$	None	115×230	20.810 .4	1.15	B	4K812	283.00	266.25	43.0
	1740	$182 \mathrm{TC}+$	None	115/230	25.6×128	1.15	B	48813	320.00	290.00	64.0
	3500	$182 \mathrm{TC} \dagger$	None	115/230	32016.0	1.15	B	4K814	451.00	499.00	72.0
	1740	$184 \mathrm{TC} \dagger$	None	1151230	33.016 .5	1.15	B	$4 \mathrm{K815}$	433.00	392.75	86.0
$1 / 8$	1725	42C2\#	None	115230	4.02 .0	1.0	B	1K056	154.00	117.70	18.0
1/6	1725	42CZ\#	None	$115 / 230$	4.22 .1	1.0	B	1*057	158.00	120.85	18.0
1/4	1725	42CZ\#	None	115230	5.22 .6	1.0	B	1K058	166.00	126.90	22.0
	1725	56 C	None	$115,230$	5.22 .6	1.0	A	6 K 975	166.00	126.95	18.0
1/3	3450	56 C	Auto	115230	6.4/3.2	1.0	A	6K181	150.00	111.70	19.0
	1725	42CZ\#	None	115.230	7.08 .5	1.0	B	1 K 059	182.00	139.15	23.0
	1725	56 C	None	1151230	6.8/3.4	1.0	A	$5 K 341$	182.00	139.15	20.0
1/2	3450	$56 \mathrm{C}$		115.230	8.044.0	1.0	$\frac{1}{B}$	6×182	168.00	125.15	21.0
	1725	$56 \mathrm{C}$	None	115230	9.04 .5	1.0	B	$6 K 342$	213.00	163.00	22.0
$3 / 4$	3450	$56 \mathrm{C}$	Auto	115/230	9.84 .9	1.0	A	$6 K 831$	194.00	14450	26.0
	1725	$56 \mathrm{C}$	None	$115 \sqrt{230}$	11.25 .6	1.0	B	6 K 436	252.00	193.00	28.0
1	3450	$56 \mathrm{C}$		115230	1206.0	1.0	A	6×197	239.00		
	1725	$56 \mathrm{C}$	None	110230	13.66 .8	1.0	B	6×674	288.00	220.50	320
11/2	3450	$56 \mathrm{C}$		115230	15.677 .8		A	$6 K 832$	289.00	215.50	38.0
	1725	$56 \mathrm{C}$	None	1158230	1768.8	1.0	B	6K702*	326.00	249.25	40.0
2	1725	56 C	None	115230	19.09.5	1.0	B	1K075*	491.00	375.75	40.0
\cdots				TEFC, RID MEADED BASE							
1/3	3450	56C	duto	115230	0.13 .2	1.0	A	11076	154.00	117.70	20.0
	1725	56 C	None	115930	6.33 .4	1.0	\pm	1×077	185.00	141.45	21.0
1/2	3450	56 C	Auto	119230	8.04.0	1.0	A	1 K 078	177.00	135.35	22.0
	1755	56 C	None	115230	9.04 .5	1.0	B	11079	223.00	170.75	23.0
$3 / 4$	3450	56 C	Auto	115230	9.849	1.0		1 K 080	198.00	151.50	28.0
	1725	56 C	None	115230	1125.6	1.0	B	1K081	267.00	204.25	29.0
1	3450	56 C	None	115230	19.06 .0	1.0	B	3 K 348	219.00	167.75	29.0
	1725	56 HC	None	115230	$13 . 亡 6.5$	1.0	B	6 K 045	303.00	232.00	33.0
$1^{11 / 2}$	1795	56 HC	None	1151230	17.68 .8	1.0	B	1K082	359.00	274.75	
	1725	56 HC	None	115230	19.095	1.0	B	1 K 083	494.00	378.00	43.0

(*) Capacitor-start, capacitor-run. $\binom{\dagger}{$ (} Removable base.
NOTE: All TEFC and T-frame models suppled with condut box.
CAUTION: Nof for fans in unattended areas.
Refer to page 5 for ULSQ7 Standard, proper thermal protection, and other motor selection information.

C－FACE MOTORS

CAPACITOR－START C－FACE MOTORS

Typical Uses：For powering industrial and commercial pumps，speed reducers machine tools，and other equipment that can be directly connected to a NEMA 56C face end－mounted motor．
Type：Capacitor－start

Bearings：Ball

Ambient： $40^{\circ} \mathrm{C}$
Duty：Continuous
Finish：Gray
Brand：GE

PARTS AVAHABLE
CAll
$1-600-323-0620$

\％ 8 8 8	CAUTION： Not for fans in unattended areas． Reler to page 5 for UL507 Standard， proper thermal protection，and other motor selection information．												
				Thermal Protection									
н券	Nameplate RPM	NEMA Frame	Rotation Facing Laad End		Volts 60 Hz	Full－Load Amps at Nameplate Volts	Service Factor	Ins. Class	GE Stock No．	Stock No．	List	Each	Shpg． Wt．
y		Frxat		委采				\cdots					
1／4	1725 1725	56C	CW／CCW	None Auto	$115 / 208-230$ $115 / 230$	${ }_{\text {5．2／2．7－2．6 }}^{5.2 / 2.6}$	1.35 1.35	B	${ }_{\text {C1296 }}$	$3 k 070$ $2 K 648$	$\$ 166.00$ 173.00	$\begin{array}{r} \$ 100.60 \\ 104.85 \end{array}$	15.0 16.0
$1 / 3$	1725	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{C} \\ & 56 \mathrm{~J} \ddagger \end{aligned}$	$\begin{aligned} & \mathrm{CW} / \mathrm{CCW} \\ & \mathrm{CW} / \mathrm{CWW} \\ & \mathrm{CCW} \end{aligned}$	None Auto Auto	$\begin{gathered} 115 / 208-230 \\ 115 / 230 \\ 115 / 230 \end{gathered}$	$\begin{gathered} 6.6 / 3.4-3.3 \\ 6.633 .3 \\ 6.6 / 3.3 \end{gathered}$	1.35	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { C355 } \\ & \text { C356 } \\ & \text { C683 } \end{aligned}$	$\begin{aligned} & 3 K 071 \\ & 2 K 649 \\ & 2 K 650 \end{aligned}$	$\begin{aligned} & 201.00 \\ & 209.00 \\ & \\ & \hline 19.00 \end{aligned}$	$\begin{aligned} & 121.80 \\ & 126.65 \\ & 132.70 \end{aligned}$	16.019.017.0
	1725						1.35						
	1725						1.35						
1712	1725	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{C} \\ & 56 \mathrm{C} \end{aligned}$	CW／CCW CW／CCW CW／CCW	None Auto None	$\begin{gathered} 115 / 28 / 230 \\ 115 / 230 \\ 115 / 230 \end{gathered}$	$\begin{gathered} 8.8 / 4.2-4.4 \\ 8.8 / 4.4 \\ 9.4 / 4.7 \end{gathered}$	1.25	BBA	$\begin{aligned} & \mathrm{C} 358 \\ & \mathrm{C} 359 \\ & \mathrm{C} 1422 \end{aligned}$	$\begin{aligned} & 3 K 072 \\ & 2 K 651 \\ & 2 K 646 \end{aligned}$	$\begin{aligned} & 228.00 \\ & 237.00 \\ & 416.00 \end{aligned}$	$\begin{aligned} & 138.10 \\ & 136.25 \\ & 252.25 \end{aligned}$	19.021.040.0
\％	1725						1.25						
边	1140						1.25						
	1725	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{C} \\ & 56 \mathrm{~J} \ddagger \\ & 56 \mathrm{C} \\ & \hline \end{aligned}$	CW／CCW CW／CCW CCW CW／CCW	None Auto Auto None	$\begin{gathered} 115 / 208-230 \\ 115230 \\ 115 / 230 \\ 115 / 230 \end{gathered}$	$13.2 / 6.2-6.6$$13.2 / 6.6$$13.2 / 6.6$$12.6 / 6.3$	1.25	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \mathrm{C} 361 \\ & \mathrm{C} 362 \\ & \text { C685 } \\ & \text { C1412 } \end{aligned}$		$\begin{aligned} & 275.00 \\ & 283.00 \\ & 309.00 \\ & 452.00 \end{aligned}$	$\begin{aligned} & 166.75 \\ & 171.75 \\ & 187.50 \\ & 274.00 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 23.0 \\ & 23.0 \\ & 39.0 \\ & \hline \end{aligned}$
	1725						1.25						
	1725						1.25						
	1140						1.15						
1	1725	56 C56 C	$\begin{aligned} & \mathrm{CW} / \mathrm{CCW} \\ & \mathrm{CW} / \mathrm{CCW} \end{aligned}$	None Auto	$\begin{gathered} 115 / 208-230 \\ 115 / 230 \end{gathered}$	$\begin{gathered} 13.877 .2-6.9 \\ 13.6 / 6.8 \end{gathered}$	1.15	${ }_{\text {B }}$	${ }_{\text {C1297 }}^{\text {C363 }}$	3K074	319.00	$\begin{aligned} & 193.50 \\ & 196.00 \end{aligned}$	32.029.0
	1725						1.15						
1／6	$1725 \quad 56 \mathrm{C}$		CW／CCW	None	115	4.0	1.0	B	H244	2K668－	186.00	112.70	14.0
1／4	1725 1140	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{C} \end{aligned}$	CW／CCW CW／CCW	None None	$115 / 230$ $115 / 230$	$\begin{aligned} & 5.4 / 2.7 \\ & 6.2 / 3.1 \end{aligned}$	1.0	B	$\begin{aligned} & \mathrm{C} 366 \\ & \mathrm{Cl} 423 \end{aligned}$	$\begin{aligned} & 2 K 670 \\ & 2 K 667 \end{aligned}$	196.00 288.00	$\begin{aligned} & 118.75 \\ & 174.75 \end{aligned}$	19.0 27.0
1／3	3450	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{C} \end{aligned}$	CW／CCW CW／CCW	None None	$\begin{aligned} & 115 / 230 \\ & 115 / 230 \end{aligned}$	$\begin{aligned} & 5.6 / 2.8 \\ & 6.0 / 3.0 \end{aligned}$	1.15	$\stackrel{B}{B}$	$\begin{aligned} & \mathrm{Cl} 1 \mathrm{19} 9 \\ & \mathrm{C} 367 \end{aligned}$	$2 K 663$3 K 015	175.00214.00	106.05	17.018.0
	1725						1.0						
$1 / 2$	1725	${ }^{56} \mathrm{C}$	CW／CCW CW／CCW	None None	$\begin{aligned} & 115 / 230 \\ & 115 / 230 \end{aligned}$	$\begin{aligned} & 8.6 / 4.3 \\ & 9.44 .7 \end{aligned}$	1.15	B	C368	$3 \mathrm{K016}$	251.00	152.00	23.0
	1140						1.0	${ }^{\text {a }}$	C1404	2 K 666	44.00	269.00	38.0
3／4	1725	56 C	CW／CCW	None	115／230	11．0／5．J	1.0	B	C369	3K017	297.00	180.00	32.0
1	1725	56 C	CW／CCW	None	115／230	13．2／6．6	1.0	B	C370	3K018	340.00	206.00	39.0
11／2	3450 1725	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{C} \end{aligned}$	CW／CCW CW／CCW	None None	$\begin{aligned} & 115 / 230 \\ & 15 / 230 \end{aligned}$	$\begin{aligned} & 16.4 / 8.2 \\ & 14.8 / 7.4 \end{aligned}$	1.0	B	${ }_{\mathrm{C}}^{\mathrm{C} 371}$	2K665 ${ }^{\text {3K020 }}$＊	347.00 430.00	210.50 261.00	35.0 46.0
2	3450	56 C	CW／CCW	None	115／230	17．8／8．9	1.15	B	C1407	2K661	435.00	263.75	40.0
3，${ }^{-1725}$				\therefore TEFC，RIGE］WELDED BASE	TEFC，RIGE WELDED BASE								
1／3	1725	56 C	CW／CCW	None	115／230	6．0\％3．0	1.0	B	C1405	2K674	227.00	137.4519.	
1／2	1725	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{C} \end{aligned}$	cW／CCW CW／CCW	None None	$\begin{aligned} & 115 / 230 \\ & 115 \% 230 \end{aligned}$	$8.4 / 3.7$	1.0	B	$\mathrm{C}_{6} 75$	$2 K 677$	264.00	160.25	21.0
	3450						1.25	B	C1420	2 K 664	197.00	119.35	19.0
$3 / 4$	3450	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{CW} / \mathrm{CCW} \\ & \mathrm{CW} / \mathrm{CCW} \end{aligned}$	None None	$\begin{aligned} & 115 / 230 \\ & 115 / 230 \end{aligned}$	$\begin{aligned} & 9.8 / 4.9 \\ & 11.65 .8 \end{aligned}$	1.0	B	C141	$2 K 671$	340.00		22.0
	1725						1.0	B	C1425	2 K 676	327.00	198.50	33.0
1	3450	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline \text { CW/CCW } \\ & \text { CW/CCW } \end{aligned}$	None None	$\begin{aligned} & 115 / 230 \\ & 115 / 230 \end{aligned}$	$\begin{aligned} & 13.4 / 6.7 \\ & 13.26 .6 \end{aligned}$	1.0	B	C1426	$2 K 673$	． 268.00	162.75	29.0
	1725						1.0	B	C376	2K678	358.00	217.00	39.0

[^25]
CAPACITOR-START C-FACE MOTORS

DAYTON BRAND, HAZARDOUS LOCATION C-FACE MOTORS

- Copper windings

Typical Uses: Listed by UL for use in Class I, Group D and Class II, Groups E, F, and G hazardous locations in dry cleaning and dyeing plants, paint and varnish factories, flour and feed mills, grain elevators, coal and coke plants, and other locations that require a motor to meet the National Electric Code for hazardous locations.
Type: Capacitor-start
Bearings: Double-shielded ball
Enclosure: Hażardous location
Thermal Protection: Auto
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Finish: Gray
Brand: Dayton

\%	Nameplat RPM	NEM Frame	Rotation	Enclosure	Volt 60 Hz	Full-Load Amps a Nameplate Volts	Service Factor	$\begin{gathered} \text { Ins } \\ \text { Class } \end{gathered}$	Stoc No.	List	Each	Shpg. Wt
113	3450	56 C	CW/CCW	Haz-TEFC	115/230	7.6/3.8	1.0	B	$1 K 068$	\$291.00	\$222.75	25.0
\%	1725	56 C	CW/CCW	Haz-TEFC	115/230	6.8/3.4	1.0	B	6 K 330	335.00	256.25	27.0
$1 / 2$	3450	56 C	CW/CCW	Haz-TEFC	115/230	$8.0 / 4.0$	1.0	B	$1 \mathrm{K069}$	323.00	247.25	27.0
5	1725	56 C	CW/CCW	Haz-TEFC	115/230	9.0/4.5	1.0	B	6 K 333	371.00	284.00	30.0
374	3450	56 C	CW/CCW	Haz-TEFC	115/230	9.844 .9	1.0	B	$1 \mathrm{K070}$	344.00	263.25	32.0
,	1725	56 C	CW/CCW	Haz-TEFC	$115 / 230$	11.4/5.7	1.0	B	$6 K 728$	413.00	316.25	36.0
$1=5$	3450	56 C	CW/CCW	Haz-TEFC	115/230	12.0/6.0	1.0	B	$1 \mathrm{K071}$	371.00	283.75	41.0
\%	1725	56 C	CW/CCW	Haz-TEFC	$115 / 230$	13.6/6.8	1.0	B	$1 \mathrm{K072}$	468.00	358.00	41.0
\%										\cdots		Hiz
\%	epptar to page 5 for theo Standard, proper thermal protection, and other motor selection information.											- 5

GE BRAND, HAZARDOUS LOCATION C-FACE MOTORS

Typical Uses: Listed by UL for use in Class I, Group D and Class II, Groups E, F, and G hazardous locations. For use in dry cleaning and dying plants, paint and varnish factories, feed mills, grain eleyators, cogt plants, and other locations that require a motor to meet the National Electric Code for hazardous locations.
Type: Capacitor-start
Bearings: Ball
Enclosure: Hazardous location
Thermal Protection: Auto
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Finish: Gray
Brand: GE

HP	Nameplate RPM	NEMA Frame	Rotation Facing Shaft	Enclosure	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	Insulation Class	GE Stock No.	Stock No.	List	Each	Shpg. Wt
1/4	1725	56 C	CW/CCW	${ }^{*} \mathrm{Haz}$-TENV	115/230	$4.3 / 2.1$	1.0	A	C377	2 K 620	\$381.00	\$226.50	23.0
1/3	1725	56 C	CW/CCW	Haz-TEFC	115/230	6.273 .1	1.0	A	C378	2K621	407.00	242.00	31.0
1/2	3450	56 C	CW/CCW	Haz-TEFC	1151230	8.4/4.9	1.0	A	C1003	2K622	392.00	233.00	29.0
	3450	56 C	CW/CCW	Haz-TEFC	115/230	8.4/4.2	$\therefore 0$	A	C1037	$2 K 623$	430.00	255.75	29.0
	1725	56 C	CW/CCW	Haz-TEFC	115/230	$7.8 / 3.9$	1.0	I	C379	$2 K 624$	452.00	268.50	35.0
3/4	1725	56 C	CW/CCW	Haz-TEFC	115/230	10.8/5.4	10	A	C380	$2 K 625$	502.00	298.25	38.0

MANY BRANDS OF HEATING/AIR CONDITIONING AVAILABLE

3-PHASE C-FACE MOTORS

- Available in 60 Hz models and models which are operable on $60 / 50 \mathrm{~Hz}$ at same HP rating and service factor
- Industrial duty
- T-frame models are NEMA design B

Typical Uses: Pumps, speed reducers, machine tools, and other equipment that can be directly connected to a NEMA Cface end-mounted motor where 3 -phase power is available.
Bearings: Double-shielded ball
Thermal Protection: None
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: Dayton

$(*) 50 \mathrm{~Hz}$ operation at rated voltage and 1904380V. (\#) Operable at $50 \mathrm{~Hz}, 190 / 380 \mathrm{~V}$, at $5 / 6$ of 60 Hz HP and speed (1.0 service factor).
$(+\} 42 \mathrm{CZ}$ frame motors have $1 / 2 \mathrm{x} 11 / 2^{1}$ shaft with key.
(\dagger) 42 CZ frame motors have $1 / 2 \times 11^{1 / 2^{1}}$ shaft with key.

3－PHASE OPEN DRIPPROOF C－FACE MOTORS

C－FACE MOTORS

Typical Uses：Pumps，speed reducers， machine tools，and other equipment that can be directly connected to a NEMA C－ face end－mounted motor where 3 －phase power is available．
Bearings：Ball
Thermal Protection：None
Ambient： $40^{\circ} \mathrm{C}$
Duty：Continuous
Rotation：CW／CCW
Finish：Gray
Brand：GE

CAUTION：

Not for fans in unattended areas．
Refer to page 5 for UL507 Standard， proper thermal protection，and other motor selection information．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& Nampplinte RPM \& NEMA Frame \& Volts 60 Hz \& Full－Load
Amps at
Nameplate Volts \& Service Factor \& NEMA Nominal Efficiency \& $$
\underset{\text { Class }}{\text { Clas. }}
$$ \& GE
Stock No． \& Stock No． \& List \& Each \& Shpg． W．

\hline \multicolumn{13}{|l|}{}

\hline $1 / 4$ \& 1725 \& 56 C \& 208230／460 \& 1.31 .40 .7 \& 1.35 \& 62.7 \& 8 \& K247 \& $5 N 112$ \& \＄163．00 \& \＄98．80 \& 15.0

\hline 113 \& 1725 \& 56 C \& 208－230／460 \& 1．5－1．6／0．8 \& 1.35 \& 66.5 \& B \& K248 \& 5N113 \& 178.00 \& 107.85 \& 15.0

\hline 12 \& 1725 \& 56 C \& 208－230／460 \& 2．1－2．2／1．1 \& 1.25 \& 69.0 \& B \& K249 \& 3N683 \& 205.00 \& 124.20 \& 18.0

\hline 年 \& 1140 \& 56 C \& 208－230／460 \& 2．2－2．2／1．1 \& 1.25 \& 78.4 \& B \& K1299 \& 5 N 965 \& 289.00 \& 175.50 \& 27.0

\hline \multirow[t]{3}{*}{344} \& 1725 \& 56 C \& 208－230／460 \& 2．8－2．811．4 \& 1.25 \& 74.0 \& B \& K250 \& 3N684 \& 229.00 \& 138.75 \& 20.0

\hline \& 1140 \& 56 C \& 208－230／460 \& 2．85－2．81．4 \& 1.15 \& 76.1 \& B \& K1300 \& 5N966 \& 312.00 \& 189.25 \& 31.0

\hline \& 1140 \& 1437 C \& 208－230／460 \& 2．85－2．8／1．4 \& 1.15 \& 76.1 \& B \& K1301 \& 5N967 \& 320.00 \& 194．00 \& 31.0

\hline $1{ }^{1}$ \& \multirow[t]{2}{*}{1745
140} \& \multirow[t]{2}{*}{56C
145 C} \& \multirow[t]{2}{*}{$208-2304460$
$208-230460$} \& \multirow[t]{2}{*}{3.43 .21 .6
3.93 .81 .9} \& \multirow[t]{2}{*}{1.15
1.15} \& \multirow[t]{2}{*}{78.0} \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{K1302} \& \multirow[t]{2}{*}{5N968} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 248.00 \\
& 336.00
\end{aligned}
$$} \& \multirow[t]{2}{*}{150.25
203.75} \& \multirow[t]{2}{*}{21.0
31.0}

\hline 星 \& \& \& \& \& \& \& \& \& \& \& \&

\hline 11／2 \& 3450
1725. \& ${ }^{1437 \mathrm{C}}$ \& $$
\begin{aligned}
& 208-230 / 460 \\
& 208-230 / 460
\end{aligned}
$$ \& 5．04．82．4 \& 1.15
1.15 \& 79.2 \& B \& ${ }_{\text {K1303 }}$ \& 5N969 \& $$
\begin{aligned}
& 270.00 \\
& 274.00
\end{aligned}
$$ \& $$
\begin{aligned}
& 163.75 \\
& 166.25
\end{aligned}
$$ \& 25.0
30.0

\hline 28 \& 3450 \& 145 TC \& 208－230／460 \& 6．6－6．0／3．0 \& 1.15 \& 80.5 \& B \& K1304 \& 5N970 \& 309.00 \& 187.50 \& 29.0

\hline 3 3 \& 3450 \& 1457 C \& 208－230／460 \& 8．9－8．2／4．1 \& 1.15 \& 82.3 \& B \& K1313 \& 5N971 \& 340.00 \& 206.00 \& 38.0

\hline ，诶 \& 35xem \& 3x ${ }^{\text {a }}$ \& 82\％ \& 4．-3 \& \multicolumn{2}{|l|}{RIGID BASE} \& \& \& \％ \& \cdots \& \multicolumn{2}{|l|}{Nothent}

\hline \multirow[t]{3}{*}{1／3} \& ${ }_{345} 725$ \& \multirow[t]{2}{*}{56C} \& \multirow[t]{2}{*}{208－230／460

$208-230460$} \& \multirow[t]{2}{*}{2．0．2．8／0．9} \& \multirow[t]{2}{*}{1.35} \& \multirow[t]{2}{*}{66.3
65.5} \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{K 1305
K 1306} \& 5N972 \& 191.00 \& 115.70 \& 17.0

\hline \& 3450 \& \& \& \& \& \& \& \& $5 N 973$ \& 177.00 \& 107.15 \& 20.0

\hline \& 1725 \& 56 C \& $208-2301460$ \& 2.65 .2 .41 .2 \& 1.15 \& 69.9 \& B \& K1307 \& $5 N 974$ \& 216.00 \& 130.85 \& 22.0

\hline 3／4 \& 1725 \& 56 C \& 208－230／460 \& 3．3－3．01．5 \& 1.15 \& 74.4 \& B \& K1308 \& 5N975 \& 243.00 \& 147.20 \& 24.0

\hline \multirow[t]{4}{*}{$$
\begin{aligned}
& 1 \\
& \frac{1}{11 / 2}
\end{aligned}
$$} \& 1725 \& 143 TC \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& 208-230 / 460 \\
& 208-230 / 460 \\
& 208-230 / 460 \\
& 208-230 / 460
\end{aligned}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& 3.6-3.81 .9 \\
& 5.8-5 / 628 \\
& 6.6-6.0 / 0.0 \\
& 6.2-6.038 .0
\end{aligned}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& 1.15 \\
& 1.15 \\
& 1.15 \\
& 1.15 \\
& \hline
\end{aligned}
$$
\]} \& \multirow[t]{4}{*}{78.1

79.8
80.5
81.9} \& \multirow[t]{4}{*}{B
B
B

B} \& \multirow[t]{4}{*}{$$
\begin{aligned}
& \mathrm{K} 1309 \\
& \mathrm{~K} 1310 \\
& \mathrm{~K} 1311 \\
& \mathrm{~K} 112
\end{aligned}
$$} \& \multirow[t]{4}{*}{} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& 267.00 \\
& 283.00 \\
& 345.00 \\
& 304.00
\end{aligned}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& 162.00 \\
& 171.75 \\
& 209.50 \\
& 184.50 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& 27.0 \\
& 31.0 \\
& 28.0 \\
& 38.0 \\
& \hline
\end{aligned}
$$
\]}

\hline \& 1725 \& 145 TC \& \& \& \& \& \& \& \& \& \&

\hline \& 3450 \& 56C \& \& \& \& \& \& \& \& \& \&

\hline \& 1725 \& 145 TC \& \& \& \& \& \& \& \& \& \&

\hline \& \& \multicolumn{2}{|l|}{\％} \& \& \multicolumn{2}{|l|}{BOLTED－ON BASE} \& \& \& \& \& \multicolumn{2}{|r|}{\cdots}

\hline 3 \& 1745 \& 182 TC \& 230／460＊ \& 8．64．4．3 \& 1.15 \& 84.0 \& B \& $\times 670$ \& 5N135 \& 323.00 \& 207.50 \& 76.0

\hline \multirow[t]{2}{*}{5} \& 3500 \& \multirow[t]{2}{*}{${ }_{1847 \mathrm{C}}^{182 \mathrm{C}}$} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 230 / 460^{*} \\
& 230 / 460^{*}
\end{aligned}
$$} \& \multirow[t]{2}{*}{$14.2 / 7.1$} \& \multirow[t]{2}{*}{1.15} \& \multirow[t]{2}{*}{84.0

84.0} \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{Y67

$\times 672$} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 5 N 136 \\
& 5 N 137
\end{aligned}
$$} \& \multirow[t]{2}{*}{417.00

417.00} \& \multirow[t]{2}{*}{268.00
268.00} \& \multirow[t]{2}{*}{76.0
80.0}

\hline \& 1730 \& \& \& \& \& \& \& \& \& \& \&

\hline 71／2 \& 3480

1745 \& ${ }_{213 \mathrm{TC}}^{184 \mathrm{C}}$ \& $$
\begin{aligned}
& 230 / 460^{*} \\
& 230 / 460^{*}
\end{aligned}
$$ \& 21．4／10．7 \& 1.15 \& 84.0

85.5 \& B \& $$
\begin{aligned}
& \text { N673 } \\
& .1674
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 5 N 138 \\
& 5 N 139
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 480.00 \\
& 54200
\end{aligned}
$$
\] \& 308.50

348.00 \& ${ }^{812.0}$

\hline \multirow[t]{2}{*}{10} \& 3475 \& \multirow[t]{2}{*}{213 TC} \& \multirow[t]{2}{*}{230／460＊} \& \multirow[t]{2}{*}{25．2／126} \& \multirow[t]{2}{*}{1.15} \& \multirow[t]{2}{*}{87.5} \& \multirow[t]{2}{*}{${ }_{8}^{8}$} \& \multirow[t]{2}{*}{＋665} \& \multirow[t]{2}{*}{5N140} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 63900 \\
& 650.00
\end{aligned}
$$} \& \multirow[t]{2}{*}{410.00} \& \multirow[t]{2}{*}{140.0

136.0}

\hline \& 1740 \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{15} \& 3515 \& \multirow[t]{2}{*}{215 TC} \& \multirow[t]{2}{*}{\[
$$
\begin{aligned}
& 230 / 460^{*} \\
& 230 / 460^{*}
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{| 37.818 .9 |
| :--- |
| 41．2／20．6 |} \& \multirow[t]{2}{*}{1.15} \& \multirow[t]{2}{*}{89.5

81.5} \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{＋675} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 5 N 142 \\
& 5 N 143
\end{aligned}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 80.00 \\
& 870.60
\end{aligned}
$$
\]} \& \multirow[t]{2}{*}{514.50

558.00} \& \multirow[t]{2}{*}{154.0
215.0}

\hline \& 1765 \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{20} \& 3535 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 254 \mathrm{TC} \\
& 256 \mathrm{TC}
\end{aligned}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 230 / 460^{*} \\
& 230 / 460^{*}
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 49.024 .5 \\
& 53.426 .7
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 1.15 \\
& 1.15
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 88.5 \\
& 88.5
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{\[

$$
\begin{gathered}
\mathbf{N 6 7 9} \\
\mathbf{N 6 S O}
\end{gathered}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 5 N 144 \\
& 5 N 145
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
998.00 \\
1035.00
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 640.50 \\
& 664.50
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 245.0 \\
& 228.0
\end{aligned}
$$
\]}

\hline \& 1755 \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{25} \& 3530 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 256 \mathrm{TC} \\
& 384 \mathrm{TC}
\end{aligned}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 230 / 460^{*} \\
& 230 / 460^{*}
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 60.430 .2 \\
& 62.431 .2
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 1.15 \\
& 1.15
\end{aligned}
$$
\]} \& \multirow[t]{2}{*}{89.5

89.5} \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{$$
\begin{array}{r}
\mathrm{N} 681 \\
\mathbf{N} 682
\end{array}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 5 N 146 \\
& 5 N 147
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 1137.00 \\
& 1292.00
\end{aligned}
$$
\]} \& \multirow[t]{2}{*}{730.00

828.50} \& \multirow[t]{2}{*}{245.0
388.0}

\hline \& 1765 \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{30} \& 3560 \& \multirow[t]{2}{*}{－284TSC} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 230,460^{*} \\
& 230 / 40^{*}
\end{aligned}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 69234.6 \\
& 73.636 .8
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{1.15} \& \multirow[t]{2}{*}{89.2} \& \multirow[t]{2}{*}{$\frac{8}{B}$} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
1683 \\
\times 634
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 5 N 148 \\
& 5 N 149
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 1411.00 \\
& 1452.00
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 905.00 \\
& 931.50
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 346.0 \\
& 356.0
\end{aligned}
$$
\]}

\hline \& 1760 \& \& \& \& \& \& \& \& \& \& \&

\hline 40 \& 3555 \& 2847 TSC \& \multirow[t]{2}{*}{230／460＊} \& 90．8／45．4 \& 1.15 \& 91.0 \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{$\times 685$} \& \multirow[t]{2}{*}{5M150} \& \multirow[t]{2}{*}{1798.00} \& \multirow[t]{2}{*}{1154.00} \& \multirow[t]{2}{*}{376.0}

\hline \multicolumn{3}{|l|}{（＊）Usabile on 200V at 1.0 service factor．} \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

C-FACE MOTORS

3-PHASE TEFC C-FACE MOTORS

Typical Uses: Pumps, speed reducers, machine tools, and other equipment that can be directly connected to a NEMA Cface end-mounted motor where 3 -phase power is available.
Bearings: Ball
Thermal Protection: None
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: GE

7

CAUTION:

Not for fans in uhettended areas. Refer to page 5 for UL 507 Standard proper thermal protection, and other motor selection information.

$\begin{aligned} & \text { HP } \end{aligned}$	Namaplate RPM	NEMA Frame	Volts 60 Hz .	Full-Load Aurps at Nomeplate Volts	Senvice Factor.	NEMA Nominal Efficiency	Ins. Class:	GE Stack No.	Stock No.	List	Each	Stipy. Mt
田田												
$1 / 51 / 4$	1725	56 C	208-230/460	1.3-1.4/0.7	1.0	62.7*	B	K252	5N114	\$191.00	\$115.70	19.0
$=1 / 3$	1725	56 C	208-230/460	1.5-1.6/0.8	1.0	66.0*	B	K253	3N6ES	201.00	121.75	18.0
HE	1725	56 C	575	0.6	1.0	66.8*	A	K522	$5 N 132$	201.00	121.75	19.0
\% $1 / 2$	1725	56 C	3085-230/460	$2.1-2.2 / 1.1$	1.0	$69.0{ }^{*}$	B	K 254	$3 N 687$	237.00	143.55	19.0
:	1725	56 C	576	0.9	1.0	$69.8{ }^{*}$	B	K469	5 N 123	237.00	143.55	18.0
$=3 / 4$	1725	56 C	208-230/460	2.8-2.8/1.4	1.0	74.0*	B	K 255	3N688	251.00	152.00	21.0
\%in.	1725	56 C	576	1.3	1.0	73.4*	B	K523	$5 N 133$	251.00	152.00	21.0
:	1140	56 C	208-2304460	2.85-2.8/1.4	1.15	76.1*	B	K1317	6N050	335.00	203.00	31.0
-	1140	1437 C	208-230/460	2.85-2.8/1.4	1.15	76.1	B	K1318	6NOSI	338800	204.75	31.0
	1725	56 C	208-230/460	3.6-3.8/1.9	1.0	76.3*	B	K256	$3 N 689$	269.00	163.25	28.0
	1725	56 C	575	1.7	1.0	73.1*	B	K524	SN134	269.00	163.25	23.0
	1725	143TC	208-230/460	3.6-3.81.9	1.15	75.8	B	K328	SN120	305.00	185.00	28.0
	1140	145 TC	208-230/460	3.93.8/1.9	1.15	74.1	B	K1319	$6 N 052$	343.00	208.25	31.0
Wh21/2	3450	143TC	208-230/460	5.04.82.4	1.15	79.2	B	K1320	6N053	280.00	170.00	25.0
	1725	1560	$208-230460$	4.9-4.82.4	1.0	$82.0{ }^{*}$	B	K23i	$3 N 690$	277.00	168.00	33.0
	1725	145TC	208-230/460	4.7-4.4/2.2	1.15	78.4	B	K329	SN121	293.00	177.75	39.0
2	3450	145 TC	208-230/460	6.6-6.0/3.0	1.15	80.5	B	K1321	6N054	321.00	195.00	29.0
	1725	$145 T \mathrm{C}$	$208-230 / 460$	6.2-5.8/29	1.15	77.9	B	K330	5N122	333.00	202.00	470
\%	Stase		$\begin{aligned} & \text { Werraty } \\ & \text { sentive } \end{aligned}$		RIGD BASE		$\therefore i$		$\therefore \therefore$,		:	
$1 / 3$	1725	56 C	208-230/460	$2.0-1.8 / 0.9$	1.35	66.3*	B	K1322	6N055	214.00	129.65	20.0
1/2	3450	56 C	208-230/460	2.2-2.5/1.3	1.0	65.5*	B	K1323	6N056	205.00	124.20	20.0
	1725	56 C	208-230/460	2.65-2.4/1.3	1.35	$69.9 *$	B	K1324	6NOS7	249.00	151.00	23.0
	1140	56 C	208-230/460	2.2-2.2/1.1	1.25	73.4*	B	K1335	6N058	324.00	196.75	35.0
3/4	3450	26C	208-230/460	2.6-2.6/1.3	1.25	73.6 *	B	K499	5N126	222.00	134.50	17.0
	1725	56 C	208-230/460	28-2.81.4	1.25	76.7*	B	K208	5N115	265.00	161.00	19.0
	1140	56 C	208-230/460	2.85-2.8/1.4	1.15	$76.1 *$	B	K13?6	$6 \mathrm{NOS9}$	343.00	208.25	39.0
1	3450	56 C	208-230/460	3.2-3.0/1.5	1.25	78.7*	B	K500	$5 N 127$	264.00	160.25	240
	1725	36 C	208-2301460	3.63 .81 .9	1.25	75.8*	8	K259	5N116	282.00	171.00	29.0
	1725	143TC	208-230/460	3.6-3.8/1.9	1.25	75.8	8	K502	5 N 129	316.00	191.75	30.0
	1140	145 TC	208-230/460	3.9-3.81.9	1.15	74.2	B	K1327	6 NOGO	352.00	213.50	31.0
11/2	3450	56 C	208-2301460	$5.0-4.8 / 2.4$	1.15	79.2*		K1328	6N061	396.00	179.50	24.0
	3450	143 TC	208-230/460	$5.04 .8 / 2.4$	1.15	79.2	B	K1329	6 NO 62	303.00	184.00	28.0
	1725	56 C	208-230/460	4.9-4.8/2.4	1.0	76.9*	B	K260	5N117	289.00	175.50	35.0
	1725	145 TC	$208230 / 460$	$4.74 .4 / 2.2$	1.25	78.4	B	K503	5N130	303.00	184.00	40.0
2			$230 / 460$									
	3450	145 TC	208230/460	6.6-6.0/3.0	1.15	80.5	B	K13:3	6×063	326.00	197.75	29.0
	1.725	145 TC	208-230/460	6.2-5.8/2.9	1.15	77.9	B	K261	5N118	343.00	208,00	49.0

[^26]continued on next page

3-PHASE TEFC C-FACE MOTORS

C-FACE

 MOTORSGE 3-PHASE TEFC C-FACE MOTORS (Cont.)

HP	Nameplate RPM	NEMA Frame	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	NEMA Nominal Efficiency	Ins. Class	$\begin{aligned} & \text { GE } \\ & \text { Stock } \\ & \text { No. } \end{aligned}$	Stock No.	List	Each	Shpg. Wt.
		$\frac{3}{2}$	wher	ry kivesk	3 OL	N BA			妾			
3	$\begin{aligned} & 3410 \\ & 1750 \end{aligned}$	$\begin{aligned} & 182 \mathrm{TC} \\ & 182 \mathrm{TC} \end{aligned}$	$\begin{aligned} & 230 / 460 \dagger \\ & 230 / 460 \dagger \end{aligned}$	$\begin{aligned} & 8.0 / 4.0 \\ & 8.4 / 4.2 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 78.5 \\ & 84.0 \end{aligned}$	$\stackrel{\mathrm{F}}{\mathrm{F}}$	T688	5N151 5N152	$\$ 380.00$ 371.00	$\begin{array}{r} \$ 244.00 \\ 238.25 \end{array}$	86.0 76.0
5	$\begin{aligned} & 3460 \\ & 1735 \end{aligned}$	$\begin{aligned} & 184 \mathrm{TC} \\ & 184 \mathrm{TC} \end{aligned}$	$\begin{aligned} & 230 / 460 \dagger \\ & 230 / 460 \dagger \end{aligned}$	12.26. 12.76 .4	1.15	82.5 85.5	$\underset{\mathrm{F}}{\mathrm{F}}$	T690	5N153 SN154	450.00 418.00	289.00	84.0 92.0
71/2	$\begin{aligned} & 3475 \\ & 1745 \end{aligned}$	$\begin{aligned} & 213 \mathrm{TC} \\ & 213 \mathrm{TC} \end{aligned}$	$\begin{aligned} & 230 / 460 \dagger \\ & 230 / 460 \dagger \end{aligned}$	$\begin{aligned} & 18.7 / 9.4 \\ & 18.19 .1 \end{aligned}$	1.15 1.15	$\begin{aligned} & 84.0 \\ & 86.5 \end{aligned}$	$\stackrel{F}{F}$	$\begin{aligned} & \mathrm{T} 692 \\ & \mathrm{~T} 693 \end{aligned}$	5N155 5N156	$\begin{aligned} & 607.00 \\ & 607.00 \end{aligned}$	$\begin{aligned} & 389.50 \\ & 389.25 \end{aligned}$	$\begin{aligned} & 144.0 \\ & 146.0 \end{aligned}$
10	3465 175	${ }^{215 T C}$	$\begin{aligned} & 230 / 460 \dagger \\ & 230 / 460 \dagger \end{aligned}$	24.2/12.1	1.15 1.15	85.5	$\underset{\mathrm{F}}{\mathrm{F}}$	T694	5N157 5N158	701.00 722.00	450.00 463.25	$\begin{aligned} & 154.0 \\ & 176.0 \end{aligned}$
15	$\begin{aligned} & 3510 \\ & 1750 \end{aligned}$	${ }_{254 \mathrm{TC}}^{254 \mathrm{TC}}$	$\begin{aligned} & 230 / 460 \dagger \\ & 230 / 460 \dagger \end{aligned}$	$\begin{aligned} & 35.5 / 17.8 \\ & 3.1 / 17.6 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.15 \end{aligned}$	88.5	$\underset{\mathrm{F}}{\mathrm{F}}$	T696 T697	$\begin{aligned} & \text { 5N159 } \\ & \text { 5N160 } \end{aligned}$	$\begin{aligned} & 959.00 \\ & 970.00 \end{aligned}$	$\begin{aligned} & 615.00 \\ & 622.00 \end{aligned}$	$\begin{aligned} & 238.0 \\ & 256.0 \end{aligned}$
20	3515 1750	${ }_{256 \mathrm{TC}}$	$\begin{aligned} & 230 / 460 \dagger \\ & 230 / 460 \dagger \end{aligned}$	46.3/23.2	1.15 1.15	88.5 90.2	$\underset{F}{\text { F }}$	T6988 T699	$\begin{aligned} & \text { 5N161 } \\ & \text { 5N162 } \end{aligned}$	1228.00 1176.00	$\begin{aligned} & 788.00 \\ & 754.00 \end{aligned}$	$\begin{aligned} & 286.0 \\ & 328.0 \end{aligned}$
25	$\begin{aligned} & 3505 \\ & 1750 \end{aligned}$	$\begin{aligned} & \text { 284TSC } \\ & 284 \mathrm{TC} \end{aligned}$	$\begin{aligned} & 230 / 460 \dagger \\ & 230 / 460 \dagger \end{aligned}$	$\begin{aligned} & 58.1 / 29.1 \\ & 58.629 .3 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 88.5 \\ & 90.2 \end{aligned}$	$\overline{\mathrm{F}}$	$\begin{aligned} & \mathrm{T} 700 \\ & \mathrm{~T} 701 \end{aligned}$	5N163 SN164	$\begin{aligned} & 1558.00 \\ & 1469.00 \end{aligned}$	$\begin{aligned} & 999.50 \\ & \mathbf{9 4 2 . 0 0} \end{aligned}$	$\begin{array}{r} 356.0 \\ 390.0 \\ \hline \end{array}$
30	$\begin{aligned} & 3520 \\ & 1755 \end{aligned}$	$\begin{aligned} & 286 \mathrm{TSC} \\ & 286 \mathrm{TC} \end{aligned}$	$\begin{aligned} & 230 / 460 \dagger \\ & 230 / 460 \dagger \end{aligned}$	$\begin{aligned} & 69.834 .9 \\ & 69.2 / 34.6 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 88.5 \\ & 90.2 \end{aligned}$	$\underset{\mathrm{F}}{\mathrm{F}}$	T702 T 703	5N165 5N166	$\begin{aligned} & 1683.00 \\ & 1855.00 \end{aligned}$	$\begin{aligned} & 1080.00 \\ & 1191.00 \end{aligned}$	$\begin{aligned} & 410.0 \\ & 4240 \end{aligned}$

(\dagger) Usable on 200 V at L .0 service factor.

GE BRAND, 3-PHASE TEFC C-FACE PREMIUM EFFICIENCY SEVERE DUTY MOTORS

Designed for high humidiacidic, alkali, or ditty (nonexplosive) conditions ty rebate program requirements
NEMA design B
includes grease fittings uctio

Typitical Uses: Pumps, conveyors, speed reducers, blowers, aghine tools, and othe

HP	Namepplate RPM	NEMA Frame	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	NEMA Nominal Efficiency	Ins. Ciass	$\begin{aligned} & \text { GE } \\ & \text { Stock } \\ & \text { No. } \end{aligned}$	Stock No.	List	Each	Shpg. Wt
11/2	1170	182 TC	460	2.3	1.15	87.5	F	E9946	-5U242	\$644.00	\$413.25	136.0
2	1165	184 TC	460	2.9	1.15	87.5	F	E9948	-5U244	710.00	455.50	145.0
3	3515	182 TC		3.7	1.15	88.5	F	E9945	-5U241	660.00	423.50	135.0
	1765	182 TC	460	4.0	1.15	89.5	F	9889 E	-4N890	626.00	401.50	135.0
	1175	213 TC	460	4.2	1.15	89.5	F	E9950	-5U246	848.00	543.50	230.0
5	3515	184 TC	460	6.0	1.15	89.5	F	E9947	-5U243	798.00	512.00	145.0
	175	1847C	460	6.3	1.15	90.2	F	9890E	-4N891	717.00	460.00	145.0
	1170	215 TC	460	6.9	1.15	89.5	F	E9952	-5U248	1159.00	743.50	230.0
$7^{1 / 2}$	35.35	213 C	460	8.7	1.15	91.7	F	E9949	-5U245	947.00	607.50	220.0
	1765	2137 C	460	9.4	1.15	91.7	F	9891 E	$\checkmark 4 \mathrm{~N} 892$	942.00	604.00	220.0
	1180	2547 C	460	10.7	1.15	91.7	F	E9954	-5U250	1538.00	986.50	350.0
10	3530	215 TC	460	11.6	1.15	91.7	F	E9951	-5U247	1093.00	701.00	230.0
	1765	${ }^{215 T C}$	460	12.7	1.15	91.7	F	E9892	-4N885	1117.00	717.00	$\because 30.0$
	1175	256 TC	460	14.3	1.15	91.7	F	E9956	-5U252	1855.00	1190.00	410.0
15	3545	254 TC	460	17.3	1.15	91.7	F	E9953	-5U249	1495.00	958.50	350.0
	1770	254 TC	460	18.7	1.15	$¢ 2.4$	F	9893 E	-4N886	1471.00	943.00	391.0
	1180	284 TC	460	18.2	1.15	91.7	F	E9901	-5U237	2470.00	1585.00	460.0
20	3540	256 TC	460	22.5	1.15	92.4	F	E9955	5U251	1825.00	1171.00	410.0
	1770	256 TC	460	24.6	1.15	93.0	F	E9894	- 4 N887	1805.00	1158.00	415.0
	1175	2867 C	460	24.1	1.15	91.7	F	E990:	-5U238	2977.00	1910.00	510.0
25	3555	284 TSC	460	27.9	1.15		F					
	1770	284 TC	460	30.0	1.15	93.6	F	E9895	-4N888	2174.00	1394.00	560.0
30	3545	286 TSC	460	33.2	1.15	92.4		E9904			1683.00	
	170	2867 C	460	36.2	1.15	93.6	F	E9896	-4N889	2503.00	1605.00	585.0

HAZARDOUS
LOCATION MOTORS

SPLIT-PHASE HAZARDOUS LOCATION MOTORS

DAYTON BRAND, TENV AND TEFC HAZARDOUS LOCATION MOTORS

Typical Uses: Listed by UL for use in Class I, Group D and Class II, Groups E, F, and G hazardous locations such as dry cleaning and dyeing plants, paint and varnish factories, flour and feed mills, grain elevators, coal and coke plants, and other locations that require a motor to meet the National Electrical Code for hazardous locations.

Bearings: Double-shielded ball for heavy radial and thrust loads
Service Factor: 1.0
Thermal Protection: Auto
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Brand: Dayton

HP	$\underset{\substack{\text { RPM } \\ \text { Nameplate }}}{ }$	NEMA	Enclosure	Volts 60 Hz		Bearings	$\begin{aligned} & \text { Insuiation } \\ & \text { Class } \end{aligned}$	Mourting	Stock No.	List	Each	Shpg.
$\begin{aligned} & 1 / 4 \\ & 1 / 3 \end{aligned}$	$\begin{aligned} & 1725 \\ & 1725 \end{aligned}$	${ }_{56}^{56}$	TENV	115	4.5 6.4	$\begin{aligned} & \text { Ball } \\ & \text { Ball } \end{aligned}$	${ }_{8}^{8}$	$\begin{aligned} & \hline \text { Rigid } \\ & \text { Rigid } \end{aligned}$	$\begin{aligned} & 6 K 734 \\ & 6 K 738 \end{aligned}$	$\begin{array}{r} \$ 270.00 \\ 300.00 \end{array}$	$\begin{aligned} & \$ 194.75 \\ & 216.25 \end{aligned}$	27.0 25.0

GE BRAND, TENV HAZARDOUS LOCATION MOTORS

Typical Uses: Listed by UL for use in Class I, Group D and Class II, Groups E, F, and G hazardous locations such as dry cleaning and dyeing plants, paint and várnish factories, flour and feed mills, grain elevators, coal and coke plants, and other locations that require a motor to meet the National Electrical Code for hazardous locations.

Bearings: Double-shielded, prelubricated ball for heavy radial and thrust loads
Service Factor: 1.0
Thermél Protéction: Auto
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: GE

HP	Nameplate RPM	NEMA frame	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Bearigys	Insulation Class	Mounting	$\begin{gathered} \text { GE } \\ \text { Slock } \\ \text { No. } \end{gathered}$	Stock No.	List	Each	Shpg. Wht
$\begin{aligned} & 1 / 12 \\ & 1 / 8 \end{aligned}$	1725 1140	48 48	$\frac{115}{115}$	1.9	- Ball	A A	$\begin{aligned} & \text { Riggd } \\ & \text { Rigid } \end{aligned}$	H125 $\mathrm{H126}$	$\begin{aligned} & \text { 2K626 } \\ & 2 K 627 \end{aligned}$	$\$ 312.00$ 353.00	$\begin{array}{r} \$ 174.00 \\ 197.00 \end{array}$	16.0 22.0
1/6	$\begin{aligned} & 1725 \\ & 1140 \end{aligned}$	$\begin{aligned} & \hline 48 \\ & 56 \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \text { Bal } \\ & \text { Ball } \end{aligned}$	A	$\begin{aligned} & \text { Rigid } \\ & \text { Rgid } \end{aligned}$	H127	$\begin{aligned} & 3 K 797 \\ & 2 K 628 \end{aligned}$	312.00 413.00	$\begin{aligned} & 187.25 \\ & 230.50 \end{aligned}$	19.0 38.0
$1 / 4$	1725	48	115	4.4	Ball:	A	Rigid	H129	3K799	320.00	192.00	22.0

GE BRAND, TENV AND TEFC C-FACE HAZARDOUS LOCATION MOTORS

- $21 / 4^{\prime \prime}$ shaft length $\times 5 / 8$ " diameter

Typical Uses: Listed by UL for use in Class I, Group D and Class II, Groups E, F, and G hazardous locations such as dry cleaning and dyeing plants, paint and varnish factories, flour and feed mills, grain elevators, coal and coke plants, and in commercial fans, blowers, and other airmoving applications that can be directly mounted to a Cface end-mounted motor.

Bearings: Ball
Service Factor: 1.0
Thermal Protection: Auto
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: GE

HP	Nameplate RPM	NEMA Frame	Enclosure	Volts 60 Hz	Full-Load Amps at Nameplate Volts	$\begin{aligned} & \text { Insulation } \\ & \text { Class } \end{aligned}$	Mounting	GE Stock No.	Stock No.	List	Each	Shpg. Wt.
1/8	1140	56 CZ	TENV	115	3.0	A	C-Face	H301	2 K 780	\$365.00	\$219.25	21.0
$1 / 6$	1140	56 CZ	TENV	115	4.0	A	C-Face	H302	2K781	+25.00	255.25	25.0
1/4	1140	36CZ	TEFC	115	5.6	A	C-Face	H303	2K782	+61.00	276.75	34.0
$1 / 2$	1140	56 CZ	TEFC	115	9.0	A	C-Face	H30.4	2K783	587.00	352.25	45.0

CAUTION: Not for fans in unattended areas.
MEter to page 5 for UL507 Standard, proper thermal protection, and other motor selection information.

EAPACITOR－START HAZARDOUS LOCATION MOTORS

－Rigid welded base or C－face
－Double－shielded ball bearings
－Copper windings
Typical Uses：Listed by UL for use in Class I，Group D and Class II，Groups E，F，and G hazardous locations in dry cleaning and dyeing plants，paint and varnish factories， flour and feed mills，grain elevators，coal and coke plants and other locations that require a motor to meet the National Electric Code for hazardous locations．
Type：Capacitor－start
Bearings：Double－shielded ball
Enclosure：Hazardous location
Service Factor： 1.0
Thermal Protection：Auto
Ambient： $40^{\circ} \mathrm{C}$
Duty：Continuous
Rotation：CW／CWW
Finish：Gray
Brand：Dayton

CONDUIT BOX

For use with Dayton brand hazardous location motors．Has hole for self－tapping grounding screw．UL Listed．Gray finish．
No．4X788．Shpg．wt． 1.6 lbs．List $\$ 33.00$ ．Each ．．．

$\mathbf{H P}$	Nameplate RPM	NEMA Frame	Rotation Facing Shaft	Enclosure	Volts 60 Hz	Full－Load Anps at Nameplate Volts	Semice Factor	Insulation Class	Stock No．	List	Each	Shpg． ML
1／3	3450 1725	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{CW} / \mathrm{CCW} \\ & \mathrm{CW} / \mathrm{CCW} \end{aligned}$	Haz－TEFC	$115 / 230$ $115 / 230$	7.68 .8 $6.8 \% .4$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	B	1K068	$\begin{array}{r} \$ 291.00 \\ 335.00 \end{array}$	$\begin{array}{r} \$ 222.75 \\ 256.25 \end{array}$	$\begin{aligned} & 25.0 \\ & 27.0 \end{aligned}$
1／2	$\begin{aligned} & 3450 \\ & 1725 \end{aligned}$	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { CW/CCW } \\ & \text { CW/CCW } \end{aligned}$	$\begin{aligned} & \text { Haz-TEFC } \\ & \text { Haz-TEFC } \end{aligned}$	$\begin{aligned} & 115 / 230 \\ & 115 / 230 \end{aligned}$	$\begin{aligned} & 8.0 / 4.0 \\ & 9.0 / 4.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathbf{B} \\ & \mathbf{B} \end{aligned}$	$\begin{aligned} & 1 K 069 \\ & 6 K 333 \end{aligned}$	$\begin{aligned} & 323.00 \\ & 371.00 \end{aligned}$	$\begin{aligned} & 247.25 \\ & 284.00 \end{aligned}$	$\begin{aligned} & 27.0 \\ & 30.0 \end{aligned}$
	3450 1725	56 C 56 C	CW／CCW	Haz－TEFC	$115 / 230$ $115 / 230$	$9.8 / 4.9$ 11.45 .7	1.0	B	1K070	344.00 413.00	263.25 316.25	32.0 36.0
	$\begin{aligned} & 3450 \\ & 1725 . \end{aligned}$	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{C} \end{aligned}$	CW／CCW CW／CCW	$\begin{aligned} & \text { Haz-TEFC } \\ & \text { Haz-TEFC } \end{aligned}$	$\begin{aligned} & 115 / 230 \\ & 115 / 230 \end{aligned}$	$\begin{aligned} & 12.0 / 6.0 \\ & 13.6 / 6.8 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & B \\ & B \end{aligned}$	$\begin{aligned} & 1 K 071 \\ & 1 \mathrm{K072} \end{aligned}$	$\begin{aligned} & 371.00 \\ & 468.00 \end{aligned}$	$\begin{aligned} & 283.75 \\ & 358.00 \end{aligned}$	$\begin{aligned} & 41.0 \\ & 41.0 \end{aligned}$
	变效				5	NFIDED		$\because s$		\cdots	莫	-4
1／4	1725	56	CW／CCW	Haz－TENV	115／230	4．5／2．3	1.0	B	$6 K 034$	247.00	189.00	28.0
1／3	$\begin{aligned} & 3450 \\ & 1725 \end{aligned}$	$\begin{aligned} & 56 \\ & 56 \end{aligned}$	$\begin{aligned} & \mathrm{CW} / \mathrm{CCW} \\ & \mathrm{CW} / \mathrm{CCW} \end{aligned}$	$\begin{aligned} & \text { Hax-TEFC } \\ & \text { Haz-TEFC } \end{aligned}$	$\begin{aligned} & 115 / 230 \\ & 115 / 230 \end{aligned}$	$\begin{aligned} & 7.6 / 3.8 \\ & 6.8 / 3.4 \end{aligned}$	1.0 1.0	$\stackrel{B}{B}$	$\begin{aligned} & 6 K 109 \\ & 6 K 036 \end{aligned}$	$\begin{aligned} & 217.00 \\ & 304.00 \end{aligned}$	$\begin{aligned} & 166.25 \\ & 232.75 \end{aligned}$	$\begin{aligned} & 27.0 \\ & 27.0 \end{aligned}$
$1 / 2$	$\begin{aligned} & 3450 \\ & 1725 \end{aligned}$	$\begin{aligned} & 56 \\ & 56 \end{aligned}$	$\begin{aligned} & \text { CW/CCW } \\ & \text { CW/CCW } \end{aligned}$	Haz－TEFC Haz－TEFC	$\begin{aligned} & 115 / 230 \\ & 115 / 230 \end{aligned}$	$\begin{aligned} & 8.0 / 4.0 \\ & 9.0 / 4.5 \end{aligned}$	1.0	B	$\begin{aligned} & 6 K 110 \\ & 6 K 039 \end{aligned}$	288.00 335.00	220.50 256.25	$\begin{aligned} & 30.0 \\ & 30.0 \end{aligned}$
3／4	$\begin{aligned} & 3450 \\ & 1725 \end{aligned}$	$\begin{aligned} & 56 \\ & 56 \end{aligned}$	CW／CCW CW／CCW	Haz－TEFC Haz－TEFC	$\begin{aligned} & 115 / 230 \\ & 115 / 230 \end{aligned}$	$\begin{gathered} 9.8 / 4.9 \\ 11.4 / 5.7 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\underset{\mathbf{B}}{\mathbf{B}}$	$\begin{aligned} & 6 K 111 \\ & 6 K 040 \end{aligned}$	$\begin{aligned} & 326.00 \\ & 394.00 \end{aligned}$	$\begin{aligned} & 249.25 \\ & 301.50 \end{aligned}$	$\begin{aligned} & 36.0 \\ & 36.0 \end{aligned}$
1	$\begin{aligned} & 3450 \\ & 1725 \end{aligned}$	$\begin{gathered} 56 \\ 56 \mathrm{H} \end{gathered}$	$\begin{aligned} & \text { CW/CCW } \\ & \text { CW/CCW } \end{aligned}$	$\begin{aligned} & \text { Haz-TEFC } \\ & \text { Haz-TEFC } \end{aligned}$	$\begin{aligned} & 115 / 230 \\ & 115 / 230 \end{aligned}$	$\begin{aligned} & 12.0 / 6.0 \\ & 13.6 / 6.8 \end{aligned}$	1.0	$\begin{aligned} & \mathbf{B} \\ & \mathbf{B} \end{aligned}$	$\begin{aligned} & 6 K 112 \\ & 6 K 041 \end{aligned}$	$\begin{aligned} & 352.00 \\ & 449.00 \end{aligned}$	$\begin{aligned} & 269.25 \\ & 343.50 \end{aligned}$	$\begin{aligned} & 41.0 \\ & 41.0 \end{aligned}$

Refer to page 5 for UL507 Standard，proper thermal protection，and other motor selection information．

MANY BRANDS OF FAN BLOWERS／CONTROLS AVAILABLE

CAPACITOR-START HAZARDOUS LOCATION MOTORS

Rigid welded base or C-face

- Ball bearings

Typical Uses: Listed by UL for use in Class I, Group D and Class II, Groups E, F, and G hazardous locations in dry cleaning and dyeing plants, paint and varnish factories, flour and feed mills, grain elevators, coal and coke plants and other locations that require a motor to meet the National Electric Code for hazardous locations.
Type: Capacitor-start
Bearings: Ball
Enclosure: Hazardous location
Service Factor: 1.0
Thermal Profection: Auto
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Finish: Gray
Brand: GE

$\begin{aligned} & \text { HP } \\ & \hline \end{aligned}$	Nameplate RPM	NEMA Frame	Rotation Facing Shat End	Volts 60 Hz	Enclosure	Full-Lead Armps at Nameplate Volts	Ins. Class		Stock No.	List	Each	Shpg. Wt.
总		为										
: $1 / 4$	1725	56 C	CW/CCW	115/230	Haz-TENV	4.2/2.1	A	C377	2K620	\$381.00	\$226.50	23.0
$\stackrel{\square}{=} 1 / 3$	1725	56 C	CW/CCW	115/230	Haz-TEFC	6.2/3.1	A	C378	2K621	407.00	242.00	31.0
1/2	3450	56 C	CW/CCW	115/230	Haz-TEFC	8.4/4.2	A	C1003	$2 K 622$	392.00	233.00	29.0
	3450	56.5	CW/CEW	$115 / 230$	Haz-TEFC	$8.4 / 4.2$	A	C1037	2K623	430.00	255.75	29.0
	1725	56 C	CW/CCW	115/230	Haz-TEFC	7.813 .9	A	C379	2K624	452.00	268.50	35.0
$3 / 4$	1725	56 C	CW/CCW	115/230	Haz-TEFC	10.8/5.4	A	C380	2K625	502.00	298.25	38.0
K fig								\because		$2 x$		
1/4	1725	48	CW/CCW	115/230	Haz-TENV	4.2/2.1	A	C303C 304	$3 K 793$	301.00179 .00		24.0
	1140	56	CW/CCW	115	Haz-TEFC		A		2K629	494.00	293.50	34.0
	1140	56	CW/CCW	115/230	Haz-TEFC	6.23 .1	A	C506	2K630	503.00	299.00	30.0
$1 / 3$	1725	$\begin{aligned} & 56 \\ & 56 \end{aligned}$	$\begin{aligned} & \text { CW/CCW } \\ & \text { CW/CCW } \end{aligned}$	$\begin{aligned} & 115 / 230 \\ & 115 / 230 \end{aligned}$	$\begin{aligned} & \text { Haz-TEFC } \\ & \text { Haz-TEFC } \end{aligned}$	$6.2 / 3.1$$8.6 / 4.3$	A	C305	$3 K 794$	370.00	219.75	26.0
-	1140						A	C306	2K632	525.00	312.00	35.0
+1/412	3450	5656	CW/CCW CW/CCW	$115 / 230$$115 / 230$	Haz-TEFC	$8.4 / 4.2$$7.8 / 3.9$	A	C307		$\begin{aligned} & 350.00 \\ & 407.00 \end{aligned}$	208.00242.00	24.030.0
	1725						A					
	1140	56	CW/CCW	115/230	Haz-TEFC	9.4/4.7	A	C309	$3 K 795$ $2 K 635$	$\begin{aligned} & 407.00 \\ & 605.00 \end{aligned}$	359.50	42.0
3/4	1725	$\begin{aligned} & 56 \\ & 56 \end{aligned}$	CW/CCW	$\begin{aligned} & 115 / 230 \\ & 115 / 230 \end{aligned}$	Haz-TEFC Haz-TEFC	$\begin{aligned} & 10.8 / 5.4 \\ & 13.2 / 6.6 \end{aligned}$	A	$\begin{aligned} & \text { C311 } \\ & \text { C312 } \end{aligned}$	$\begin{aligned} & 3 K 796 \\ & 2 K 636 \end{aligned}$	$\begin{aligned} & 479.00 \\ & 546.00 \end{aligned}$	$\begin{aligned} & 284.50 \\ & 324.50 \end{aligned}$	$\begin{aligned} & 35.0 \\ & 42.0 \end{aligned}$
	1725		CW/CCW				A					

GRAINGER STOCKS A BROAD LINE OF DAYTON AND GE MOTORS

Top Performance. Dayton motors are built to exceed industry standards such as NEMA (National Electrical Manufacturers Association). Used as a replacement motor in a wide variety of applications, each Dayton motor must outperform the best motor it may be called upon to replace, hence "best of the best" performance. You can be confident that the Dayton motor will work as well as, or better than, the motor you are replacing.
Top Quality Verified by Engineers. Grainger's Engineering Dept.i with its "state-of-the-art" test lab, confirms that Dayton motors consistently meet or exceed top performance standards. Engineering also confirmsthe motors have applicable agency approvals such as UL and CSA.
Clearly Identified. Dayton motors are clearly identified by full tiact carton labels and nameplates with wiring diagrams. Maintenance and installation instructions appear in every motor carton.
Broad Line Offering. Dayton offers one of the broadest lines of motors in the industry. One brand can be used for nearly all your motor replacement needs.
Time Proven Performance. Established in 1937, Dayton has grown to be one of the most dependable names in the motor industry.

Brood line Offering. Grainger now offers over 2400 stock GE brand motors including AC and DC motors from $1 / 370 \mathrm{HP}$ to 450 HP in Energy $\$$ aver ${ }^{\text {T4 }}$ and standard efficiency designs including severe duty, explosion proof, farm duty, HVAC, and many others.
National Recognition. GE is considered the leading national brand motor with the largest installed customer base. The GE brand is widely known for quality and reliability.
Clearly Identified. GE motors are clearly identified by full fact carton labels and nameplates. Easy-to-read wiring diagrams are included.
Premium Efficiency Leader. GE has long been recognized as an industry leader in premium efficiency motors with a wide variety of ratings and types to suit many applications.
Heritage of Excellence. General Electric is one of the pioneers in the electrical industry with a proud 100 year history dating back to the time of founder Thomas Edison.

3－PHASE HAZARDOUS LOCATION INDUSTRIAL DUTY MOTORS

hazardous LOCATION MOTORS

－UL Listed（E62643）for use in desig－ nated hazardous locations
－T－frame models have built－in temper－ ature－sensing switch with leads brought out．When properly wired to the external control circuit，maxi－ mum frame temperature is limited as required by UL and the NEC
－Hazardous location conduit box is supplied with all T－frame models； box is sold separately for NEMA 56 and 56 H frame models
－NEMA design B
Typical Uses：To power fans，blowers， pumps，and air compressors in locations such as dry cleaning plants，paint and varnish factories，flour and feed mills， coal or coke plants，grain elevators，and other locations that require a motor to meet the National Electrical Code for hazardous locations．
Bedrings：Ball
Enclosure：Hazardous location，TEFC
Sexvice Factor： 1.0
Thaifmal Profection：Auto on NEMA 56 and 56 y frames
Windings：Copper
Insulation Class：B
Ambient： $40^{\circ} \mathrm{C}$
Duty：Continuous
Rotation：CW／CCW
Fintish：Gray
Broind：Dayton

	$\begin{aligned} & \text { Nome- } \\ & \text { Rlate } \end{aligned}$	NEMA Frame	Vofts 60 Hz	Full－Load Ampsat at Nameplate Volts	NEMA Nomiral Eficienency	Stock No．	List	Each	Shpg． Wt
$\frac{4}{36}$	E．族要		ROLIED STEEL CONSTRUCTION，RIGID WELDED BASE 34 4 CLASSI，GROUP D AND CLASS II，GROUPS E，F，AND G				\because		发要
1／3	1725	$\begin{aligned} & 56 \\ & 56 \\ & 56 \end{aligned}$	$\begin{aligned} & 2330460^{*} \\ & 2230460^{*} \\ & 230 / 460^{*} \end{aligned}$	$\begin{aligned} & 1.50 .75 \\ & 2.01 .0 \\ & 241 \% \end{aligned}$	$\frac{66.0}{4.0}$	3N367$3 N 368$	$\$ 368.00$390.00	\＄281．50	24.0
$1 / 2$	1725							298，50	
3／4	1725				81.0	3N369	398.00	304.75	31.0
1	1740 1725	$\frac{143 \mathrm{~T}}{56 \mathrm{H}}$	230／460	3.611 .8 3.61 .8	78.5	$3 N 332$ 3 N 370	396.00 414.00	303.25 317.00	38.0 33.0
11／2	3450	145 T	230／460	4.42 .2	78.5	$\begin{aligned} & 3 N 567 \\ & 3 N 333 \\ & 3 N 371 \end{aligned}$	388.00	297.00	40.0
	1740	$145 T$	230／460	＋．8／2．4	80.0		409.00	313．00	4.0
	1725	56 H	230／460	4．8／2．4	80.0		＋49．00	343.50	36.0
2	3450 1740	${ }^{145 T}$	$\begin{array}{r}3 \\ 3 \\ 30 / 460 \\ \hline\end{array}$	$6.0 / 3.0$ 6.03 .0	79.5 815	3N568 3N334	406.00 +4.00	310.75 342.75	47.0 49.0
35$71 / 2$10	1740	182 T	$230 / 460$	8． $4 / 4.2$	32.5	3N291	489.00	367.00	87.0
	1750	1847	230／460	12．8／6．${ }^{\text {a }}$	88.5	3N329	593.00	444.75	108.0
	1740	213 T	230／460	$20.2 / 10.1$	87.5	3N330	748.00	561.00	161.0
	1740	215 T	230460	26.01130	90.2	3N331	823．00	617.50	178.0

（＊）Operable on $50 \mathrm{~Hz} 230 / 460 \mathrm{~V}$ at 56 rated HP and speed at 1.0 sernce factor，

CONDUIT EOX FOR HAZARDOUS LOCATION MOTORS

For use on Dayton brand 56 frame hazardous location motors．Has hole for self－tapping grounding screw．Easily installed．UL Listed．Gray finish．
No． 4×788 ．Shpg．wt．L． 6 lbs．List $\$ 33.00$ ．
Each

hazardous
 LOCATION
 MOTORS

3-PHASE HAZARDOUS LOCATION MOTORS

- Thermosfat (T-St) models have built-in temperature-sensing switch with leads brought out. When properly wired to the external control circuit, maximum frame temperature is limited as required by UL and the NEC
- NEMA design B
- 180 frame and above supplied with grease fittings
Typical Uses: To power fans, blowers, pumps, and air compressors in dry cleaning plants, paint and varnish factories, flour and feed mills, coal or coke plants, grain elevators, and other locations that require a motor to meet the National Electrical Code for hazardous locations.
Bearings: Ball
Mounting: Rigid welded base
Enclosure: Hazardous location, TEFC
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: GE

CAUTION:

Not for fans in unattended areas.
Refer to page 5 for UL507 Standard proper thermal protection, and other motor selection information.

HP	Nameplata RPM	MEMA Frame	Thermal Protection	Votts 60 Hz	Full-Load Ampstat Nameplate Volts	Service Factor	NEMA Nominal Efficiency	Jns. Class	$\begin{aligned} & \text { GE } \\ & \text { Stock } \\ & \text { Mo. } \end{aligned}$	Stock No.	List	Each	Stres.
- ${ }^{\text {F/4}}$	1725	48	Auto	230/460	$1.2 / 0.6$	1.0	68.9	A	K199	5N092†	\$310.00	\$184.25	19.0
\%/1/3	1725 1140	56 56	Auto	2301460 $230 / 460$	1.2/20.6	1.0 1.0	74.9 63.8	A	K 200 K 201	SN093 ${ }^{\dagger}$	448.00	266.25 321.25	. 28.0
$\frac{\pi}{4}$	$\begin{aligned} & 1725 \\ & 1725 \\ & 1140 \end{aligned}$	$\begin{aligned} & 56 \\ & 56 \\ & 56 \end{aligned}$	$\begin{aligned} & \text { Auto } \\ & \text { Auto } \\ & \text { Auto } \end{aligned}$	$\begin{aligned} & 230 / 460 \\ & 200 \\ & 230 / 460 \end{aligned}$	$\begin{aligned} & 2.41 .2 \\ & 2.671 .3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 67.6 \\ & 68.4 \\ & 69.9 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{K} 203 \\ & \mathrm{~K} 533 \\ & \mathrm{~K} 204 \end{aligned}$	5N095 $5 N 096$ $5 N 097$	$\begin{aligned} & \hline 474.00 \\ & 474.00 \\ & 571.00 \end{aligned}$	$\begin{aligned} & 281.75 \\ & 281.75 \\ & 339.50 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 24.0 \\ & 34.0 \end{aligned}$
$3 / 4$	$\begin{aligned} & 1725 \\ & 1725 \\ & 1140 \\ & 1140 \end{aligned}$	$\begin{gathered} 56 \\ 56 \\ 56 \\ 143 \mathrm{~T} \end{gathered}$	Auto Auto Auto Auto	$\begin{aligned} & 230 / 460 \\ & 200 \\ & 230 / 460 \\ & 230 / 460 \end{aligned}$	3.01 .5 3.5 3.41 .7 3.41 .7	1.0 1.0 1.0 1.0	$\begin{aligned} & 72.9 \\ & 73.0 \\ & 72.2 \\ & 72.2 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	K206 K534 K207 K580	$\begin{aligned} & \text { 5N098 } \\ & \text { 5N0999 } \\ & \text { 5N1001 } \end{aligned}$	$\begin{aligned} & 484.00 \\ & 484.00 \\ & 607.00 \\ & 607.00 \end{aligned}$	$\begin{aligned} & 287.50 \\ & 287.50 \\ & 360.75 \\ & 360.75 \end{aligned}$	27.0 27.0 36.0 37.0
1	$\begin{aligned} & 3450 \\ & 1725 \\ & 1725 \\ & 1140 \\ & 1140 \end{aligned}$	$\begin{gathered} 56 \\ 56 \\ 143 \mathrm{~T} \\ 56 \mathrm{H} \\ 145 \mathrm{~T} \end{gathered}$	Auto Auto Auto Auto T-St	$230 / 460$ $230 / 460$ $230 / 460$ 230460 $230 / 460$	3.411 .7 3.661 .8 3.61 .8 3.661 .8 $3.6 / 1.8$	1.0 1.0 1.0 1.0 1.0	78.3 75.4 75.4 78.3 78.3	A A A B B	K208 K209 K579 K535 K298	$\begin{aligned} & \text { 5N102 } \\ & \text { SN103 } \\ & \text { 5N104 } \\ & \text { 5N106 } \\ & \text { SN105 } \end{aligned}$	483.00 503.00 503.00 616.00 616.00	287.00 299.00 299.00 366.00 366.00	27.0 33.0 35.0 40.0 40.0
11/2.	$\begin{aligned} & 3450 \\ & 1725 \\ & 1725 \end{aligned}$	$\begin{aligned} & 143 \mathrm{~T} \\ & 56 \mathrm{H} \\ & 145 \mathrm{~T} \end{aligned}$	$\begin{aligned} & \text { T-St } \\ & \text { Auto } \\ & \text { T-St } \end{aligned}$	$\begin{aligned} & 230 / 460 \\ & 230 / 460 \\ & 230 / 460 \end{aligned}$	$\begin{aligned} & 4.22 .1 \\ & 5.0 / 2.5 \\ & 5.0 / 2.5 \end{aligned}$	1.0 1.0 1.0	81.3 75.2 75.2	A B B	K099 K536 K 911	SN107 SN109 $5 N 108$	485.00 546.00 546.00	288.25 324.50 324.50	35.0 33.0 34.0
2	$\begin{aligned} & 3450 \\ & 1725 \end{aligned}$	${ }_{145 \mathrm{~T}}^{145}$	T-St	$230 / 460$ $230 / 460$	5.2/2.6	1.0	81.7	B	K301	SN110**	767.00 560.00	455.50	39.0 42.0
$\frac{1}{2}^{1 / 2}$	$\begin{aligned} & 1165 \\ & 1155 \end{aligned}$	$\begin{aligned} & 182 \mathrm{~T} \\ & 184 \mathrm{~T} \end{aligned}$	T-St	$\begin{aligned} & 230 / 460 \\ & 230 / 460 \end{aligned}$	5.0/2.5	1.15 1.15	81.5 8.5	$\stackrel{\mathrm{F}}{\mathrm{F}}$	$\begin{aligned} & \mathrm{K581} \\ & \mathrm{~K} 582 \end{aligned}$	$\begin{aligned} & 5 N 688 \\ & 5 N 689 \end{aligned}$	613.00 686.00	$\begin{aligned} & 415.50 \\ & 467.50 \end{aligned}$	$\begin{array}{r} 95.0 \\ 120.0 \end{array}$
3	$\begin{aligned} & 3520 \\ & 1760 \\ & 1170 \end{aligned}$	182 T 182 T 213 T	T-St T-St T-St	$\begin{aligned} & 230 / 460 \\ & 230 / 460 \\ & 230 / 460 \end{aligned}$	$\begin{aligned} & 9.0 / 4.5 \\ & 9.4 / 4.7 \\ & 9.8 / 4.9 \end{aligned}$	1.15 1.15 1.15	81.5 82.5 84.0	F F F	$\begin{aligned} & \mathrm{K} 303 \\ & \mathrm{~K} 213 \\ & \mathrm{~S} 3231 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 N 690 \\ & 5 N 691 \\ & 5 N 692 \end{aligned}$	$\begin{aligned} & 652.00 \\ & 661.00 \\ & 884.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 442.25 \\ & 447.25 \\ & 604.00 \\ & \hline \end{aligned}$	$\begin{array}{r} 101.0 \\ 950 \\ 170.0 \\ \hline \end{array}$
5	$\begin{aligned} & 3520 \\ & 1745 \\ & 1160 \end{aligned}$	$\begin{aligned} & 184 \mathrm{~T} \\ & 184 \mathrm{~T} \\ & 215 \mathrm{~T} \end{aligned}$	T-St	$\begin{aligned} & 230 / 460 \\ & 2300460 \\ & 230 / 460 \end{aligned}$	$13.6 / 6.8$ 13.8/6.9 16.2/8.1	1.15 1.15 1.15	85.5 85.5 84.0	$\stackrel{F}{\mathrm{~F}} \mathrm{~F}$	$\begin{aligned} & \mathrm{K} 304 \\ & \mathrm{~K} 214 \\ & \$ 3239 \end{aligned}$	$\begin{aligned} & \text { 5N693 } \\ & \text { 5N6994 } \\ & \text { 5N6995 } \end{aligned}$	794.00 764.00 1771.00	$\begin{aligned} & 537.00 \\ & 517.50 \\ & 794.00 \end{aligned}$	112.0 115.0 180.0
71/2	$\begin{aligned} & 3525 \\ & 1745 \\ & 1170 \end{aligned}$	$\begin{aligned} & 213 \mathrm{~T} \\ & 213 \mathrm{~T} \\ & 254 \mathrm{~T} \end{aligned}$	$\begin{aligned} & \mathrm{T}-\mathrm{St} \\ & \mathrm{~T}-\mathrm{St} \\ & \mathrm{~T} \mathrm{St} \end{aligned}$	$230 / 460$ $230 / 460$ 230/460	$\begin{gathered} 18.399 .4 \\ 19.89 .9 \\ 21.210 .6 \end{gathered}$	$\begin{aligned} & 1.15 \\ & 1.15 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 87.5 \\ & 86.5 \\ & 86.5 \end{aligned}$	F F F	$\begin{aligned} & \mathrm{S} 531 \\ & \mathrm{~S} 01 \\ & \mathrm{~S} 3246 \end{aligned}$	$\begin{aligned} & \text { 5N696 } \\ & \text { 5N697 } \\ & \text { 5N698 } \end{aligned}$	1029.00 1094.00 1484.00	$\begin{array}{r} 699.50 \\ 742.50 \\ 1015.00 \end{array}$	$\begin{aligned} & 170.0 \\ & 170.0 \\ & 283.0 \end{aligned}$

[^27]
GE 3-PHASE HAZARDOUS LOCATION MOTORS (Cont.)

HP	Namepiate RPM	NEMA Frame	Thermal Protection	Volts 60 Hz	Fulli-Load Amps at Namisplate Volts	Sarvice Factor	NEMA Nominal Efficiency	$\underset{\text { Class }}{\text { Ins. }}$	$\begin{aligned} & \text { GE } \\ & \text { Stock } \\ & \text { No. } \end{aligned}$	Stock No.	List	Each	Shpg. W2
10	3520	215 T	T-St	230/460	23.6/11.8	1.15	88.5	F	S533	5N699 5N700 5N701	$\begin{array}{r} \$ 1150.00 \\ 1270.00 \\ 1823.00 \end{array}$	$\begin{array}{r} \$ 780.00 \\ 859.00 \\ 1240.00 \end{array}$	$\begin{aligned} & 180.0 \\ & 180.0 \\ & 308.0 \end{aligned}$
	1740	215 T	T-St	230/460	$26.4 / 13.2$	1.15	85.5	F	S502				
	1170	256 T	TSt	230/460	$27.2 / 13.6$	1.15	87.5	F	S534				
15	3550	254 T	T-St	230/460	35.6/17.8	1.15	89.5	F	S535	$\begin{aligned} & 5 N 702 \\ & 5 N 703 \\ & 5 N 704 \end{aligned}$	$\begin{aligned} & 1463.00 \\ & 1724.00 \\ & 2484.00 \end{aligned}$	$\begin{aligned} & 1001.00 \\ & 1172.00 \\ & 1685.00 \end{aligned}$	$\begin{aligned} & 283.0 \\ & 283.0 \\ & 404.0 \end{aligned}$
	1765	254 T	T-St	230/460	$39.4 / 19.7$	1.15	87.5	F	S503				
	1175	284 T	T-St	230/460	40.0/20.0	1.15	89.5	F	S636				
20	3545	2567	TSt	230/460	47.4/23.7	1.15	89.5	F	S537	5N705 5N706 5N707	$\begin{aligned} & 1943.00 \\ & 2012.00 \\ & 2947.00 \end{aligned}$	$\begin{aligned} & 1319.00 \\ & 1364.00 \\ & 2098.00 \end{aligned}$	$\begin{aligned} & 308.0 \\ & 308.0 \\ & 437.0 \end{aligned}$
	1760	256 T	T-St	230/460	52.6/26.3	1.15	87.5	F	S504				
	1175	286 T	TSt	230/460	49.0124.5	1.15	89.5	F	S538				
25	3545	284 TS	T-St	230/460	56.6/28.3	1.15	90.2	F	S639	$\begin{aligned} & 5 N 708 \\ & 5 N 709 \\ & 5 N 710 \end{aligned}$	$\begin{aligned} & 2419.00 \\ & 2527.00 \\ & 3386.00 \end{aligned}$	$\begin{aligned} & 1644.00 \\ & 1715.00 \\ & 2175.00 \end{aligned}$	404.0 404.0 603.0
	1770	284 T	T-St	2301460	61.2330 .6	1.15	89.5	F	S505				
	1175	324 T	TSt	230/460	64.6132.3.	1.0	89.5	B	S540				
30	3545	284 TS	TSt	230/460	67.6/33.8	1.15	90.2	F	S541	$\begin{aligned} & 5 N 711 \\ & 5 N 712 \\ & 5 N 713 \end{aligned}$	$\begin{aligned} & 2853.00 \\ & 2947.00 \\ & 4444.00 \end{aligned}$	$\begin{aligned} & 1934.00 \\ & 1996.00 \\ & 2856.00 \end{aligned}$	$\begin{aligned} & 437.0 \\ & 437.0 \\ & 663.0 \end{aligned}$
	1770	286T	T-St	230/460	72.8/36.4	1.15	90.2	F	S506				
	1175	326 T	T-St	230/460	75.4/37.7	1.0	90.2	B	S542				
40	3560	324 TS	TSt	230/460	97.8/48.9	1.0	89.5	B	S543	$\begin{aligned} & 5 N 714 \\ & 5 N 715 \\ & 5 N 086 \end{aligned}$	$\begin{aligned} & 3588.00 \\ & 3597.00 \\ & 5757.00 \end{aligned}$	$\begin{aligned} & 2304.00 \\ & 2309.00 \\ & 3698.00 \end{aligned}$	$\begin{aligned} & 685.0 \\ & 685.0 \\ & 975.0 \end{aligned}$
	1775	324 T	T-St	$230 / 460$	$103.2 / 51.6$	1.0	90.2	B	S507				
	1180	364 T	T-St	460	53.5	1.0	90.2	B	S544				
50	3560	326 TS	T-St	230/460	121.4/60.7	1.0	91.0	B	S545	$\begin{aligned} & 5 N 716 \\ & 5 N 717 \\ & 5 N 718 \end{aligned}$	$\begin{aligned} & 4306.00 \\ & 3992.00 \\ & 6274.00 \end{aligned}$	$\begin{aligned} & 2767.00 \\ & 2564.00 \\ & 4030.00 \end{aligned}$	$\begin{array}{r} 710.0 \\ 710.0 \\ 1025.0 \end{array}$
	1775	326 T	TSt	230/460	119.4/59.7	1.0	91.7	B	S508				
	1185	3655	TSt	460	60.2	1.0	91.0	B	S546				
\% 60	3565	364 TS	T-St	460	68.1	1.0				$\begin{aligned} & \text { 5N073 } \\ & 5 N 077 \\ & 5 N 082 \end{aligned}$	$\begin{array}{r} 6558.00 \\ .5761 .00 \\ .7686 .00 \end{array}$	$\begin{aligned} & 4212.00 \\ & 3698.00 \\ & 4937.00 \end{aligned}$	$\begin{aligned} & 1074.0 \\ & 1146.0 \\ & 1266.0 \end{aligned}$
	1780	364 T	TSt	460	${ }_{72.6} 7$	1.0	91.0	${ }_{8}^{\mathbf{B}}$	-				
	1185	404 T	T-St	460	75.7	1.0	91.7	B	S549				
\% 75	3565	365 TS	T-St	460	87.3	1.0	91.0	B	S580	$\begin{aligned} & 5 N 074 \\ & 5 N 078 \\ & 5 N 083 \end{aligned}$	$\begin{aligned} & 8649.00 \\ & 6728.00 \end{aligned}$$8942.00$	$\begin{aligned} & 5560.00 \\ & 4325.00 \\ & 5746.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 1820.0 \\ & 843.0 \\ & 1356.0 \end{aligned}$
	1780	${ }^{3657}$	TSt	460	92.0	1.0	93.0	B	S581				
	1185	405 T	T-St	460	90.3	1.0	91.7	B	S582				
- 100	3570	405TS	TSt	460	111.0	1.0	91.7	B	S583	5 N 075		$\begin{aligned} & 6691.00 \\ & 6317.00 \\ & 8703.00 \end{aligned}$	$\begin{aligned} & 1363.0 \\ & 1438.0 \\ & 1889.0 \end{aligned}$
震	1780	405 T	T-St	460	119.0	1.0	93.0	B	S584	5N079	9830.00		
	1190	444 T	T-St	460	114.0	1.0	93.0	B	S585	5N084	13541.00		
- 125	17851190	4445 T	T-St	460460	140.0	1.0	92.4	${ }_{\text {B }}$	S587	SN080	13416.0013614.00	$\begin{aligned} & 8622.00 \\ & 8749.00 \end{aligned}$	1817.01896.0
									S588				
mex	3575	445TS	TSt	460460	161.0165.0	1.0	$\begin{aligned} & 91.0 \\ & 93.0 \\ & \hline \end{aligned}$	B	S5889	$\begin{aligned} & \text { 5NO76 } \\ & \text { 5NO81 } \end{aligned}$	$\begin{aligned} & 16721.00 \\ & 14333.00 \end{aligned}$	$\begin{array}{r} 10751.00 \\ 9215,00 \\ \hline \end{array}$	$\begin{aligned} & 1944.0 \\ & 1748.0 \end{aligned}$
	1785	445T							S590				
$\begin{array}{r} 1 / 3 \\ 3 / 2 \\ 3 / 4 \\ =1 / 21 / 2 \end{array}$	$\begin{aligned} & 1725 \\ & 1725 \\ & 1725 \\ & 1725 \\ & 1725 \end{aligned}$	56 C 56 C 56 C 56 C 56 C	Auto Auto Auto Auto Auto	2304602306460$230 / 460$230460$230 / 460$	$\begin{aligned} & 1.2 / 20.6 \\ & 2.41 .2 \\ & 3.011 .5 \\ & 3.61 .81 .8 \\ & 5.02 .5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 74.9 \\ & 67.6 \\ & 72.9 \\ & 75.4 \\ & 75.2 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { B } \\ & \text { B } \\ & \hline \end{aligned}$	K325	$\begin{aligned} & \text { 5N087t } \\ & \text { 5N088 } \\ & \text { 5N089 } \\ & \text { 5N090 } \\ & \text { 5N091 } \end{aligned}$	$\begin{aligned} & 484.00 \\ & 511.00 \\ & 520.00 \\ & 554.0 \\ & 596.00 \end{aligned}$	$\begin{aligned} & 287.50 \\ & 303.50 \\ & 309.00 \\ & 329.25 \\ & 354.00 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 29.0 \\ & 34.0 \\ & 38.0 \\ & 37.0 \end{aligned}$
									K326				
									K484				
									K485				
									K486				

(f) TENV.

NATIONAL ELECTRICAL CODE EXPLOSIVE ATMOSPHERE CLASSIFICATIONS

Certain locations are hazardous because the atmosphere does or may contain gas, vapor or dust in explosive quantities. The National Electrical Code (NEC) divides these locations into classes and Groups according to the type of explosive agent which may be present. Listed are some of the agents in each classification. For complete list, see NFPA (National Fire Protection Association) publication 497 M .
Underwriters' Laboratories tests motors and other devices for safety in explosive atmospheres, and publishes a list of those meeting its standards for each class and Group.
Use of UL Listed devices does not necessarily make an installation conform to the

NEC or local codes. Consult Chapter 5 of the NEC, local building codes, OSHA requirements and insurance inspectors for detailed data as to proper procedures. This catalog does not contain any motors designed for Class I, Groups A, B. and C atmospheres.

CLASS I

Group A: Acetylene
Group B: Butadiene, eth,jleñe oxide, hydrogen, propylene oxide, manufactured gases containing more than 30% hydrogen by yolume.
Group C: Acetaldehyde, cyclopropane, diethyl ether, ethylene.
Group D: Acetone, acrylonitrile, ammonia,
benzene, butane, ethanol, ethylene dichloride, gasoline, hexane, isoprene, methane (natural gas), methanol, naphtha, propane, propylene, styrene, toluene, vinyl chloride, xylene.

CLASS II

Group E: Aluminum, magnesium and other metal dusts with similar characteristics Group F: Carbon black, coke or coal dust Group G: Flour, starch or grain dust

CLASS III

Easily ignitable fibers, such as rayon, cotton sisal, hemp, cocoa fiber, oakum, excelsior and other materials of similar nature.
Typical Uses: To power fans, blowers pumps, and air compressors in locations such as dry cleaning plants, paint and varnish factories, flour and feed mills, coal or coke plants, grain elevators, and other locations that require a motor to meet the National Electrical Code for hazardous locations.
Special Features: Listed by UL (E62643) for use in Class I, Group D and Class II, Groups E, F and G hazardous locations.
Hazardous location conduit box No. 4X788 with NEMA design B is sold separately; see below for ordering information. NEMA design B.
Bearings: Double-shielded ball
Enclosure: Hazardous location, TEFC
Service factor: 1.0
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Flrand: Dayton

HP	Mamepiate APM	NEMA Frame	Thiomal Protection	Volts 60 Hz			NEMA Nominal Efficiency	Stock No.	List	Each	Shpg. Wt.
msin $1 / 3$	1725	56 C	Auto	230/460 ${ }^{+}$		1.5/0.75	66.0	$3 N 863$	\$401.00	\$306.75	25.0
-ta	+1725	56 C .	Auto	$230 / 460{ }^{\circ}$		2.0/1.0	72.0	3N864	422.00	323.00	28.0
$=3 / 4$	1725	56 C	Auto	230/460 \dagger		2.4/1.2	80.0	$3 N 865$	430.00	329.00	32.0
1 1	1725	56 C	Auto	230/460		$3.6 / 1.8$	77.0	3N866	456.00	349.00	34.0
\% $1 / 2$	1725	56HC	Auto:	$230 / 460$		4.8/2.4	80.0	3N867	491.00	375.75	37.0
E2	. 1725	56 HC	None*	230/460		6.0/3.0	82.5	3N868	522.00	399.50	42.0
N+			bextw			WNO BASE	-	\therefore	运:	莨	
Fin 13	1725	56 C	Auto	$230 / 460 \dagger$		1.5/0.75	66.0	$3 N 857$	398.00	304.75	24.0
- 1/2	$\therefore 1725$	56C	Auto	$230 / 460$		2.011 .0	72.0	$3 N 858$	420.00	321.50	27.0
\% 3/4	-1725	56C	Auto	$230 / 460 \dagger$		2.4/1.2	80.0	3×859	428.00	327.50	31.0
$\cdots 11 / 2$	-1725 ${ }^{\text {- }}$	56 C	Aato	$230 / 460$	7	$3.6 / 1.8$	77.0	3N860	456.00	349.90	33.0
120 $11 / 2$	1725	56 C	Auto	230/460		4.8/2.4	80.0	3N861	491.00	375.75	36.0
\%2	1725	56C	Nome*	230/460		6.0/3.0	82.5	3N862	522.00	399.50	4180

(i) Feature-sensing switch, which when properly wired to external control circuit, limits maximum frame temperature to UL and SEC requrements.
$5 \begin{aligned} & \text { Feature-sensing switch, which when properly w } \\ & 50 \text { operable on } 50 \mathrm{~Hz}, 230 / 460 \mathrm{~V} \text { at } 56 \text { rated speed. }\end{aligned}$

CONDUIT BOX FOR HAZARDOUS LOCATION MOTORS

For use on Dayton brand 56 frame hazardous location motors. Has hole for self-tapping grounding screw. Easily installed. UL Listed. Gray finish.
No. 4×788. Shpg. wt. 1.6 lbs. List $\$ 33.00$. Each
: \because,

Refer to page 5 for UL507 Standard, proper thermallprofection, and other motor selection information:
MANY BRANDS OF POWER TRANSMISSION COMPONENTS AVAILABLE

3-PHASE HAZARDOUS LOCATION PREMIUM EFFICIENCY, MOTORS

GE BRAND, SEVERE DUTY

- Listed by UL (E125132) for use in Class I, Group D and Class II, Groups F and G hazardous locations
- Motors have built-in temperaturesensing switch with leads brought out. When properly wired to the external control circuit, maximum frame femperature is limited as required by UL and the NEC
- Premium efficiency motors meet most utility rebate program requirements
- NEMA design B
- Cast-iron construction
- Supplied with grease fittings
- Three-year warranty

Typical Uses: To power fans, blowers pumps and air compressors in dry cleaning plants, paint and varnish factories, grain elevators, and other locations that require a motor to meet the National Electrical Code for hazardous locations.
Bearings: Ball
Enclosure: Hazardous location, TEFC
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Beige
Brand: GE

CAPACITOR-START AND SPLIT-PHASE 50 Hz MOTORS

GE BRAND, CAPACITOR-START AND SPLIT-PHASE
Typical Uses: Fans, blowers, pumps, and commercial machinery.
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: GE

```
PARTS AVAUKBLE
    C4LL
1-800-823-0620
```


HP	Nameplate RPM	NEMA Frama	Thermal Protection	Votts 50 Hz	Full-Load Amps at Namepiato Votts	Service Factor	Beatings	$\underset{\text { Class }}{\text { Cliss }}$	Mounting	$\begin{aligned} & \text { GE } \\ & \text { Stock } \\ & \text { No. } \end{aligned}$	Stock No.	List	Each	Shpg.
brise					CAPACITORSTARI,OPENDRIPROOF					\cdots				
$=1 / 4$	1425	48 48	None Auto	$110 / 220$ 110220	5.612 .8 $5.6 / 2.8$	1.35 1.35	Ball	B ${ }_{\text {B }}$	Rigid	${ }^{\text {C431 }}$	10072 10077	$\begin{array}{r} \$ 174.00 \\ 177.00 \end{array}$	$\begin{aligned} & \$ 104,75 \\ & 106.50 \end{aligned}$	17.0 18.0
$1 \times 1 / 3$	1425	56	Auto	110/220	7.4/3.7	1.35	Ball	B	Cradle	C 457	10075	216.00	129.95	20.0
$=1 / 2$	2350 1425	${ }^{48}$	None Auto	$110 / 220$ 110.220	7.83 .9 9.24 .6	1.25	Ball	B	Rigid	C459	10076 10073	189.00 280.00	113.75 168.75	20.0 24.0
- $3 / 4$	1425 .	56	Auto	-110/220	12.2/6.1	1.25	Ball	B	Cradle	C1187	3K879	339.00	207.50	35.0
zmy		$\sqrt{2 x}$	4	$3 \sqrt{246}$	SKSTITEHASE,OPEN DRIPPROOF					$\begin{gathered} \mathrm{H689} \\ \mathbf{H 6 4 5} \\ \hline \end{gathered}$	$5 x+\sqrt{x}+x$			
$\begin{array}{r} 41 / 4 \\ \hline \end{array}$	1425 1425	$\begin{aligned} & 48 \\ & 48 \end{aligned}$	Auto	${ }_{220}^{110 / 220}$	$5.2 / 2.6$ 3.4	1.0 1.0	Ball Sleeve	A	Cradle/stud		10085	144.00 149.00	86.70 70.25	15.0 16.0
\% 1/3	1425	${ }_{56}^{48}{ }^{*}$	Auto Auto	110220 $110 / 220$	7.08 .5 7.08 .5	1.0 1.0	$\begin{aligned} & \mathrm{Ball} \\ & \mathrm{Ball} \end{aligned}$	B	$\begin{gathered} \text { Rigid } \\ \text { Crade } \end{gathered}$	$\begin{aligned} & \mathrm{H} 691 \\ & \mathrm{H} 692 \end{aligned}$	10086	$\begin{aligned} & 155.00 \\ & 159.00 \end{aligned}$	$\begin{aligned} & 93.30 \\ & 97.30 \end{aligned}$	16.0 17.0
-1/2	1425	56	Auto	110/220	9.24.6	1.0	Ball	B	Cradle	1669	10087	178.00	107.15	20.0

6) NEMAA 562 frame motors have nonstandard $1 / 2^{\prime \prime}$ diameter shaft with llat.

\square
A.O. SMITH BRAND, SPLIT-PHASE CRADLE BASE

Typical Uses: Fans and blowers, air circulators, farm and home workshop tools such as jig saws, grinders, and small drill presses. Also, other moderate torque applications where HP load will not exceed nameplate rating.
Bearings: All-angle sleeve
Enclosure: Open dripproof
Service Factor: 1.0
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Black epoxy
Brand: A.O. Smith

HP	Namaplate RPM	NEMA Frame	Thampal Protaction	Voits 50 Hz	Fult-Load Ampss at Nameplate Volts	Bearings	ins. Class	A.O. Smith	Steck No.	List	Each	Shpg. Wt
1/3	1425	562*	None	220	3.2	Sleeve	B	317 Pl 163	$5 \mathrm{K169}$	\$144.00	\$111.30	16.0

CAPACITOR-START 50 Hz MOTORS

50 Hz
 MOTORS

- Copper windings
- 50 Hz operation

Typical Uses: Machinery, air compressors, conveyors, fans, blowers, machine tools, pumps, and other moderate to hard-starting equipment in noncombustible dusty, dirty environments. 56 C-face end-mounted models are for use on commercial pumps, speed reducers, and other equipment designed for direct connection.
Type: Capacitor-start
Bearings: Double-shielded ball
Ambient: $40^{\circ} \mathrm{C}^{-}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: Dayton

DAYTON BRAND, 50 Hz MOTORS

CAUIION: Not for tans in unottended areas.

Man

GE BRAND, 50 Hz MOTORS
Typicaी Uses: Machinery, air compressors, conveyors, fans and blowers, and other heavyduty, hard-starting equipment.
Type:Capacitor-start
Bearings: Ball
Mounting: Rigid welded base
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: GE

HP	Nameplate RPM	NEMA Frame	Thermal Protaction	Enclosure	Volts 50 Hz	Full-Load Amps at Nameplate Volts	Service Factor	Ins. Class	$\underset{\text { Stock No. }}{\text { GE }}$	Stock No.	List	Each	Sthpg. Wt.
1/4	1425	48	None	TEFC	110/220	5.4/2.7	1.0	B	C462	2K580	\$203.00	\$123.00	18.0
Wesmemes HAZARDOUSIOCATION, UL CLASS I, GROUP D; CLASS I, GROUPS E, F AND G													
1/3	1425 1425	56 56	Auto Auto	TEFC	$110 / 220$ $10 / 220$	$6.2 / 3.1$ 8.44 .2	1.0 1.0	A	C470	$2 k 631$ $2 K 634$	390.00 428.00	231.75 254.50	-37.0
SEE WARRANTY INFORMATION ON PA GE OPPOSITE INSIDE BACK COVER													

50 Hz MOTORS

CAPACITOR-START OPEN DRIPPROOF MOTORS

A.O. SMITH BRAND, CAPACITOR-START, 50 Hz , CRADLE BASE

Typical Uses: Machinery, air compressors, pumps, blowers, and other heavy-duty, hard-starting equipment

GE BRAND, CAPACITOR-START, $60 / 50 \mathrm{~Hz}$, CRADLE BASE

Iypical Uses: High efficiency performance on pumps, blowers, air compressors, machinery, and other heavy-duty, hardstarting equipment.
Special Features: NEMA service factors protyide a reserve margin for applications where intermittent overloading or fluctuwhating (high/low) voltage conditions may occur. Dual capacitors.
Sype: Capacitor-start, capacitor-run
Volts: $60 / 50 \mathrm{~Hz}$ Energy \$aver ${ }^{\text {Th }}$ models are E100-120/200-240 volts
Bearings: Ball
Enclosure: Open dripproof
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: GE

HP	60 Hz	late at 50 Hz	NEMA Frame	Thermal Protection	Volts $60 / 50 \mathrm{~Hz}^{*}$	$\begin{gathered} \text { Full-Load } \\ \text { Amps at } \\ \text { Nameplate Volts } \end{gathered}$	Service Factor	GE Stock No.	Stock No.	List	Each	Shpg. Wt.
1/3	1725	1425	56	Auto	100-120/200-240	4.0-3.8/2.0-1.9	1.35	E254	- $1 \mathrm{K101}$	\$211.00	\$129.10	24.0
$1 / 2$	1725	1425	56	Auto	100-120/200-240	5.8-5.6/2.9-2.8	1.25	E263	-1K103	25200	154.25	27.0
3/4	1725	1425	56	Auto	100-120/200-240	9.0-8.84.5-4.4	1.25	E2:2	-1K105	324.00	198.50	31.0
1	1725	1425	56 H	Auto	100-120/200-240	11.8-11.4/5.9-5.7	1.15	E281	- $1 \mathrm{K107}$	364.00	223.00	40.0

MANY BRANDS OF MATERIAL HANDLING EQUIPMENT AVAILABLE

Bassick
Wagner

PREMIUM EFFICIENCY CAPACITOR-START MOTORS

CAPACITOR-START, CAPACITOR-RUN, RIGID WELDED BASE, $60 / 50 \mathrm{~Hz}$ MOTORS

Typical Uses: Air compressors, conveyors, fans, blowers, machine tools, pumps, and other heavy-duty, hard-starting equipment. Bearings: Ball
Volts: $100-120 / 200-240$ at 60 Hz and 50 Hz
Thermal Protection: None
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray

Brand: GE Energy \$aver

HP		${ }^{2}$	NEMA Frame	Thermani: Protection	$\begin{aligned} & \text { Volts } \\ & \text { 6a } 50 \mathrm{~Hz} \mathrm{z}^{*} \end{aligned}$	Full-Load Amps at Nameplate Volts 60 Hz	Servic Factor	$\begin{aligned} & \text { GE } \\ & \text { Stock } \\ & \text { No. } \end{aligned}$	Stock No.	List	Each	$\begin{gathered} \text { Skpg } \\ W t \end{gathered}$
1/3	1725	1425	56	None	100-120/200-240	4.0-3.822.0-1.9	1.35	E253	-1K100	\$205.00	\$124.15	23.0
1/2	1725	1425	56	None	100-120/200-240	5.8-5.6/2.9-2.8	1.25	E262	-1K102	240.00	145.35	26.0
3/4	1725	1425	${ }_{56}^{56}$	None	100-120/200-240	9.0-8.8/4.5-4.4	1.25	E271	-1K104	312.00	189.25	30.0
1	1725	1425	56	None	100-120/200-240	11.8-11.4/5.9-5.7	1.15	E280	-1K106	353.00	214.25	39.0
1/3	1725	1425	56	None	100-120/200-240	4.0-3.8/2.0-1.9	1.35	E258	-1K108	246.00	149.05	23.0
1212	1725	1425	56	None	100-120/200-240	5.8-5.6/2.9-2.8	1.25	E267	-1K109	289.00	175.50	27.0
3/4	1725	1425	56	None	100-120/200-240	9.0-8.8/4.5-4.4	1.25	E276	-1K110	344.00	208.75	31.0
1	1725	1425	56	None	100-120/200-240	11.8-11.4/5.9-5.7	1.25	E285	-1K111	395.00	239.50	40.0

(4).Suitable for 50 Hz operation at nameplate HP and service factor.

CAPACITOR-START, CAPACITOR-RUN, C-FACE, $60 / 50 \mathrm{~Hz}$ MOTORS
tical Uses: Industrial and commercial pumps, speed reducers, blowers, machine tools, and other equipment that can be dizectly connected to an end-mounted motor.
Bearings: Ball
Volts: 100-120/200-240 at 60 Hz and 50 Hz
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Düty: Continuous
Rafation: CW/CCW
Finish: Gray
Bruind: GE Energy $\$$ aver ${ }^{\text {™ }}$

[^28]
3-PHASE 60/50 Hz MOTORS

DAYTON BRAND, $60 / 50 \mathrm{~Hz}$ MOTORS

- NEMA service factors up to 1.35 provide a reserve margin for intermittent overloading or fluctuating (high/low) voitage conditions
- Operable on $60 / 50 \mathrm{~Hz}$ at same HP rating and service factor
- NEMA design B

Typical Uses: Pumps, fans, blowers, machine tools, air compressors, and other moderate to hard-starting applications where 3-phase power is available.
Bearings: Double-shielded ball
Mounting: Cradle base
Enclosure: Open dripproof
Windings: Copper
Ambient: $40^{\circ} \mathrm{C}$.
Duty: Continuous
Rôitation: CW/CCW
Finish: Gray
Brond: Dayton

㽞	Namepl 60 Hz	RPM at $50 \mathrm{~Hz}$	NEMA Frame	Thernal Protection	$\begin{aligned} & \text { Volts } \\ & 60 / 50 \mathrm{~Hz}^{*} \end{aligned}$	$\begin{gathered} \text { Full-Load } \\ \text { Amps at } \\ \text { Nameplate Volts } \end{gathered}$	Service Factor	NEMA Nominal Efficiency	Ins. Class	Stock No.	List	Each	Shpg. Wt.
$\underline{1 / 3}$	1725	1425	56	None	208-220/440	1.4-1.4/0.7	1.35	06.0	A	3N026	\$168.00	\$128.45	18.0
112	3450	2850	56	Auto	208-220/440	2.2-2.4/1.2	1.25	66.0	A	$3 N 634$	166.00	126.85	20.0
- $1 / 2$	1725	1425	56	None	208-220/440	2.0-2.0/1.0	1.25	720	A	$3 N 027$	193.00	147.55	22.0
; $3 / 4$	3450	2850	56	Auto	208-220/440	2.8-3.0/1.5	1.25	79.0	A	3N635	193.00	147.50	21.0
: $6 / 4$	1725	1425	56	None	208-220/440	2.8-2.7/1.4	1.25	77.0	A	3×487	203.00	155.25	23.0
51	3450	2850	56	Auto	208-220/440	3.5-3.6/1.8	1.25	77.0	A	3N636	221.00	169.00	23.0
2	1725	1425	56	None	208-220/440	3.43.4/1.7	1.25	78.5	A	3N488	231.00	176.75	26.0
cris $1 / 2$	3450	2850	56	Auto	208-220/440	4.4-4.2/2.1	1.15	78.3	A	$3 N 637$	263.00	201.25	28.0
1/2	1725	1425	56	None	208-220/440	4.9-4.8/2.4	1.20	81.5	A	$3 N 489$	273.00	208.75	33.0
-2	3450	2850	56	Auto	208-220/440	5.8-5.6/2.8	1.15	81.5	B	$3 N 638$	304.00	232.50	31.0

Operable on 50 Hz , 1903880 Y , at 50 Hz RPM.

GE BRAND, 50 Hz MOTORS
Typical Uses: Pumps, fans, blowers, air compressors, conveyors, machinery, and other industrial equipment.
Bearings: Ball
Mounting: Rigid
Enclosure: Open dripproof
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: GE

HP	Namplata RPI	NEMA Frame	Thermal Protection	Volts 50 Hz	Full-Load Amps at Nameplate Volts	Service Factor	$\begin{gathered} \text { Ins. } \\ \text { Class } \end{gathered}$	$\begin{aligned} & \text { GE } \\ & \text { Stock } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	List	Each	Shpg. W.
$1 / 2$	1425	56	None	220/380	2.3/1.3	1.25	B	K318	4N590	\$264.00	\$160.25	19.0
1	1425	1437	None	2201380	3.5/2.0	1.15	B	K404	4N601	305.00	185.00	31.0
11/2	1425	145 T	None	220/380	4.9/2.8	1.15	B	K408	4N605	324.00	196.75	36.0
2	1425	145 T	None	220/380	6.4/3.7	1.15	B	K319	4N609	363.00	220.00	39.0

CAPACITOR-START OPEN DRIPPROOF MOTORS

- Reversing device is built into motor, no relay required
- Maximum cycling rate 5 times per minute

Typical Uses: Mechanical doors, gates, hospital beds, hoists, and other equipment that require remote control instant reversibility.
NOTE: No. 2X469 DPDT toggle switch with On/Off/On action is recommended for controlling these motors. Order No. 2X469 separately from page 517 .
Bearings: Prelubricated, double-shielded ball
Mounfing: Rigid welded base
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: Instant reverse
Finish: Gray
Brand: Dayton

\rightarrow

	Hampepfute RPM.	NEMA Frame	Thermad Protection	Yots 60 Hz	Full Load Amps at Nameplate Volts	Service Factor	Insulation Class	Stock No.	List	Each	Stipg. Wt
113	1725	56	Mainual	115	6.4	1.25	B	$6 \mathrm{K415}$	\$234.00	\$161.50	18.0
172	1725	56	Manual	115	8.0	1.25	B	6K388	270.00	186.50	23.0
34	1725	56	Manual	115	12.0	1.15	B	$6 K 880$	314.00	216.75	27.0

:

- Solid state switch
- Extended thru bolts

Typícal Uses: Designed for door operators, machine tools, cranes, hoists, gates, and anysother equipment requiring remote control instant reversibility.
Beozings: Ball
Mounting: Rigid welded base with studs Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: Instant reverse
Finish: Gray
Brand: GE

GE BRAND, INSTANT REVERSE

HP	Namaplate RPM	NEMA Frame	Thennal Protection	Valts 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	GE Stock No.	Stock No.	List	Each	Shpg. Wt
1/4	1725	48	None	115	5.2	1.35	C 382	54178	\$188.00	\$115.05	14.0
1/3	1725	56	None	115	6.3	1.35	C383	50179	227.00	138.95	15.0
1/3	1725	56	Manual	1.15	6.3	1.35	C384	54180	231.00	141.35	15.0
1/2	1725	56	None	115/230	8.6/4.3	1.25	Cl 458	54166	245.09	149.90	21.0
1/2	1725	56	Manual	1151230	8.64 .3	1.25	C1459	50167	258.00	158.25	21.0
3/4	1725	56	None	1151230	13.2/6.6	1.25	C1460	50168	295.00	180.50	25.0
3/4	1725	56	Mamual	115/230	13.2/6.6	1.25	C1461	54169	307.00	188.00	25.0
1	1725	56	None	115/230	13.6/6.8	1.15	C1469	54177	381.00	233.50	31.0

NEED STORAGE EQUIPMENT?

We have pallet racks, bulk storage racks, cantilever racks, shelving, cabinets, bins, parts storage containers, lockers, workbenches, and shop furniture. Refer to Index at back of catalog for page listings.

FARM DUTY MOTORS

HIGH TORQUE CAPACITOR-START TEFC MOTORS

DAYTON BRAND

- Made in USA
- Heavy-duty design provides dependable service for severe farm applications
- Gasketed capacitor covers, conduit box, and shaft slingers provide added protection against dirt and moisture
- Sealed ball bearings on 56 and 140 frames; doubleshielded ball on 180 and 210 frames with moistureresistant grease effective at temperatures to $-40^{\circ} \mathrm{F}$ help provide long life
- All copper windings

Bearings: Ball
Mounting: Rigid welded base
Enclosure: TEFC
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Green
Brand: Dayton

HP	Nameplate RPM	NEMA Frame	Thermal Protection	Volts 60 Hz	Futl-Lood Amps at Namaplate Volts	Service Factor	$\begin{aligned} & \text { Ins. } \\ & \text { Class } \end{aligned}$	Shaft Dimensions Dia. x Length	Stock No.	List	Each	Shpg. w
1/3	1725	56	Manual	115/230	6.8/3.4	1.15	B	$5 / 8 \times 17 / 8^{4}$	$6 \mathrm{K710}$	\$208.00	\$113.65	21.0
1/2	$\begin{aligned} & 1725 \\ & 1725 \end{aligned}$	$\begin{aligned} & 56 \\ & 56 \end{aligned}$	Auto Manual	$\begin{aligned} & 115 / 230 \\ & 115 / 230 \end{aligned}$	$\begin{aligned} & 9.04 .5 \\ & 9.0 / 4.5 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.15 \end{aligned}$	$\begin{aligned} & \hline B \\ & B \end{aligned}$	$\begin{aligned} & 5 / 8 \times 17 / 8 \\ & 5 / 8 \times 17 / 8 \end{aligned}$	$\begin{aligned} & 6 K 592 \\ & 6 K 714 \end{aligned}$	218.00 224.00	$\begin{aligned} & 126.30 \\ & 118.30 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 23.0 \end{aligned}$
3/4	1725 1725	56 56	$\stackrel{\text { Auto }}{\text { Manual }}$	$115 / 230$ $115 / 230$	$11.2 / 5.6$ 11.25 .6	1.15	B	$\frac{5 / 8 \times 17 / 8}{5 \times 178}$	$\begin{aligned} & 6 K 619 \\ & 6 K 719 \end{aligned}$	260.00 266.00	$\begin{aligned} & 150.75 \\ & 1.44 .65 \end{aligned}$	28.0 28.0
1	1725 1725	$\begin{gathered} 56 \\ 56 \mathrm{H} \end{gathered}$	Auto Manual	$115 / 230$ $115 / 230$	$\begin{aligned} & 13.6 / 6.8 \\ & 13.6 / 6.8 \end{aligned}$	1.15 1.15	B	$\begin{aligned} & 58 \times 17 / 8 . \\ & 28 \times 178 . \end{aligned}$	$\begin{aligned} & 6 K 622 \\ & 6 K 727 \end{aligned}$	$\begin{aligned} & 280.00 \\ & 286.00 \end{aligned}$	$\begin{aligned} & 162.25 \\ & 161.25 \end{aligned}$	31.0 32.0
11/2	1740 1725	$-\frac{145 \mathrm{~T}}{56 \mathrm{H}}$	Manual Manual	$\begin{aligned} & 115 / 230 \\ & 115.230 \end{aligned}$	$17.6 / 8.8$ 17.688 .8	1.0 1.0	B	$78 \times 21 / 4$ $7 / 8 \times 1 / 8$	$\begin{aligned} & 6 K 311^{*} \\ & 6 K 740^{*} \end{aligned}$	$\begin{aligned} & 376.00 \\ & 367.00 \end{aligned}$	192.25 192.25	41.0
2	1740 1725	18827	Manual	$115 / 230$ $115 / 230$	$\begin{gathered} 23.6 / 11.8 \\ 19.0 / 9.5 \end{gathered}$	1.0	B	$\begin{aligned} & 11 / 8 \times 23 / 4 \\ & 7 / 8 \times 21 / 4 \end{aligned}$	$\begin{aligned} & 6 K 313 \\ & 4 K 090^{*} \end{aligned}$	$\begin{aligned} & 490.00 \\ & 422.00 \end{aligned}$	$\begin{aligned} & 283.25 \\ & 244.50 \end{aligned}$	$\begin{aligned} & 59.0 \\ & 40.0 \end{aligned}$
3	1740	184 T	Manual	230	14.5	1.0	B	$11 / 8 \times 23 / 4$	6K610*	600.00	324.50	75.0
5	$\begin{aligned} & 1740 \\ & 1730 \end{aligned}$	$\begin{aligned} & 184 \mathrm{~T} \\ & 213 \mathrm{~T} \end{aligned}$	$\begin{aligned} & \text { Manual } \\ & \text { Manual } \end{aligned}$	230 230	22.0 23.0	1.0 1.0	F	$\begin{aligned} & 11 / 8 \times 2^{3 / 4} \\ & 13 / 8 \times 3^{3 / 8} \end{aligned}$	$\begin{aligned} & 6 \mathrm{KB477}^{*} \\ & 6 \mathrm{~K} 130^{*} \end{aligned}$	$\begin{aligned} & 772.00 \\ & 835.00 \end{aligned}$	397.75 484.50	107.0
$71 / 2$ 10	1740 1730	${ }_{215 \mathrm{~T}}^{215 \mathrm{~T}}$	${ }_{230}{ }^{\text {Manual }}$	230 230	30.0 38.0	1.0 1.0	$\stackrel{\mathrm{F}}{\mathrm{F}}$		6K969**	1095.00 1357.00	526.00	$\begin{aligned} & 136.0 \\ & 162.0 \end{aligned}$

(*) Capacitor-start, capacitor-un.

CAUTIO N: No for fans in unattended areas. truway edz aidal

GE BRAND

- Designed to meet the severe conditions of farm use
- Gasketed capacitor cover and conduit bax and shaft slinger provide added protection
- Sealed ball bearings and moistureresistant grease effective at temperatures to $-40^{\circ} \mathrm{F}$
Bearings: Ball
Mounting: Rigid welded base
Enclosure: TEFC
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray enamel
Brand: GE

No $6 K 843$

HP	$\underset{\text { RPM }}{\text { Natas }}$	NEMA Frame	Themal Protection	Volts 60 Hz	Fuli-Load Amps at Nameplate Volts	Service Factor	$\begin{aligned} & \text { Shaft } \\ & \text { Dimensions } \\ & \text { Dia. xL } \end{aligned}$	Ins. Class	$\begin{aligned} & \text { GE } \\ & \text { Stack } \\ & \text { No. } \end{aligned}$	Stock No.	List	Each	Shpg. WL
1/3	1725	56	Manual	115/230	7.8/3.9	1.0	$58 \times 1 \%$	B	F13E1	$6 K 840$	\$160.00	\$124.15	20.0
$1 / 2$	1725	56	Manual	$115 / 230$	9.0/4.5	1.0	$5 / 8 \times 17 / 3$	B	F12E1	$6 K 841$	175.00	133.60	24.0
3/4	1725	56	Manual	115/230	11.0/5.5	1.0	$5 / 8 \times 17 /$	B	F34E1	6 K 42	209.00	158.75	34.0
1	1725	56	Manual	115/230	13.2/6.6	1.0	$5 / 8 \times 1^{1 / 6}$	B	F10E1	$6 \mathrm{K843}$	228.00	171.00	41.0
11/2	175	$145 T$	Manual	115230	14.8774	1.0	$7 / 8 \times 31 / 4$	B	F15E1	6K812*	301.00	224.75	470
	1725	56 H	Manual	1151230	14.877.4	1.0	$5 / 8 \times 1 \%$	B	F100	6K851*	28700	219.25	50.0
$\begin{aligned} & 2 \\ & \frac{2}{3} \\ & 5 \end{aligned}$	1730	$182 \mathrm{TZ} \dagger$	Manual	230	11.4	1.0	$7 / 8 \times 21 / 1$	F	V787	$6 K 813$	+39.00	323.25	90.0
	1720	18472 \dagger	Manual	230	15.6	1.0	11/8× $\times 3 / 1 /$	F	+789	$6 \mathrm{K814}$	W21.00	397.00	100.0
	1730	18472 \dagger	Manual	230	22.0	1.0	$11 / 4 \times 3{ }^{1 / 1}$	F	, 792	6K815*	624.00	474.50	115.0

[^29]
EXTRA HIGH TORQUE CAPACITOR-START TEFC MOTORS

FARM DUTY
 MOTORS

DAYTON BRAND

- Made in USA
- Extra high torque motors have typical starting torque $\mathbf{3 0 0 - 4 0 0 \%}$ of fullload torque
- Breakdown torque rating 285\% of full-load torque
- Gasketed capacitor cover and conduit box and shaft slinger provide added protection
- Sealed ball bearings on 140 frames; double-shielded ball on 180 and 210 frames with moisture-resistant grease effective at temperature to $-40^{\circ} \mathrm{F}$ provide long life
- Regreasable shaft bearings of 182 frame and above

Typical Uses: Designed for severe farria applications which require motors to start under fully loaded conditions. Used in conveyors, silo unloaders, barn cleaners, compressors, and manure pumps.
Bearings: Ball
Mounting: Rigid welded base
Enclosure: TEFC
Insulation Class: F
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rołation: CW/CCW
Finish: Green
Brand: Dayton

$\begin{aligned} & 6 \\ & \end{aligned}$	Nameplate RPM	NEMA Frame	Thermal Protection	Volts - 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	Shaft Dimensions Dia. x Length	Stock No.	List	Each	Shpg.
12	1725	1487	Manual	115/230	15.07 .5	1.15	7/8 $\times 21 / 4^{4}$	$6 \mathrm{K994}$	\$340.00	\$196.50	48.0
142	1725	143 T	Manual	1151230	19.249 .6	1.15	$788 \times 21 / 4$	6K886*	455.81	263.50	50.0
2.	1740	182TZ	Manual	$115 / 230$	25.6/12.8	1.15	$718 \times 23 / 4$	$6 K 887$	588.00	321.50	80.0
3	1760	184 T	Manual	230	17.0	1.15	$11 / 8 \times 23 / 4$	6K881*	654.00	367.75	85.0
5	1740	184T	Manual	230	24.0	1.15	$1^{1 / 8} \times 23 / 4$	6K882*	819.00	477.25	93.0
\%	1725	${ }^{1615 T Z}$	Manual	230	29.0	1.15	$11 / 8 \times 33 / 8$	$6 K 883$	905.00	511.50	122.0
75	1710	${ }^{215 T Z}$				1.15	$11 / 8 \times 33 / 8$	6K884**	1215.00		150.0
10	1725	215 T	Manual	230	43.0	1.15	$13 / 8 \times 33 / 8$	6K885*	1494.00	832.00	155.0

${ }^{*}{ }^{*}$) Capacaitor-start, capacitor-nun. All others capactor-start, induction-un.
CAUIION Not for fans in unatiended areas.

GE BRAND

- Exitra high torque motors häve typical starting torque $300-400 \%$ of fullload torque
- Breakdown torque rating 285\% of full-load torque
- Gasketed capacitor cover and conduit box and shaft slinger provide added protection
- Regreasable bearings on NEMA 184 and 215 frame models

Typical Uses: Designed for severe farm applications which require motors to start under fully loaded conditions.
Type: Capacitor-start, capaci-tor-run
Bearings: Ball
Mounting: Rigid base
Enclosure: TEFC
Insulation Class: \mathbf{F}
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray enamel
Brand: GE

HP	Nameplate RPM	NEMA Frame	Thermal Protection	Volts 60 Hz		Sarvice Facto.	Shaft Jimensions Dia. x Length		Stock No.	List	Each	Shpg. Wh
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 1735 \\ & 1750 \end{aligned}$	$\begin{aligned} & 182 \mathrm{TZ} \\ & { }_{1847 \mathrm{Z}} \end{aligned}$	Manual Manual	230 230	11.4 18.1	1.15 1.15	$7 / 8 \times 23 / 4^{4}$ $11 / 8 \times 3$	N786 N788	$\begin{aligned} & 2 \times 343 \\ & 2 \times 344 \end{aligned}$	$\begin{array}{r} \$ 455.00 \\ 571.00 \end{array}$	$\begin{array}{r} \$ 339.50 \\ 411.50 \end{array}$	99.0 104.0
5	$\begin{aligned} & 1740 \\ & 1750 \end{aligned}$	$\begin{aligned} & 184 \mathrm{TZ} \\ & 215 \mathrm{TZ} \end{aligned}$	Manual Manual	230 230	21.8 22.6	1.15	$1 / 8 \times 31 / 1$ $1 / 8 \times 31 / 1$	N790 \times $\mathbf{N} 91$	$2 K 345$ $6 K 816$	657.00 701.00	499.25	113.0 191.0
71/2	$\begin{aligned} & 1735 \\ & 1735 \end{aligned}$	$\stackrel{215 \mathrm{TZ}}{215 \mathrm{TZ}}$	Manual Manual	$\begin{aligned} & 230 \\ & 230 \end{aligned}$	29.7 29.7	1.0 1.0	$11 / 4 \times 31 / 1$ $1 / 4 \times 3518$	N793 N 98	$6 K 817$ $2 K 347$	935.00 9355.00	707.50 708.00	184.0
10	$\begin{aligned} & 1730 \\ & 1730 \end{aligned}$	$\frac{215 T Z}{215 \mathrm{TZ}}$	Manual Manual	$\begin{array}{r} 230 \\ 230 \end{array}$	38.0 38.0	1.0 1.0	$1 / 8 \times 31 / 4$ $1 / 8 \times 3 / 8$	N794 N 985	$\begin{aligned} & 2 K 346 \\ & 6 K 818 \end{aligned}$	99900 999.00	$\begin{aligned} & 877.00 \\ & 877.50 \end{aligned}$	$\begin{aligned} & 210.0 \\ & 185.0 \end{aligned}$

FARM DUTY MOTORS

POULTRY FEED AUGER DRIVE MOTORS

DAYTON BRAND

- For new and replacement use on poultry feed auger-drive systems
- Special mounting flange assembles easily to auger systems manufactured by GSI, Cumberland; Chore-Time, and others
- Special guard on rotary switch protects against high-speed back-drive condition
- Capacitor-start models have shaft extensions out fan guard for hand cranking
All copper windings

Bearings: Ball
Mounting: Flange and base Enclosure: TEFC and TENV Thermal Protection: Manual
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray.
Brand: Dayton

HP	Nameplata RPM	NEMA Frame	Voits 60 Hz	FullNam 60 Hz	mps at Volts 50 Hz	Service Factor	Shaft Dimensions Dia. \times Length	Stack No.		List	Each	Shpg. Wt.
11/3	1725	56 YZ	115/230	5.42 .7	6.0/3.0	1.0	$1 / 2 \times 11 / 2^{n}$	3K994+		\$202.00	\$131.20	27.0
至												
$1 / 8$	1725	56 YZ	$115 / 230$	3.0/1.5		1.0	$1 / 2 \times 11 / 2$	$5 \mathrm{KO41}$		180.00	117.00	23.0
=1/4	1725	${ }^{56 Y \mathrm{YZ}}$	115/230	4.6/2.3		1.0	$1 / 2 \times 11 / 3$	$5 \mathrm{5K042}$		188.00	122.20	24.0
$\pm 1 / 3$	1725	56 YZ	115/230	5.4/2.7	6.013.0	1.0	$1 / 2 \times 11 / 2$				134.30	27.0
$=106$	axativ	$5 \mathrm{xag}$										
$\begin{array}{r} 1 / 2 \\ 1 / 4 \end{array}$	$: \frac{1725^{\prime}}{1725}$	$\begin{aligned} & 56 \mathrm{YZ} \\ & 56 \mathrm{YZ} \end{aligned}$	$115 / 230$: 9.0/4.5 $=11.4 / 5.7$	$\begin{aligned} & 9.6 / 4.8 \\ & 11.8 / 5.9 \end{aligned}$	1.0 1.0	\cdots	$3 K 995 \dagger$ $3 K 996+$		291.00 321.00	189.75	$\begin{aligned} & 30.0 \\ & 32.0 \end{aligned}$
EG6		, whe						we		$\underline{5}$		
1/2	1725	56 YZ	115/230	- 9.0/4.5	9.674 .8	1.0	$1 / 2 \times 11 / 2$	$5 K 044+$		295.00	192.00	26.0
1F 3/4	1725	56 YZ	1152230	- $11.4 / 5.7$	11.85 .9	1.0	$1 / 2 \times 11 / 2$	$5 \mathrm{K046}+$		325.00	211.75	32.0
	1725	56 Y	115/230	13.616 .8		1.15	$1 / 2 \times 17 / 8$	4K997		360.00	233.75	36.0
$1 \times 11 / 2$	1725	56 Y	115/230	14.0/7.0	-	1.15	$1 / 2 \times 17 / 8$	4K998*		404.00	263.00	45.0

(y) Capacitor-start, capacitor-run. (t) Operable at 50 Hz .

GE BRAND

- For new and replacement use on poultry feed auger drive systems
- Special guard on rotary switch protects against high-speed back-drive condition
- Special mounting flange assembles directly to gearbox
- Capacitor-start models have shaft extensions out fan guard for hand cranking
- Suitable replacement for OEM equipment

Bearings: Ball
Mounting: Flange
Enclosure: TEFC and TENV
Thermal Protection: Manual
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray enamel
Brand: GE

HP	Nameplate RPM	NEMA Frame	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	Shaft Cimensions Dia. x L	GE Stock No.	Stock No.	List	Each	Shpg. Wh.
	twint	\cdots		$9 x^{20}$		NV, NO BASE ${ }^{\text {a }}$		\cdots			\%
1/3	1725	48 NZ	115/230	5.30/2.70	1.0	$1 / 2 \times 127 / 32^{17}$	H646	4K118	\$160.00	\$133.55	22.0
	"****	\because	$A_{2} x^{2}{ }^{6}{ }^{2}$	CAPACIOR-START, TFC, NO BASE				$\overline{35}$			
$1 / 3$	1725.	56 NY	115208-230	5.82 .9	1.0	$1 / 2 \times 1 / 2$	C1291	2K350*	190.00	130.95	21.0
1/2	1725	56 NY	1151208-230	8.4/4.0-4.2	1.0	$1 / 2 \times 103 / 10$	C1292	4K119*	216.00	189.00	27.0
3/4	1725	56 NY	1154208-230	8.4/4.5-4.2	1.0	$1 / 2 \times 11 / 10$	C1293	4K120*	248.00	217.50	35.0
1	1725	56 NY	115208-230	10.86.0-5.4	1.0	$1 / 2 \times 1 / 4$	C1294	4K121*	304.00	234.00	41.0
11/2	1725	56 NY	$115 / 230$	14.8/7.4	1.0	$1 / 2 \times 17 / 4$	C.1295	2×351	+33.00	270.25	42.0

[^30]
3-PHASE AUGER MOTORS AND CENTER PIVOT IRRIGATION MOTORS

FARM DUTY MOTORS

DAYTON BRAND, 3-PHASE MOTORS

- T frame models are NEMA design B
- Gasketed conduit box and shaft slinger provide added protection
- Double-shielded ball bearings with low temperature grease
- All copper windings

Typical Uses: For driving air compressors, conveyors, augers, pumps and other farm equipment where 3 -phase power is available.
Bearings: Ball
Mounting: Rigid base
Enclosure: TEFC
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duly: Continuous
Rotation: CW/CCW
Finish: Green
Brand: Dayton

HP	Nameplate	NEMA Frame	Tharmal Protection	Volts 60 Hz	Full-Load Almps at Harneplata Volts	Service Factor	NEMA Mominal Efficiency	Stuck No.	List	Esch	Shig. Wt.
1/3	1725	56	Manual	230/460	1.60 .8	1.15	$71.0{ }^{*}$	3N625	\$200.00	\$127.10	18.0
1/2 $=$	1725	56	Manual	$230 / 460$	1.80 .9	1.15	${ }^{77.0}{ }^{*}$	3N626	218.00	138.70	21.0
$3 / 4$	1725	56	Manual	$230 / 460$	$2.6 / 1.3$	1.15	77.0*	$3 N 627$	251.00	159.75	23.0
1%	1740	$143 T$	None	2301460	3.611 .8	1.0	78.5	3N335	255.00	162.25	27.0
13	1725	56	Manual	230/460	$3.6 / 1.8$	1.15	77.0*	3N628	261.00	166.25	25.0
1*/2\%	1740	${ }^{1454} \mathrm{H}$	None	230/460	4.82 .4	1.0	880.0	3N336	287.00	183.00	32.0
2 \%	1740	145T	None	230/460	6.03 .0	1.0	78.5	3 N337	311.00	198.00	36.0
3	1740	182 T	None	230/460	9.044.5	1.0	82.5	3N338	418.00	250.00	57.0
5	1740	1847	None	2301460	13.4/6.7	1.0	86.5	3N339	476.00	284.25	74.0
71/2	1755	2137	None	230/460	19.89 .9	1.0	87.5	3N340	625.00	373.00	117.0
10 年:	1755	2157	None	230/460	25.212 .6	1.0	90.2	3N341	747.00	446.50	127.0

(*) Averade efficiency, not NEMA nominal efficiency.

 ?棌

GE BRAND, 3-PHASE CENTER PIVOT IRRIGATION MOTORS

- NEMA 56 C-face assembles directly to geardrive
- Drain holes in shaft endshield
- Rainshield helps resist corrosion from the high moisture and chemical environment of irrigation systems
Typical Uses: Designed specifically for pow--ring center pivot irrigation systems.
3eorings: Ball
hounting: C-face
inclosure: TEFC nsulation Class: B umbient: $40^{\circ} \mathrm{C}$ luty: Continuous otation: CW/CCW intish: Gray enamel rand: GE

HP	Nameplata BPM	NEMA Frame	Thernal Protection	Volts $60 / 50 \mathrm{~Hz}$	Full-Load Amps at Nameplate Volts	Servica Factar	$\begin{aligned} & \text { CE } \\ & \text { Stock } \\ & \text { No. } \end{aligned}$	Stock	List	Each	Shpg.
112/2	1725/1425	${ }_{56 \mathrm{CZ}}{ }^{*}$	Auto	$460 / 380$ $460 / 380$	1.81 .9 2.613 .0	1.0	K1476 $\mathrm{K} 1+38$	4N061 4N060	$\$ 241.00$ 273.00	\$167.25	33.0 35.0
13/8* diameter $\times 11^{1 / 4^{*}}$ shatt											

FARM DUTY MOTORS

DIRECT-DRIVE AND ADJUSTABLE SPEED PSC MOTORS

DAYTON BRAND, PSC DIRECT-DRIVE MOTOR

- Cup shaped slinger and gasket capacitor cover provide added protection against dust and dirt
- Sealed ball bearings on shaft end
- All copper windings

Typical Uses: Direct-drive exhaust and ventilation fans operating in poultry and livestock houses.
Bearings: Ball
Mounting: Stud
Enclosure: TEAO
Thermal Protection: Auto
Insulation Class:-B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous:
Rotation: CW facing shaft
Finish: Gray
Brand: Dayton \square

CAUTION: Not for fans in unaffended areas

DAYTON BRAND, PSC ADJUSTABLE SPEED MOTORS

- Shaft slinger and gaskéted conduit box and capacitor cover provide added protection against moisture and dirt
- Designed for adjustable speed operation with optional solid state
Triac-type controller No. 4 C929 at 115 V or No. 4 C 931 at 230 V
All copper windings
typical Uses: Exhaust fans operating in livestock confinements, or other dusty, dirty noncombustible environments. Not intended for mechanical applications.
Bearings: Ball
Enclosure: TEAO
Thermal Protection: Auto
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CW/CCW
Finish: Gray
Brand: Dayton

LET US SUPPLY YOUR FANS, VENTILATORS, AND RELATED PRODUCTS.
SEE INDEX UNDER APPROPRIATE HEADING

AGRICULTURAL FAN MOTORS

DAYTON BRAND, SPLIT-PHASE

- Gasketed conduit boxes and shaft slinger help protect against water and dirt
- Dual voltage ratings and reversible rotation provide added interchangeability in a variety of fan applications
- All copper windings
- No. 6K791 has extended fan bolts for fan guard mounting

Typical Uses: Exhaust fans operating in poultry and livestock houses. Also used for other fan and blower applications in locations with a dusty, dirty, noncombustible environment.
Bearings: Ball
Enclosure: TEAO
Thermal Protection: Auto
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CW/CCW
Finish: Gray
Brand: Dayton

GE BKRAND, SPLIT-PHASE START, CAPACITOR-RUN

- Besigned to run efficiently in agriciultural environments
- Dual voltage ratings and reversible rotation provide added interchangeability in-a variety of fan applications
Typital Uses: Exhaust fans operating in poultry and livestock housses. Also used for other fan and blower applications in locationts with a dusty, dirty, noncombustible environment.
Bearings: Ball
Enclosure: TEAO
Thermal Protection: Auto
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CW/CCW
Finish: Gray enamel

Brand: GE

HP	Name plate RPM	NEMA France	Vohts 60 Hz	$\begin{gathered} \text { Full-Load } \\ \text { Amps at } \\ \text { Nameplate Volts } \end{gathered}$	Sarvice Factor	Mounting	Shatt Oimansions Dia. XL	GE Stock No.	Stock No.	List	Each	Sthpg. Wt.
1/4	1725	48	$115 / 208-230$	3.0/1.6-1.5	1.0	Cradle*	-12 $\times 1 / y^{4}$	1649	$2 K 349$	\$205.00	\$125.65	18.0
1/3	1725	48	115/208-230	$4.1 / 2.0$	1.0	Crade*	$1 / 2 \times 11 / 4$	H645	$2 K 348$	234.00	143.65	20.0

(*) With extended clamp screws.

FARM DUTY MOTORS

HIGH EFFICIENCY AGRICULTURAL FAN MOTORS

DAYTON BRAND

DAYTON BRAND	
- High efficiency perfor-	Bearings: Ball
mance for use in poultry	Enclosure: TEAO
Shaft slinger, gasketed	Thermal Protection: Auto
capacitor cover, and con-	Insulation Class: B
duit box cover provide	Ambient: $40^{\circ} \mathrm{C}$
added protection against	Duty: Continuous air-over
Can be used to drive fans	Rotation: CW/CCW
d	Finish: Gray
dusty/dirty noncombustible environments	Brand: Dayton

- All copper windings

Bearings: Ball
Enclosure: TEAO
Thermal Protection: Auto
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Finish: Gray
Brand: Dayton

MOTOR PROTECTION

Motors that start automatically (eg. thermostat controlled), that are located remotely or unattended, or that are out-of-sight of the operator, must be protected against dangerous overheating due to failure-to-start or overloading. This protection may be a separate overcurrent device (eg. motor starter) complying with Article 430 of the National Electrical Code (NEC), a thermally protected motor (integral motor protection), or an impedance protected motor.

Motors with automatic reset thermal protection MUST NOT be used where automatic or otherwise unexpected starting of the motor could be hazardous. Where such a hazard exists, always use a Manual-Reset thermally protected motor. Applications where automatic restarting could be hazardous include compressors, conveyors, power tools, farm equipment, and some fans and blowers.

DAYTON BRAND, AERATION FAN MOTORS

- $1 / 2$ to 3 HP

- Key shaft drilled on center 1 " deep and tapped $1 / 4$ "UNC for fan mounting
- Nos. 4 K 055 and 4 K 057 have shafts with flats
- Double-sealed ball bearings
- All copper windings

Typical Uses: Replacement in tube axial fan grain aeration systems made by Dynavent, Farm Fan, Aero-Vent, and other mamufacturers.

Type: Capacitor-start
Beorings: Ball
Mounting: Rigid welded base
Enclosure: TEAO
Thermal Protection: Auto
Ambient: $50^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CW/CCW
Finish: Gray
Brand: Dayton

HP	Nameplate RPM	$\begin{aligned} & \text { NEMA } \\ & \text { Framat } \end{aligned}$	Volts COH2	Full-Load Amps at Nameplate Volts	Service Factor	Insulation Class	Shat Dimensions	Stock Na.	List	Each	Shug. Wt
$1 / 2$	$\begin{aligned} & 3450 \\ & 3450 \end{aligned}$	$\begin{gathered} 48 \\ 562 \end{gathered}$	$\begin{aligned} & 115 / 230 \\ & 115 / 230 \end{aligned}$	$\begin{aligned} & 7.4 / 3.7 \\ & 9.0 / 4.5 \end{aligned}$	1.0	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	- $1 / 2 \times 18 \times 2^{1 / 4}$	$\begin{aligned} & 4 K 055 \\ & 4 K 056 \end{aligned}$	$\begin{array}{r} \$ 188.00 \\ 192.00 \end{array}$	$\begin{array}{r} \$ 124.75 \\ 128.10 \end{array}$	$\begin{array}{r} 16.0 \\ 20.0 \end{array}$
3/4	$\begin{aligned} & 3450 \\ & 3450 \end{aligned}$	$\begin{gathered} 48 \\ 562 \end{gathered}$	$\begin{aligned} & 115 / 230 \\ & 115 / 230 \end{aligned}$	$\begin{array}{r} 9.8 / 4.9 \\ 10.4 / 5.2 \end{array}$	$\begin{aligned} & 1.0 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathbf{B} \\ & \mathbf{B} \end{aligned}$	$1 / 2 \times 18{ }^{1 / 2}$	$\begin{aligned} & 4 K 057 \\ & 4 K 058 \end{aligned}$	198.00 202.00	132.25 135.15	21.0 250
1 $14 / 2$ 2 3	3450 3500 3500 3500	562 1437 $143 T$ $145 T$	$115 / 230$ $115 / 230$ 115230 230	$\begin{gathered} 11.4 / 5.7 \\ 16.4 / 8.2 \\ 20.8 / 10.4 \\ 14.5 \end{gathered}$	1.0 1.0 1.0 1.0	B F F F	$888 \times 21 / 4$ $.78 \times 21 / 4$ $78 \times 2^{1 / 4}$ $78 \times 2^{1 / 4}$	$\begin{aligned} & 4 K 059 \\ & 4 K 060 \\ & 4 K 061 \\ & 4 \times 062^{*} \end{aligned}$	236.00 270.00 310.00 345.00	150.25 179.25 204.25 219.75	29.0 33.0 -42.0 42.0

(*) Cdpacitorstart, capacitor-rum.

CE BRAND, AE

- 3 to 3 HP
TEAO design protects against dust
dive and other contaminants
Typical Uses: Replacement in tube axial fan graik aeration systems made by Dynavent, Farm Fan, Aero-Vent, and other manufacturerst

HP	Nameptate日PM	NEMA Frame	Volts 60 Hz		Full-Load Amps at Wameplata Volta	Sorvice Factor	Shatt Dimensions	$\mathrm{SE}_{\text {Stack } \mathrm{No} .}$	Stock No.	List	Each	Shpg
314	3450	56	1151230		9.844.9	1.0	$5 / 8 \times 17 / 9^{\prime \prime}$	C1467	54175	\$199.00	\$135.15	18.0
1	3450	56	1151230		13.466 .7	1.0	$5 / 8 \times 17 / 8$	C1468	$5 \cup 176$	235.00	150.25	29.0
11/2	3450	1437	1151230		16.4/8.2	1.0	$7 / 8 \times 24 / 4$	C1273	2 K 352	253.00	179.25	35.0
2	3450	145 T	115,230		17.818 .9	1.0	$7 / 8 \times 21 / 4$	C1274	2K353*	271.00	204.25	40.0
3	3450	145 T	230		13.2	1.0	$788 \times 21 / 4$	C 2275	2K354*	312.00	219.75	50.0

GE BRAND, HATCHERY/INCUBATOR FAN MOTOR

- 1" Extended clamp screws for fan shroud mounting
- Shaft diameter $1 / 2 \times 21 / 2^{\prime \prime}$ long with full length flat
- Capacitor mounted on the motor
- Centrifugal switch for tripping alarm circuit if motor stops
- Shaft slinger to prevent dirt and moisture entering bearing system

Typical Uses: Designed for use in Jamesway and Chickmaster hatchers.
Type: Permanent split capacitor
Beorings: Double sealed ball
Enclosure: TEAO
Thermal Protection: Auto
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CW facing shaft
Finish: Gray
Brand: GE

HP	Namplata RPM	NEMA Frame	Yoits 60 Hz	Full-Load Ampes at Namoplate Volts	Sarvice Factor	Stock Mo,	Stock No.	List	Each	Shug. We.
1/3	1725	482	1151230	4.0/2.0	1.0	P229	54266	3220.00	\$156.75	14.0

FARM DUTY MOTORS

CROP DRYER AND DUST-TIGHT MOTORS

DAYTON BRAND, CROP DRYER MOTORS

- Special service factor design provides reserve margin that allows individual models to replace motors in a range of HP ratings
- Keyed shaft drilled on center $1^{\prime \prime}$ deep and tapped 1/4-20 UNC for fan mounting
- Thermostat thermal protection
- Extra long 40" leads
- All copper windings
- No. 4 K094 has capacitor mounted separately

Type: Capacitor-start, capacitor-run Bearings: Ball
Mounting: Rigid weided base
Enclosure: Open dripproof
Service Factor: 1.0
Thermal Profection: Thermostat
Insulation Class: F
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous air-over
Rotation: CW/CCW
Finish: Green
Brand: Dayton

Typical Uses: Replacement in air-over fan crop dryers where axial fan is mounted directly to the motor shaft.

$\underset{\text { Range }}{\text { HP }}$	Nameplate RPM	NEMA frame	Volts 60 Hz	Full-Load Ampes at Nameplate Volts	Shaft Dimensions Dia. x Length	Stock No.	List	Each	Shpg. W.
5-7	3480	18472	230	21.030 .0	11/8 ${ }^{11 / 44^{\prime \prime}}$	$4 K 092$	\$634.00	\$363.25	92.0
$471 / 2-9$	3490	184 TZ	230	30.036 .0	$11 / 8 \times 31 / 4$	$4 K 093$	- 747.00	-427.75	102.0
- 10.12	3480	215 TZ	230	400-47.0.	$11 / 8 \times 34 / 8$	4 K 094	1138.00	652.50	139.0

- Solid state switch eliminates switch failure due to off-season windmilling Thermostat thermal protection :

Extra long 42" leads provide easy connection to control box

Typical Uses: Replacement in air-over fan crop dryers where axial fan is mounted girectly to the motor shaft.
m

GE BRAND, CROP DRYER MOTORS

${ }^{\text {Fif }}$ HP	$\begin{gathered} \text { Naqueplate } \\ \text { RPM } \end{gathered}$	NEMA Frame	Yolts 60 Hz	Fulli-Lagd Amps at Mameplate Voits	Service Factor	$\begin{gathered} \text { Shatt } \\ \text { Dinamanions } \\ \text { Dia. x Length } \end{gathered}$	$\begin{aligned} & \text { GE } \\ & \text { Stock } \\ & \text { Mo. } \end{aligned}$	Stock No.	List	Each	Shpg.
\% 3	3535	184 TZ	230	13.4	1.27	$11 / 8 \times 33 / 4^{4}$	N335:	2K355	\$432.00	\$343.25	77.0
5	3530	18472	230	20.2	1.27	$11 / 8 \times 33 / 4$	N3358	2×356	201.00	374.75	90.0
$71 / 2$	3510	18472	230	30.6	1.27	$11 / 8 \times 33 / 4$	N3359	2 K 357	588.00	421.00	99.0
$71 / 2$	3535	2157 Z	230	31.0	1.5	$11 / 8 \times 43 / 4$	N339]	2 K 358	692.00	482.75	135.0
10	3535	2157 Z	230	38.6	1.5	$11 / 3 \times 43 / 4$	V3361	2 K 360	889.00	616.00	170.0

DAYTON BRAND, DUST-TIGHT MOTORS

- External die-cast aluminum fan on shaft end helps keep dirt from obstructing operation
- Double-sealed bearing on shaft end double-shielded bearing opposite shaft end
- All copper windings

Typical Uses: Designed for use on farms to power conveyors, tools, pumps, blowers, and other equipment in dusty, dirty areas. Not for use where explosion-proof motors are required.

Type: Capacitor-start *-
Bearings: Ball
Mounting: Bolt-on base
Enclosure: TEAO
Thermal Protection: Thermostat
Insulation Class: F
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray enamel
Brand: GE

CAUTION: Not for fans in unattended areas. Refer to page 5 for UL507 Standard. proper thermal protection, and other motor selection information	
Each	Sthes. Yut
\$363.25	92.0
427.75	102.0
652.50	139.0

AIR COMPRESSOR. MOTORS

PUMP MOTORS

DAYTON BRAND

- Electrical characteristics are designed to provide high breakdown torque to ensure dependable service
- Mechanical features are designed to provide long life in high tension, belt-type loads which typically shorten motor life
- All copper windings

Typical Uses: For new and replacement use in industrial air compressor applications including Dayton, Campbell-Hausfeld,
Sanborn, and Ingersoll-Rand.
Type: Capacitor-start
Bearings: Ball
Mounting: Rigid welded base :
Enclosure: Open dripproof at
Ambient: $40^{\circ} \mathrm{C}$. N°
Duty: Continuous
Rotation: CW/CCW
Finish: Black
Brand: Dayton

HP*	Nameplate BP䨐	NEMA Frame	Thermal Pratection	Volts 60 Hz	Full-Load Aaps at Mamsplate Volits	Service Factor	$\begin{aligned} & \text { Fasylation } \\ & \text { Class } \end{aligned}$	Shaft Dineews. Dita. x Longth	Stuck No.	List	Each	Stupg. Wi.
1/2:	3450		Manuial	115/230	9.8/4.9	1.25	B	$58 \times 1^{\prime \prime} \mathbf{s}^{\prime}$	6K745	\$146.00	\$107.35	18.0
$3 / 4$	3450	- 56	Manual	$115 / 230$	- 10.65 .3	1.25	B	58×1 ¢	6 K 748	171.00	125.65	200
1, mix	$3450 \therefore$	56	Maxual	115/230	17.888 .9	1.15	B	$58 \times 1 / 5$	6×754	186.00	136.75	24.0
14/ax	3450	56	Manual	$115 / 230$	18.299 .1	1.15	B	$588 \times 17 / 3$	6×765	211.00	155.25	29.0
$2 \div$	3450	56	Manual	115230	22.0111 .0	1.15	B	$58 \times 1{ }^{1 / 3}$	6K773	$\underline{220.00}$	162.00	30.0
	$\begin{aligned} & 3450 \\ & 1740 \end{aligned}$	$\begin{gathered} 56 \\ 184 T \end{gathered}$	$\begin{aligned} & \text { Manual } \\ & \text { Noné } \end{aligned}$	$\begin{aligned} & 230 \\ & 230 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 17, \quad, \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.15 \end{aligned}$	$\overline{\mathrm{B}}$	$\begin{aligned} & \overline{5 / 8} \times 17 / 3 \\ & 11 / 9 \times 24 \end{aligned}$	$\begin{array}{r} 6 \times 79 \\ 6 \times 756 \end{array}$	$\begin{aligned} & 251.00 \\ & 395.00 \end{aligned}$	$\begin{aligned} & 184.50 \\ & 290.00 \end{aligned}$	$\begin{aligned} & 37.0 \\ & 65.0 \end{aligned}$
5	$\begin{aligned} & 3450 \\ & 1740 \end{aligned}$	$\begin{aligned} & 143 \mathrm{~T} \\ & 184 \mathrm{~T} \end{aligned}$	Manual None	$\begin{aligned} & 230 \\ & 230 \end{aligned}$	21.0 23.5	1.0	B	$7 / 8 \times 24 / 4$ $1 / 4 \times 23 / 4$	6K794**	319.00 46300	234.75	48.0 75.0

(*) Cápáatior-start, capacitor-nul

- Fof commercial air compressor applif ceifions
- Bearing systems designed to provide long life

Typicat Uses: Direct replacement on selectio ed ait compressor applicatioris including Dayton, Campbell-Hausfeld, Sanborn, and ${ }^{2}$ others. Use on óther applications voilds warranty.
Type: Capacitor-start
Mounting: Rigid welded base
Enclosure: Open
Thermal Protection: Manual or auto
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Compressor
Rotation: CCW facing shaft end
Finish: Black
Brand: GE

HP	Namsplate RPM	NEMA Frame	Thermal Protection	Volts 60 Hz	Fult-Load Amps at Nameplate Volts	Service Factor	Bearings	EE Stock No.	Stock Na.	List	Each	Shpg. Wt.
1/2	3450	56	Manual	116	11.5	1.0	Ball \% Sleeve	$\$ 031$	3K781	\$135.00	\$92.00	23.0
	1725	56	Auto	115	8.8	1.0	$\mathrm{B} \mathrm{a}^{1+} 2$ Sleeve	3020	3×782	13.00	93.30	23.0
3/4	3450	56	Manual	115	12.5			303%	3×783	146.00		23.0
	1725	56	Auto	115	10.5	1.0	Ball s Sleeve	9030	3 K 784	148.40	100.85	23.0
1	3450	56	Manual	$115 / 230$								26.0
$11 / 2$	3450	56	Manual	115230	19.095	1.0	Ball \& Sleeve	0034	$3 k 786$	$18 \div 00$	127.35	26.0
2	3450	56	Manual	115/230	15.07 .5	1.0	Ball \& Sleeve	9035	3K787*	199.00	135.55	29.0
3	3450	56	Manual	230	13.1	1.0	Bail	9036	3K788*	21900	149.25	29.0
5	3450	56	Manual	230	21.0	1.0	Ball	9038	3K790*	318 (0)	216.75	35.0

PUMP MOTORS

PRESSURE WASHER PUMP AND WET ENVIRONMENT/CAR WASH MOTORS

PRESSURE WASHER PUMP MOTORS

- NEMA service factors provide reserve margin
- Water slinger on shaft helps protect bearing
- Double shielded 203 ball bearings
- Dual voltage
- All copper windings

Typical Uses: For new and replacement use in both hot and cold water high pressure washer applications. Corrosion-resistant features to protect against the harsh conditions of this application.
Type: Capacitor-start
Bearings: Double-shielded ball
Mounting: Rigid welded base
Enclosure: Open dripproof
Thermal Protection: Manual
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: Dayton

No. 416 stainless steel shaft with lip seals at both ends

- Double gasketed cast alu-
miminum conduit box with drain H
- Double-dipped and baked "copper windings
Cast iron C-face with four drain holes and plugs
- Durable gray epoxy finish on outside with stainless sfeel. hardware

WET ENVIRONMENT/CAR. WASH MOTORS

Typical Uses: For extended life in car washes or other wet environments where the motor is constantly exposed to water, chemicals, and harsh detergent.
Type: Three-phase
Bearings: Sealed ball with moisture-resistant grease
Mounting: Nos. 3N785 and 3N786 C-fac̈e. with rigid base, all others C-face no base
Enclosure: TEFC
Thermal Protection: Therriostat
Insulation Class; \mathbf{F}
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: Dayton

HP	Nameplate RPM	NEMA Frame	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Service Factor	Nominal Efficiancy	Stock No.	List	Each	Shpg. Wi.
$1 / 2$	1725	56 C	230/460	2.0/1.0	1.15	77.0	3N780	\$270.00	\$197.50	26.0
3/4	1725	56C	230/460	$2.6 / 1.3$	1.15	77.0	3N781	29700	217.25	34.0
1	1725	56 C	230/460	3.6/1.8	1.15	78.5	3N782	304.00	222.25	37.0
11/2	1725	56 C	230/460	4.8/2.4	1.15	80.0	3N783	331.00	242.00	39.0
2	1725	56 C	$230 / 460$	6.013.0	1.0	78.5	3N784	360.00	263.25	43.0
3	1740	182 TC	230/460	9.0/4.5	1.0	32.5	3N785	467.00	334.50	68.0
5	1740	184 TC	230/460	13.4/6.7	1.9	86.5	3N786	536.00	384.00	84.0

GRAINGER HAS OVER 330 BRANCHES NATIONWIDE

We're well stocked with items you use everyday and our salespeople are knowledgeable, courteous professionals who care about your business. To find the branch nearest you,
check the white pages in your local telephone directory under "Grainger."

- NEMA special service factor 1.25 provides reserve margin for intermittent overloading
- OFWersized ball bearings with locked dind shaft construction
- Alt models listed usable on 50 Hz . 190/380V, 1.0 service factor
- 140 frame, rigid welded base; 182
thetu 215 frame, bolted base
- All copper windings

Typical Uses: Centrifugal close-coupled pumps where the pump impeller is mounted drrectly to the motor shaft using a JM or $\mathrm{dP}_{\mathrm{E}}^{\mathrm{E}} \mathrm{sh}$ haft.
Typesthree-phase
Bearings: Ball
Mounting: Face with base
Enclosure: TEFC
Service Factor: 1.25
Thermal Protection: None
Insulation Class: F
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray enamel
Brond: Dayton

HP	Nameplate HPM	$\begin{aligned} & \text { NEMA } \\ & \text { Prampe } \end{aligned}$	Volts COH_{2}	Full-Load Amps at Ransepiate Volua	Nom. Efficy	Stuck No.	List	Each	Shere. Wit.
			2			"4tamx			
1	1750	1435M	208-230/460	$3.6 \mathrm{~m} .6 / 1.8$	80.0	3N787	\$194.00	\$188.75	30.0
11/2	$\begin{aligned} & 3450 \\ & 1730 \end{aligned}$	$\begin{aligned} & 143 \mathrm{MM} \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & 208-230 / 460 \\ & 208-230 / 460 \end{aligned}$	$\frac{4.5-4.2 / 2.1}{5.1-5.0 / 2.5}$	$\begin{aligned} & 78.5 \\ & 80.0 \end{aligned}$	$\begin{aligned} & 3 N 788 \\ & 3 N 789 \end{aligned}$	$\begin{aligned} & 228.00 \\ & 212.00 \end{aligned}$	$\begin{aligned} & \text { ' } 221.75 \\ & 206.25 \end{aligned}$	$\begin{aligned} & 30.0 \\ & 35.0 \end{aligned}$
2	$\begin{aligned} & 3465 \\ & 1725 \end{aligned}$	145 JM 145 M	$\begin{aligned} & 208-230 / 460 \\ & 208-230 / 460 \end{aligned}$	$\begin{aligned} & 6.0-5.1 / 2.7 \\ & 6.0-6.2 / 3.1 \end{aligned}$	80.0 82.5	$\begin{aligned} & 3 N 790 \\ & 3 N 791 \end{aligned}$	$\begin{aligned} & 246.00 \\ & 222.00 \end{aligned}$	$\begin{aligned} & 239.25 \\ & 216.00 \end{aligned}$	$\begin{array}{r} 35.0 \\ 35.0 \end{array}$
3	3460 1760	146JM	$208230 / 460$ $208-230 / 460$	8.5-7.63.8	84.0 84.0	3N792* 3N793	253.00 258.00	246.25 250.75	40.0
5	$\begin{aligned} & 3485 \\ & 1740 \end{aligned}$	184 M 184 M	$\begin{aligned} & 208-230 / 460 \\ & 208-230 / 460 \end{aligned}$	$14.4-12.8 / 6.4$ $15.0-1268.8$	$\begin{aligned} & 85.5 \\ & 85.5 \end{aligned}$	3N794 $3 N 795$	336.00	326.75 326.50	50.0 75.0
71/2	$\begin{aligned} & 3465 \\ & 1750 \end{aligned}$	$\begin{gathered} 184 . \sqrt{M} \\ 213 \pi M \end{gathered}$	$\begin{array}{r} 208-230 / 460 \\ 208-230 / 460 \end{array}$	$\begin{gathered} 29.0-19.29 .6 \\ 22.420 .610 .3 \end{gathered}$	$\begin{aligned} & 85.5 \\ & 86.5 \end{aligned}$	$\begin{aligned} & 3 N 796^{*} \\ & 3 N 797 \end{aligned}$	$\begin{aligned} & 370.00 \\ & 478.00 \end{aligned}$	$\begin{aligned} & 359.50 \\ & 464.50 \end{aligned}$	$\begin{array}{r} 75.0 \\ 100.0 \end{array}$
10	$\begin{aligned} & 3495 \\ & 1755 \end{aligned}$	$\begin{aligned} & 215 \mathrm{M} \\ & 215 \mathrm{M} \end{aligned}$	$\begin{array}{r} 208-230 / 460 \\ 208-230 / 460 \end{array}$	$\begin{aligned} & 27.624 .4 / 12.2 \\ & 28.927 .2 / 13.6 \end{aligned}$	$\begin{aligned} & 88.5 \\ & 88.5 \end{aligned}$	$\begin{aligned} & 3 N 798 \\ & 3 N 799 \end{aligned}$	$\begin{aligned} & 512.00 \\ & 572.00 \end{aligned}$	$\begin{aligned} & 497.50 \\ & 556.00 \end{aligned}$	$\begin{aligned} & 110.0 \\ & 155.0 \end{aligned}$
1	1750	143)P	208-230/460	3.6-3.6/1.8	80.0	3N800	194.00	188.7.5	30.0
11/2	$\begin{aligned} & 3450 \\ & 1730 \end{aligned}$	$\begin{aligned} & 143 \mathrm{JP} \\ & 145 \mathrm{JP} \end{aligned}$	$\begin{aligned} & 208230 / 460 \\ & 208-230 / 460 \end{aligned}$	$4.5-4.2 / 2.1$	$\begin{aligned} & 78.5 \\ & 80.0 \end{aligned}$	$\begin{aligned} & \text { 3NBOL } \\ & 3 N 802 \end{aligned}$	$\begin{aligned} & 228.00 \\ & 212.00 \end{aligned}$	$\begin{aligned} & 221.75 \\ & 206.25 \end{aligned}$	$\begin{aligned} & 30.0 \\ & 35.0 \end{aligned}$
2	$\begin{aligned} & 3465 \\ & 1725 \end{aligned}$	$\begin{aligned} & 145 J P \\ & 145 \mathrm{P} \end{aligned}$	$\begin{aligned} & 208-230 / 460 \\ & 208-230 / 460 \end{aligned}$	$\begin{aligned} & 0.0-0.42 .1 \\ & 6.5-6.23 .1 \end{aligned}$	$\begin{aligned} & 80.0 \\ & 82.5 \end{aligned}$	$\begin{aligned} & 3 N 803 \\ & 3 N 804 \end{aligned}$	$\begin{aligned} & 246.00 \\ & 222.00 \end{aligned}$	$\begin{aligned} & 239.25 \\ & 216.00 \end{aligned}$	$\begin{aligned} & 36.0 \\ & 35.0 \end{aligned}$
3	$\begin{aligned} & 3460 \\ & 1750 \end{aligned}$	145 JP 182 IP	$\begin{aligned} & 208-230 / 460 \\ & 208-230 / 460 \end{aligned}$	$\begin{aligned} & 8.5-7.6 / 3.8 \\ & 9.3-9.0 / 4.5 \end{aligned}$	84.0 84.0	$3 \times 805 *$ 3×806	253.00 258.00	$\begin{aligned} & 246.25 \\ & 250.75 \end{aligned}$	40.0 50.0
5	$\begin{array}{r} 3485 \\ -1740 \end{array}$	$\begin{aligned} & 184 \mathrm{JP} \\ & 184 \mathrm{LP} \end{aligned}$	$\begin{aligned} & 208-230 / 460 \\ & 208-230 / 460 \end{aligned}$	$\begin{aligned} & 14.4-12.86 .4 \\ & 15.0-13.6 / 6.8 \end{aligned}$	$\begin{aligned} & 85.5 \\ & 85.5 \end{aligned}$	$\begin{aligned} & 3 \times 807 \\ & 3 \times 808 \end{aligned}$	$\begin{aligned} & 336.00 \\ & 336.00 \end{aligned}$	$\begin{aligned} & 326.75 \\ & 326.50 \end{aligned}$	$\begin{aligned} & 50.0 \\ & 75.0 \end{aligned}$
71/2	3465 1750	${ }^{184} \mathbf{2 1 3} \mathrm{JP}$	$\begin{aligned} & 208-230 / 460 \\ & 208-230 / 460 \end{aligned}$	$22.0-19.2 / 9.6$ $22.420 .6 / 10.3$	85.5 86.5	$3 N 809 *$ 3×10	370.00 478.00	$\begin{aligned} & 359.50 \\ & 464.50 \end{aligned}$	$\begin{array}{r} 75.0 \\ 100.0 \end{array}$
10	$\begin{aligned} & 3495 \\ & 1755 \end{aligned}$	$\frac{215 J P}{215 J P}$	$\begin{aligned} & 208-230 / 460 \\ & 208-230 / 460 \end{aligned}$	$\begin{aligned} & 27.6-24.412 .2 \\ & 28.927 .213 .6 \end{aligned}$	88.5	$\begin{aligned} & 3 N 811 \\ & 3 N 812 \end{aligned}$	512.00	$\begin{aligned} & 497,50 \\ & 556,00 \end{aligned}$	110.0 115.0

(*) 1.15 service factor, 1.0 at 208 volts.

See Cross Reference Information on page opposite inside back cover.

PUMP MOTORS

WASHDOWN MOTORS

Double-gasketed aluminum conduit box with drain holes profect against moisture

- Double-dipped and baked copper windings
- No. 303 stainless steel shaft with V-ring rotating seal
- USDA approved corrosionresistant white epoxy primer and paint
- Cast-iron C-face with drain holes ot 3, 6, 9 and 12 o'clock positions
- Complies with BISSC, 2A Dairy Standard and NEMA definition MG1-1.26.5 standard for waterproof motors
- Built-in temperature-sensing thermostat with leads for separate control wiring

Typical Uses: For extended life on equipment in food, beverage, or chemical processing plants where motor is constantly exposed to high pressure washdowns or other high humidity or wet environments.
Bearings: Double-sealed ball with moisture-resistant grease
Enclosure: TEFC
Thermal Protection: Thermostat Insulation Class: F
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: White epoxy
Brand: Dayton

HP	Nameptata RPM	NEMA Frame	Volts 60 Hz	Full-Load Amps of Nomeplata Yolts	Service factor		Stock No.	List	Each	Shpg.
KK,										
1/2	1725 1725	56 C 56 C	$115 / 230$ $115 / 230$	$9.0 / 4.5$ 11.25 .6	1.15 1.15		4K260	$\$ 270.00$ 305.00	$\begin{aligned} & \$ 196.50 \\ & 221.75 \end{aligned}$	26.0 34.0
1	3450 1725	56 C 56 HC	$115 / 230$ $115 / 230$	12.0/6.0	1.15		4K999	344.00 360.00	$\begin{aligned} & 250.00 \\ & 261.75 \end{aligned}$	31.0 37.0
11/2	3450 1725	56 HC .56 HC	$115 / 230$ $115 / 230$	15.67 .8 14.07 .0	1.15		${ }^{4 K \mathrm{COO}}{ }^{\text {4 }}$	450.00 448.00	$\begin{aligned} & 326.75 \\ & 325.50 \end{aligned}$	42.0 39.0
2	1740	56HC	1151230	19.0/9.5	1.0		4K264*	590.00	428.50	48.0
HP	Nameplate BPM	NEMA Frame	Volts 60 Hzi	- Full-Load Amps at Nameplate Volts	Service Factor	Nominal Efficiency	Stock No.	List	Each	Shig.
1/2 3 /4	1725 1725	56C 56 C	$230 / 460$ $230 / 460$	2.011 .0 2.61 .3	1.15	77.0 77.0	$3 N 827$ 3 N828	$\$ 274.00$ 303.00	$\begin{aligned} & \$ 199.25 \\ & 220.50 \end{aligned}$	26.0 34.0
1	1725	$\begin{aligned} & 56 \mathrm{C} \\ & 143 \mathrm{TC} \end{aligned}$	$\begin{aligned} & 230 / 460 \\ & 230 / 460 \end{aligned}$	3.6/1.8	1.15 1.15	78.5	$\begin{aligned} & 3 N 829 \\ & 3 \star 830 \end{aligned}$	310.00 318.00	$\begin{aligned} & 225.25 \\ & 231.25 \end{aligned}$	37.0 37.0
$11 / 2$	1725 1725	$\begin{aligned} & 56 \mathrm{C} \\ & 145 \mathrm{TC} \end{aligned}$	$230 / 460$ $230 / 460$	4.8/2.4	1.15	80.0 80.0	$3 N 831$ $3 N 832$	337.00 345.00	245.00 251.00	39.0 39.0
2	1725 1725	$\begin{aligned} & 56 \mathrm{C} \\ & 145 \mathrm{TC} \end{aligned}$	230/460	6.03 .0 6.03 .0	1.0 1.0	78.5 78.5	$3 N 833$ $3 N 834$	364.00 372.00	264.50	43.0 43.0
1/2	$\begin{aligned} & 3450 \\ & 1725 \end{aligned}$	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{C} \end{aligned}$	$\begin{aligned} & 230 / 460 \\ & 230 / 460 \end{aligned}$	2.01.0	1.15 1.15	72.0 7%	$\begin{aligned} & 3 N 835 \\ & 3 N 771 \end{aligned}$	$\begin{aligned} & 248.00 \\ & 280.60 \end{aligned}$	180.50 203.50	18.0 26.0
3/4	3450 1725	${ }^{56 \mathrm{C}}$	$230 / 460$ $230 / 460$	2.6/1.3	1.15	74.0	3N836 3N72	255.00 307.00	185.50 223.00	22.0
1	$\begin{aligned} & 3450 \\ & 1725 \end{aligned}$	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{C} \end{aligned}$	$\begin{aligned} & 230 / 460 \\ & 230 / 460 \end{aligned}$	$3.2 / 1.6$ $3.6 / 1.8$	1.15 1.15	77.8	3N837 $3 N 773$	298.00 314.00	$\begin{aligned} & 216.50 \\ & 228.50 \end{aligned}$	$\begin{aligned} & 28.0 \\ & 37.0 \end{aligned}$
11/2	1725	56HC	230/460	4.812.4	1.15	80.0	3N774	341.00	247.75	39.0
2	$\begin{aligned} & 3450 \\ & 1725 \end{aligned}$	56 HC 56 HC	$\begin{aligned} & 230 / 460 \\ & 230 / 460 \end{aligned}$	$5.2 / 2.6$ 6.013 .0	1.0	81.5	$3 N 838$ $3 N 775$	371.00 370.00	269.75 269.00	37.0 43.0
3	$\begin{aligned} & 3450 \\ & 1740 \end{aligned}$	$\begin{aligned} & 145 \mathrm{TC} \\ & 182 \mathrm{TC} \end{aligned}$	$\begin{aligned} & 230 / 460 \\ & 230 / 460 \end{aligned}$	$\begin{aligned} & 7.5 / 3.8 \\ & 9.0 / 4.5 \end{aligned}$	i.0	85.5	$\begin{aligned} & 3 N 839 \\ & 3 N 776 \end{aligned}$	$\begin{aligned} & 439.00 \\ & 477.00 \end{aligned}$	$\begin{aligned} & 319.00 \\ & 337.00 \end{aligned}$	46.0
5	$\begin{aligned} & 3500 \\ & 1740 \end{aligned}$	$\begin{aligned} & 184 \mathrm{TC} \\ & 184 \mathrm{TC} \end{aligned}$	$\begin{aligned} & 230 / 460 \\ & 230 / 460 \end{aligned}$	$\begin{aligned} & 13.0 / 6.5 \\ & 13.4 / 6.7 \end{aligned}$	$\frac{1.15}{1.0}$	$\begin{aligned} & 85 . \overline{5} \\ & \$ 6.5 \end{aligned}$	$\begin{aligned} & \text { 3N840 } \\ & \mathbf{3 N 7 7 7} \end{aligned}$	612.00 546.00	$\begin{aligned} & 432.00 \\ & 385.50 \end{aligned}$	$\begin{aligned} & 86.0 \\ & 91.0 \end{aligned}$
$71 / 2$ 10	1755 1755	${ }^{213 \mathrm{TC}}$	$\begin{aligned} & 230 / 460 \\ & 230 / 460 \end{aligned}$	19.8.9.9	1.0	87.5 90.2	$3 N 778$ $3 N 779$	$\begin{aligned} & 664.00 \\ & 796.00 \end{aligned}$	$\begin{aligned} & 468.75 \\ & 562.00 \end{aligned}$	122.0 136.0

[^31]- Double-gasketed aluminum conduít box with drain holes protect against moisture
- Double-dipped and baked copper windings
- No. 303 stainless steel shaft with \mathbf{V} ring rotating seal
- USDA approved corrosion-resistant white epoxy primer and paint
- Cast-iron C-face with drain holes af 3, 6,9 and 12 o'clock positions
- Complies with BISSC, 2A Dairy Standard and NEMA definition MG11.26 .5 standard for waterproof motors
- Built-in temperature-sensing thermostat with leads for separate control wiring
Typical Uses: For extended life on equipment in food, beverage, or chemical prozessing plants where motor is constantly axposed to high pressure washdowns or ther角igh humidity or wet environments.
Beariogs: Double-sealed ball with moistureresistant grease
Mountiog: Face, base, or yoke
Enclosore: TENV or TEAO
Thermal Protection: Thermostat on 3-phase; auto an PSC motors
Ambient $40^{\circ} \mathrm{C}$
Insulation Class: F
Duty: Continuous
Rotation CW/CCW
Finish: White epoxy
srand: ETayton

A WIDE VARIETY OF WASHDOWN ACCESSORIES IS AVAILABLE, SEE PAGES 278 AND 279

PUMP MOTORS

WASHDOWN MOTORS

Double-dipped and baked copper windings

- No. 303 stainless steel shaft with V-ring seal
- USDA approved white epoxy paint to meet sanitary requirements
- Three-phase motors feafure Energy \$aver design
- Full protective neoprene gaskets on conduit box, <apacitor covers, and lead entry
- Easily removed plugs permit drainage of condensation

Typical Uses: For extended life in food, beverage, or chemical processing plants where motor is constantly exposed to high pressure washdowns or other high humidity or wet environments.
Bearings: Double-sealed ball
Thermal Protection: None
Insulation Class: F
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: White epoxy
Brand: GE

[^32]| APACITOR-START 56C AND 56J FACE INDUSTRIAL PUMP MOTORS | | | | | | | | | | PUMP
 MOTORS | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | nith | $\xrightarrow[\substack{\text { mama } \\ \text { cmam }}]{ }$ | | | | $\underset{\substack{\text { Sancice } \\ \text { fatare }}}{ }$ | mallesion | ${ }^{\text {Na}}$ | Stace | Lua | | |
| 13 | ${ }^{\text {siximi }}$ | | ${ }_{\text {cwow }}$ | ${ }_{\text {Hex }}$ | ${ }_{6}^{64332}$ | ${ }^{1.75}$ | ${ }^{\text {B }}$ | ${ }_{\text {crex }}$ | ${ }_{2 \times 12086}^{41}$ | ${ }^{314650}$ | spi.95 | ${ }_{10}^{160}$ |
| | ${ }_{\text {3 }}^{4 \times 0}$ | $\underbrace{\substack{\text { cid }}}_{\text {cic }}$ | ${ }^{\text {cwicw }}$ | | | ${ }_{16}^{16}$ | ${ }^{\text {B }}$ | ${ }_{\text {cox }}$ | ${ }_{2 \times 1509}^{4 \times 36}$ | ${ }_{\text {Hexem }}^{1 \times 20}$ | ${ }^{97.40}$ | 17.0 |
| $3 / 4$ | | coicco | | | | - | ${ }^{\text {B }}$ | | | | cisi.25 | - |
| | | ${ }_{\substack{\text { cica }}}^{\text {cos }}$ | ${ }^{\text {cwecme }}$. | ${ }_{\text {H15 }}^{125220}$ | ${ }_{\substack{13266.6}}^{1826.6}$ | 14 | ${ }^{\text {B }}$ | ${ }_{\text {cax }}$ | | | ${ }_{\text {1280.60 }}^{120}$ | 220 |
| | | ${ }_{\text {cicic }}^{6}$ | ${ }_{\text {curcw }}^{\text {cum }}$ | ${ }_{115}^{15230}$ | ${ }_{\substack{184932 \\ 1842}}$ | 13 | ${ }^{\text {B }}$ | ${ }_{\text {cas }}^{\text {cis }}$ | ${ }_{2 \times 1212}^{212}$ | | $\xrightarrow{178.250}$ | ${ }_{\text {gno }}^{500}$ |
| | | | | ${ }_{151520}^{1520}$ | ${ }^{212212126}$ | 12 | ${ }_{8}{ }^{\text {P }}$ | ${ }_{\text {cxa }}$ | ${ }_{2 \times 1613}^{413}$ | | ${ }_{\text {212 }}^{212750}$ | |
| | ${ }_{3}^{350}$ | | | ${ }^{\text {H1/25320 }}$ | | ${ }_{1.15}^{1.5}$ | ${ }_{8}^{8}$ | | | | | |

(*) Capacitor-start, capacitor-run; includes 16 cubic inch oversized conduit box. (\dagger) Motar is rated 50 Hz
CAUTION: Refer to page 5 for proper thermal protection and other motor selection information.

DAYTON BRAND, TEFC, NO BASE

- Externally located capacitor
- Shaft slinger. gesketed ccver, and connuit box protect against dirt and marsfure
- 56C f́rame steel keyed shaft; 56j frame stainless steel shaft 7/16"-20 UNF-2A RH threaded $11 / 16^{\prime \prime}$ from end
- All copper windings

Typical Uses: Jet pumps, industrial/centrifu-
gal puraps, and other equipment that
requires NEMA 56 C or 56 J mounting.

- Type: Capacitor-start

Bearings: Double-shielded ball Mounting: Face
Enciosure: TEFC
Thermal Protection: Auto
Ambient: $40^{\circ} \mathrm{C}$ -
Duty: Continuous
Finish: Gray enamel
Brand: Dayton
\qquad
-

нp	${ }^{\text {Nampmina }}$	$\xrightarrow{\text { Nemmem }}$	${ }^{\text {remamamis Shat }}$			Stamies	${ }^{\text {maxamase }}$	Smack	un	mach	
${ }^{1 / 3}$	${ }^{3}$	Smid	${ }_{\text {cuw }}^{\text {c.uw }}$		${ }_{6}^{66432}$	${ }_{\text {Lio }}^{1.0}$	$\hat{\lambda}$	${ }_{6 K 61858}$	${ }_{\text {S }}^{5185020}$	${ }_{5111.75}^{120.65}$	${ }_{1900}^{190}$
1/2	${ }^{3+3}$		cwecw	${ }^{115152320}$	${ }_{\text {80, }}^{8.040}$	1.0	$\stackrel{\text { a }}{\text { A }}$	${ }_{600}^{6585}$		${ }_{1543.15}^{12.15}$	$2{ }_{210}^{210}$
314	${ }_{\text {a }}^{\text {¢ }}$		${ }_{\text {cupw }}^{\text {cupcw }}$	${ }_{116}^{1162320}$	${ }_{\text {gigita }}^{\text {gid }}$	1.0	\hat{A}			${ }_{158.50}^{14.50}$	${ }_{2}^{28.0}$
1	${ }_{3}^{3150}$	${ }_{\text {Sig }}^{6}$		${ }^{1162530}$	${ }_{\text {120 }}^{12060}$	1.0	$\hat{\lambda}$	${ }_{6}^{6 K 5959}$		${ }_{1787.25}^{1785}$	${ }_{\text {2 }}^{27.0}$
11/2			cwicw			1.0	${ }_{\text {A }}$		- 20.000	${ }_{215}^{24.25}$	

CAPACITOR-START AND 3-PHASE,

 56C AND 56J FACE INDUSTRIAL PUMP MOTORS
GE BRAND, TEFC, CAPACITOR-START

- 56C frame steel keyed shaff; 56J frame with stainless steel shoft with 7/16"-20 UNF-2A threaded $11 / 16^{\prime \prime}$ from end
- Shaft slinger and gasketed conduit box protects against moisfure and contaminants
Typical Uses: Industrial and commercial pumps, and centrifugal and hydraulic industrial compressors requiring NEMA 56 C or 56 J face mounting.
- Type: Capacitor-start

Bearings: Double-shielded ball
Mounting: Face
Enclosure: TEFC
Thermal Protection: Auto
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Finish: Gray enamel
Brand: GE

HP	Hameplate RPM	NEMA Frame	Rotation Facing Shaft	Volts 00 Hz	Full-Load Amps at Nameplate Volts	Service Factor	Ins.	GE Stack No.	Stock No.	List	Each	Shpg. Wt
M\&												
1/2	3450	56 C	CCW/CCW	115/230	7.4	16		C349	21	99.00	\$122.65	19.0
1/2	3450	56 J	CCW	115/230	$7.4 / 3.7$	1.15	B	C465	Ficy 210382	2. 219.00	135.00	19.0
$1 / 2$	1725	56 C	CCW/CCW	115/230	8.2/4.1	1.0	- B	C446	$\cdots-2 \times 381$	251.00	-154.75	24.0
$3 / 4$	3450	56 C	CCW/CCW	115/230	9.84.9	1.0	B	C847	2K388	$\therefore .238 .00$	143.55	24.0
1	3450	56 C	CCW/CCW	115/230	13.4/6.7	1.15	B	C351	21377	$\therefore \quad 257.00$	158.75	29.0
1	3450	56 J	CCW	115/230	13.46.7	1.15	B	C352	- $2 k 378$. 250.00	154.00	29.0
11/2	3450	56 C	CCW/CCW	115/230	16.4/8.2	1.0	B	C855	2×389	- 312.00	192.50	37.0
$\frac{2}{2}$	3450 3450	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{~J} . \end{aligned}$	$\begin{aligned} & \text { CCW/CCW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 115 / 230 \\ & 115 / 230 \end{aligned}$	$\begin{aligned} & 17.8 / 8.9 \\ & 17.88 .9 \end{aligned}$	1.15	$-{ }_{-8}^{\mathbf{B}}$	$\begin{array}{r} -\mathrm{C466} \\ \mathrm{C} 878 \end{array}$	$-2 \times 383^{\circ}$	$\begin{array}{r} 382.00 \\ \hline \\ \hline 76.00 \end{array}$	$\begin{array}{r} -235.75 \\ 231.75 \end{array}$	$-\frac{42.0}{41.0}$
Wh												
$\frac{1 / 2}{1}$	3450 3450	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{C} \end{aligned}$	CCW/CCW CCW/CCW	$\begin{aligned} & 115 \cdot 230 \\ & 115 / 230 \end{aligned}$	7.48 .7 13.46 .7	1.25	$\begin{aligned} & \mathbf{B} \\ & \mathbf{B} \end{aligned}$	$\begin{aligned} & \mathrm{C444} \\ & \mathrm{C445} \end{aligned}$	$\because 24379$	$\begin{array}{r} 195.00 \\ 262.00 \end{array}$	$\begin{aligned} & 120.15 \\ & 161.75 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 30.0 \end{aligned}$
(*) Capacitor-start, capacitor-run.			' ?						-5i:		9	大in

GE BRAND, OPEN DRIPPROOF, 3-PHASE

- 55C frame steel keyed shaft; 56J frame with stainless steel shaft with 7/16"-20 UNF-2A threaded 11/16" from end
- Shaft slinger and gasketed conduit box protects against moisture and contamination
Typical Uses: Industrial and commercial pumps, and centrifugal and hydrauic industrial compressors requiring NEMA 56 C or 56 J face mounting.

Type: Three-phase
Bearings: Double-shielded ball Mounting: Face
Enclosure: Open dripproof
Thermal Protection: None
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Finish: Gray enamel
Brand: GE

HP	Nameplate RP思	$\begin{aligned} & \text { NEMA } \\ & \text { framate } \end{aligned}$	Rotation Facing Shaft	Yolts 60 Hz	FHill-Load Amps at Namepiate Volts	Senvice Factor	$\begin{aligned} & \text { Insulation } \\ & \text { Citast } \end{aligned}$	Stock No.	strack No.	"	Ench	Sheg. Yt
1/3	3450 3450	"56C	CW/CCW	$208.230 / 460$ $208-2304460$	$15-18.80 .9$	1.75 1.75	B	${ }_{\text {K215 }} \mathbf{K}$	${ }^{3 N 817}{ }^{\text {a }}$	$\$ 157.00$ +16200	\$96.75	${ }^{13.0}$
$1 / 2$	3450	${ }_{56 \mathrm{C}}$	CW/CCW	208-230/460	2.0-2.01.0	1.60	B	K216	3N818	166.00	102.30	15.0
$1 / 2$	3450	56 J	CW/CCW	208-230/460	2.0-2.01.0	1.60	B	K217	4N062*	184.00	113.35	75.0
1/2	1725	56 J	CW/CCW	208-230/460	2.1-2.2/1.1	1.25	B	K553	4N085*	247.00	152.25	-18.0
3/4	3450	56 C	CW/CCW	208-230/460	26-2.61.3	1.50	B	K218	3 H 19	199.00	122.65	-177.0
$3 / 4$	3450	56 J	GW/CCW	208-230/460	26-26/1.3	1.50	B	K219	4N063*	201.00	123.80	17.0
3/4	1725	56	CW/CCW	208-230/460	2.8-2.81.4	1.25	B	K555	4N086*	291.00	179.50	19.0
1	3450 3450	${ }_{566}^{560}$	CW/CCW	208-230460	3.3.321.6	1.40	B	K220	3N820.	${ }_{2}^{225.00}$	138.65	20.0
1	1725	56 J	CW/CCW	208-230/460	3.43.21.6	1.15	${ }_{\text {B }}^{\text {B }}$	- ${ }_{\text {K221 }}$	4N089**	232.00 .	182.95	20.0 210
11/2	3450	56 C	\therefore CW/CCW	208-230/460	5.0-4.82.4	1.30	- ${ }^{\text {B }}$	- K 222	- ${ }^{\text {H }} 1821$	250.00	154.00	25.0
11/2	3450	565	CW/CCW	208-230/460	5.0-4.8/2.4	1.30	\cdots	K223	-.4N065*	${ }_{29200}$	180.00	26.0
11/2	1725	56 J	CW/CCW	208-230/460	5.8-5.612.8	1.15	B	- K761	4N090*	332.00	204.75	28.0
2	3450 3450	${ }_{56 \mathrm{C}}^{56 \mathrm{C}}$	CW/CCW	208230/460	6.6-6.03.0	${ }^{1.20}$	B	$\underline{1224}$	3N82	303.00	187.00	30.0
2	3450	56 J	CW/CCW	208-230/460	6.6-6.03.0	1.20	B	K225		347.00	214.00	30.0
3	3450	${ }_{56 \mathrm{C}}^{56 \mathrm{C}}$	CW/CCW	208-230/460	8.9-8.24.1	1.15	B	K226	3N823	328.00	203.00	36.0
3	3450	56J	CW/CCW	208-230/460	8.9-8.24.1	1.15	B	K227	4N067*	411.00	253.50	37.0
$\begin{aligned} & 3 / 4 / 2 \\ & 1 / 2 \end{aligned}$	3450 3450	$\begin{aligned} & 56 \mathrm{~J} \\ & 565 \end{aligned}$	CW/CCW CW/CCW	208-230/460 208-230/460	$2.6-2.6 / 1.3$ 4.84 .82 .4	${ }_{1.30}^{1.50}$	B	$\frac{K}{K 14884}$	-5U264**	205.00 -206.00	134.00 193.75	17.0 -25.0

3-PHASE 56C AND 56J FACE INDUSTRIAL PUMP MOTORS

PUMP MOTORS

DAYTON BRAND, 3-PHASE, TEFC

- Shaft slinger and gasketed conduit box protect against dirt and moisture
- 56 C frame steel keyed shaft; 56J frame stainless steel shaft 7/16"-20 UNF-2A RH threaded 11/16" from end
- Operable on 50 Hz
- All copper windings

Typical Uses: Jet pumps, industrial/ centrifugal pumps, and other equipment that requires NEMA 56C or 56.J mounting.
Bearings: Double-shielded ball Mounting: Face/base
Enclosure: TEFC
Thermal Protection: None"
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Finish: Gray
Brand: Dayton

HP	Mameplate RPA	NEMA Frame	$\begin{aligned} & \text { Rotation } \\ & \text { fecing Shaft } \end{aligned}$	$\begin{aligned} & \text { Volts } \\ & 60 H z \end{aligned}$	Fril-Lond Amps at Ratumplata Volts	Service Factor		$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	List	5 Exech	$\begin{gathered} \text { Sthpg. } \\ \text { Wft } \end{gathered}$
1/2	$\begin{aligned} & 3450,2850 \\ & 3450 / 2850 \end{aligned}$	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{~J} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{CW} / \mathrm{CCW} \\ & \mathrm{CCW} \end{aligned}$	$\begin{aligned} & 208-220440 \\ & 208.220440 \end{aligned}$	$\frac{22-2.3 / 1.15}{22.2 .31 .15}$	1.0	$\stackrel{A}{A}$	$\begin{aligned} & 3 M 471^{*} \\ & 3 N^{*} 723^{*} \end{aligned}$	$\$ 162.00$ 174.00	$\begin{array}{r} \$ 120.65 \\ 129.60 \end{array}$	20.0 20.0
$3 / 4$	$\begin{aligned} & 3450 / 2850 \\ & 3450 / 2850 \end{aligned}$	$\begin{aligned} & 56 \mathrm{C} \\ & 565 \end{aligned}$	$\begin{aligned} & \text { CW/CCW } \\ & \text { COW } \end{aligned}$	$\begin{aligned} & 208-220 / 440 \\ & 2008220440 \end{aligned}$	$\begin{aligned} & 28.2 .9 / 1.45 \\ & 28-2.91 .45 \end{aligned}$	1.0	${ }_{\text {A }}^{\text {A }}$	$\begin{aligned} & 3 N 472^{*} \\ & 3 N 724^{*} \end{aligned}$	178.00 190.00	132.60 141.50	22.0
1	$\begin{aligned} & 3450,2850 \\ & 34502850 \end{aligned}$	${ }_{566 \mathrm{C}}^{56}$	${ }_{\text {CWW }} \mathrm{CWW}$ -	2008220/440	3.43.21.6	1.0	A	${ }_{\text {3N237* }}{ }^{\text {3N725* }}$	210.00 22200	156.50 165.75	23.00
$11 / 2$	34502880 34502850	${ }_{565}^{665}$	$\mathrm{CWW}^{\mathrm{CWW}}$	2082200440 208220440	4.4.2.2.11	1.0	- ${ }^{\text {A }}$	3N473*	223.00	166.50 175.50	30.0 30.0
2	$\begin{aligned} & 34502850 \\ & 34502850 \end{aligned}$	$\begin{aligned} & \hline 66 \mathrm{C} \\ & 66 \mathrm{~J} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{CW} / \mathrm{CCW} \\ & \mathrm{CCW} \end{aligned}$	$208-2201440$	$5.6 .5 .4 / 2.7$ $5.65 .4 / 2.7$	1.0	$\frac{8}{B}$	$\begin{aligned} & 3 \text { 3N23** } \\ & 3 \text { N727* } \end{aligned}$	288.00 270.00	192.50 20150	320 320
3	3450 3450	$\begin{aligned} & \hline 56 C \\ & 565 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CW/CCW } \\ & \hline \end{aligned}$	$\begin{aligned} & 230 / 460 \dagger \\ & 230 / 460 \dagger \end{aligned}$	$\begin{aligned} & 8.040 \\ & 8.0440 \end{aligned}$	1.0	B	$\begin{aligned} & 3 N 649+ \\ & 3 N 728 t \end{aligned}$	326.00 33800	243.00 252.00	37.0 37.0
1/2	${ }^{3450} \mathbf{2 8 2 8 5 0}$	56 S	COW	2082200440	22.23111	1.0	A	3N680**	178.00	132.60	21.0
1314	345028850	50J	CCW	208-220,440	28-29/1.45	1.0	A	3N234**	194.00	144.50	21.0
${ }_{1}^{11 / 2}$	34502850 34502850	56J 666	${ }_{\text {CCW }}$		34.3 .21 .6 $4.4 .2 / 2.1$	1.0	A	- ${ }^{3 N 235 *}$	$\begin{array}{r}226.00 \\ \hline \quad 239.00\end{array}$	168.50 178.25	22.0 29.0
2	345022850	6GiJ	CCW	$208-2204440$	5.65 .42 .7	1.0	A	- ${ }^{3 N 681 *}$	- $\quad 274.00$	204.25	33.0
3	- 3450	565	CCW	$230460 \dagger$	8.044 .0	1.0	B	3N682 \dagger	342.01	255.00	41.0

${ }^{*}$) Operable on 50 Hz . 220/440V. (\dagger) Operable on 50 Hz 190380 V at $5 / 6$ of 60 Hz KP and speed.
CAUTION: Refer to page 5 for proper thermal protection end other motor seltection intormation.
GE BRAND, 3-PHASE, TEFC

- $56 C$ frome steel keyed shaft: 56.5 frame stainiess steel shaft 7/16" 20 : NEFMint throcidad 17/16" from end
Typical Uses: Industrial and commercial pumps, and centrifugal and hydraulic industrial compressors requiring NEMA 56 C or 56 J face mounting.

[^33]

Mounting: Face
Enciesure: EEFC
Thermal Protection: None
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Finish: Gray enamel Brand: GE

PUMP MOTORS

JTT PUMP MOTRS

- Rainshield included for vertical mounting
- NEMA service factors up to 1.85 pro vide reserve margin for infermittent. overloading
- NEMA 56C frame carbon steel shaft with key
- NEMA 56J frame stainless steel shaft 7/16"-20 UNF-2A RH threaded 11/16" from end H2

- Locked shaft end ball bearing pro-

 vides maximum thrust capacityTypical Uses: Jet pump water systems, centrifugal pumps, and other applications requiring NEMA' 56 C or 56 J mounting face. Type: Capacitor-start
Mounting: Horizontal or vertical, shaft down.
Enclosure: Open dripproof
Thermal Protection: Anto
Ambient: $40^{\circ} \mathrm{C}{ }^{\circ}{ }^{\ddagger}$

Dury: Continuous
Finish: Gray Brand: Dayton

JET PUMP MOTORS

PUMP MOTORS

- NEMA service factors Up to 1.75 provide reserve margin for intermittent overloading
- NEMA 56C frame carbon steel shaft with key
- NEMA 56J frame stainless steel shaft 7/16"-20 UNF-2A RH thireaded: $11 / 16^{\prime \prime}$ from end
boll bearing pro
- Lacked shaft end ball bearing pro
vides maximum thrust capacity

Typical Uses: Jet pump water systems, centrifugal pumps, and other applications requiring NEMA'56C or 56 J mounting face. Type: Capacitor-start
$\therefore-q^{2}$
Mounting: Horizontal or vertical, shaft down. Dripproof when mounted horizontally only.
Enclosure: Open dripproof Thermal Protection: Auto
Imbient: $40^{\circ} \mathrm{C}$
$=2$
Juty: Continuous.
inish: Gray
Brand: Dayton

MANY BRANDS OF POWER TOOLS AVAILABLE

witrow

PUMP

MOTORS

JET PUMP' MOTORS

- Two-compartment design protects components
- Enlarged/easy terminal lead
-56C frames häve 4 ri6 stainless steed shaft
- 56 J frame hiave stainless steel shaft 7/16"-20 UNF2A RH threaded 11/16" from end; sqüäre flange are 1/2"-20 UNF-2A RH threaded $1 / 2^{\prime \prime}$ from end
- Locked double-sealed ball bearings
- Voltage change plug for mistake-free voliage connection
- $1 \frac{1}{2}$ and 2 HP motors are capacitor-start, copacitorrun

Typical Uses: Jet pump water systems, centrifugal pumps, and other applications requir ing NEMA 56C or 56J mounting faces.
Type: Capacitor-start and splitphase
Bearings: Ball
Mounting: Horizontal or vertical, shaft down. Dripproof when mounted horizontally only. Rainshield needed for vertical dripproof applications (not included).
Enclosure: Open dripproof Insulation Class: B
Thermal Protection: Auto
Ambient: $50^{\circ} \mathrm{C}$ (except Nos.-2 K 403 and 2 K 404 are $40^{\circ} \mathrm{C}$) Duty: Continuous
Rotation: CCW facing shaft Elinishi: Black Brand: GE

HP	Nameplate RPM	NEMA	Volts 60 Hz	Full-Load Arpas at. Nameplate Volts	$\begin{aligned} & \text { Service } \\ & \text { Factor } \end{aligned}$	Efficiency	$\begin{gathered} \text { GE } \\ \text { Stock } \\ \text { No. } \end{gathered}$	Stock No.	List	Eech	$\cdots \mathbf{~ S h p t .}$
1/3	3450 3450	${ }_{56 \mathrm{C}}^{56 \mathrm{C}}$	${ }_{11515}^{115}$	${ }_{6}^{6.23 .1}$	${ }_{1}^{1.75}$	Standard	$\mathrm{H}_{\mathrm{Cl}}^{4} 1081$	2K409*	\$124.00	\$80.85	13.0 13.0
$1 / 3$	3450	${ }_{56} 6$	115	8.23 .1	1.60	Standard	C1082	210392	143.00	93.20	
$3 / 4$	3450	56 C	$115 / 230$	12.26.1	1.50	Standard	C1083	2 K 393	160.00	104.30	18.0
1	-450	56 C	115/230	14.2r7.1	1.40	Standard	Clos4	2x394	183.00	119.25	21.0
$11 / 2$	3450	56 C	115\%239	1587.9	130	High	C1085	2×395	24300	158.75	270
2	3450	56 C	1:5/230	19.20 .6	1.20	High	C1056	2K326	29060	193.06	23.3
1/3	3450 3450	${ }_{565}^{565}$	${ }_{1155}^{15}$		1.75	Standard	${ }^{\mathrm{H} 440}$	2K410*	127.00 11000	82.85	13.0 130
1/3	3450 3450	${ }_{5665}^{565}$	$115 / 230$ $115 / 230$	${ }^{6.2} 8.24 .1$	1.75 1.60	Standard	$\mathrm{Cl1087}$ Cl 1088	2K397.	$\begin{aligned} & 141.00 \\ & 147.00 \end{aligned}$	91.90 95.85	-13.0 -15.0
3/4	3450	505	115/230	12.2/61	1.50	Standard	C1089	2K399	- 164.00	106.90	18.0
1	34,9\%	$5 \cdot 1$	115230	14.27 .1	1.40	Stanterd	C10\%	24400	18700	121.85	210
11/2	3450	50 J	1151230	15.8/7.9	1.30	Hith	C163	2\%401	247.00	161.25	26.0
2	3450	56 J	115/230	19.2/9.6	1.20	High	C 1092	2K402	30000	195.75	29.0
\%											
1/3	3450	${ }_{66 \mathrm{~S}}^{6}$	$=115$	6.2	1.75	Standard	${ }_{\mathrm{H} 685}$	$5 \mathrm{SU259*}$	131.00	84.20	13.0
1/2	3450	${ }_{565} 56$	115230	8.2/4.1	1.60	Standard	${ }_{C 1462}$	$5 \mathrm{SU170}$	151.00	988.40	15.0
1	3450	56 J	115230	14.27.1	1.40	Standard	${ }^{\text {C1464 }}$	$5 \mathrm{SU172}$	191.00	124.50	19.0
11/2	3450	56 J	115/230	15.87 .9	1.30	High	C1465	50173	-251.00	163.75	21.0
2	3450	56 I	115/230	19.29.6	1.20	High	C1466	54174	304.00	198.50	23.0
$1 / 3$	3450 3450	$56 Z$$56 Z$$56 Z$$56 Z$$56 Z$$56 Z$	115230 115230	6.438 .2 1085.4	1.95	Standard	${ }^{\mathrm{Cl1168}}$	21403	$\begin{aligned} & 141.00 \\ & 142.00 \end{aligned}$	' 91.90	16.0
1/2	3450 3450		115/230	10.85 .4 12.663	- $\begin{array}{r}1.90 \\ 1.65\end{array}$	Standard	${ }^{\text {C1169 }}$	2×404 2×405	$\text { . } 148.00 .00$	92.55	17.0
1	3450		115/230	16.48 .2	1.65	Standard	C1171	21406	169.00	110.10	27.0
$2^{11 / 2}$	3450 3450		$\bigcirc 230$	7.6	1.50	High	${ }_{6} 1172$	2×407	183.00	125.80	30.0
2	3450		$\bigcirc 230$	8.7	1.30	High	. C 1173	2×408	256.00	167.00	29.0

(*) Split-phase.

THE RIGHT STUFF. RIGHT HERE. RIGHT NOW.
Our branches are conveniently located and stocked with commonly used items for this catalog. If you need it now, call Grainger. To find the branch nearest you, check the white pages in your local telephone directory under "Grainger."

JET PUMP MOTORS

A.O. SMITH BRAND, REAR ACCESS

- NEMA service factars Up to 1.80 provide reserve margin for intermittent overloading
$\because 2$
- 56C frame carbon steel shaft (key not included)
- 56J frame 416 stainless steel shaft 7/16"-20 UNF-2A RH threaded $11 / 16^{\prime \prime}$ from end
- Ball bearings at both ends with shaft end bearing locked to provide maximum thrust capacity on $3 / 4,1$, and $11 / 2 \mathrm{HP}$ motors
- Meets UL 778

Typical Uses: Domestic water systems that use jet or centrifugal pumps and other applications requiring NEMA 56 C or 56 J mounting faces.

HP	$\begin{aligned} & \text { Namoplate } \\ & \text { RRMM } \end{aligned}$	NEMA	Batation Facing Shaft	$\begin{aligned} & \text { Volts } \\ & 60 \mathrm{~Hz} \end{aligned}$	Maximum Ampe af Nanoppfota Vohs	Service Factor	A.D. Smith Modal	Stack	. \because List	Each	Shy.
1/3	3450	$\pm-56 \mathrm{C}$	cW/COW	${ }^{1156230}$	8.64 .3	18	$K 1032$	1 K 030	\$113.00	\$91.60	15.0
1/2	3450	$\therefore 66 \mathrm{C}$	CW/CCW	1151230	10.85 .4	1.6	K1052	$1 \mathrm{KO31}$	128.00	.99.90	16.0
314	${ }_{3450}^{3450}$	${ }_{56 \mathrm{C}}^{66}$	CW/CCW	1151230	14.87.4	1.4	${ }_{\text {K1102 }}$	$1 \mathrm{KO32}$	150.00 167.00	$\begin{array}{r}117.70 \\ 131.45 \\ \hline\end{array}$	1920
11/2	3450 3450	${ }_{56}^{60}$	CW/CCW	115×230	22.0110	1.3	K1152	$1 K 034$	2288.00	165.50	28.0
1/3	3450	56,		115/230	8.64 .3	1.8	T1032	16035	116.00	93.60	15.0
1/2	3450	\therefore 56J	$\because \mathrm{CCW}$	115230	\% 10.885	1.6	T1052	110036	130.00	101.85	16.0
$3 / 4$	3450	$\cdots 56$	$\therefore \mathrm{CCW}$	116/230	- 14.87.4	1.5	T1072	11037	1535.00	119.75	19.0
$1{ }_{1}^{1} 1 / 2$	3450 3450	㐌61	CCW	$115 / 230$ 115230	- 16.28 .1811 .0	1.4	T1102	$1 K 038$ $1 K 039$	170.00 238.00	133.55 $\mathbf{1 7 6 . 5 0}$	227.0

CAUTION: Refer to page 5 for proper thermal protection and other motor selection information...

Type: Capacitor-start
Bearings: Ball
Mounting: Horizontal or vertical, shaft down. Dripproof when mounted horizontally as supplied. Rainshield required for vertical dripproof applications (not included).
Enclosure: Open dripproof
Thermal Profection: Auto
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Finish: Black" ".":
Brand: A.O. Smith

base.

SQUARE FLANGE SWIMMING POOL PUMP MOTORS

- All copper windings
- Unique reverse air flow design minimizes corrosive elements on the shaft end
- Easy access two-compartment design
- Convenient 12 and 3 o'clock conduir fittings
- Single speed ratings are air switch adaptable for positive shutoff
- Rust resistant stainless steel left hand threaded shaft; special sealer on rotor inhibits rust in off-season
- Large body diameter to improve heat dissipation
- Dichromate-plated bearing lock tabs allow easier bearing removal, eliminate need for plate alignment and reduce corrosion
- 1081 Approvable

Typical Uses: In-ground swimming pool pumps. Square flange is designed for direct replacement of many popular pumps.
Type: Capacitor-start
Bearings: Ball
Mounting: Flange
Enclosure: Open dripproof
Thermal Protection: Auto
insulation Class: B
Ambient: $50^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CCW facing shaft. nonreversible
Finish: Elack
Brand: Dayton

3450 RPM	1725 RPP	Namediate 88年	Ne.tas Frame	Volts 60 Hz	Full-Loas Amps at Nameplata Voks	Service Factor	Effeiettcy	Eady Diameter	Steck No.	List	Each	Shpg. Wht.
1/3	-	3450	48 YZ	115/230	6.4/3.2	1.95	Standard	55/8"	6 K 945	\$149 60	\$103.00	16.0
$1 / 2$	-	3450	. 48 YZ	115/230	8.6/4.3	1.8	Standard	55/8	6K946	160.00	108.45	19.3
3/4	1/10	3450/1725	56 YZ	115	9.8/4.1	1.65	Standard.	$63 / 8$	10186	278.00	182.25	28.0
	1/10	$3450 / 1725$	56 Y	230	5.512 .0	1.65	Standard	$=69 / 8$	10187	272.00	178.25	320
	-	3450	48 YZ	115/230	11.2/5.6	1.65	Standard	56/8	6K398:	184.00	124.20	-21.0
	-	3450	66 YZ	115/230	$10.6 / 5.3$	1.27	Standard	$63 / 8$	10188	158.00	104.95	26.0
1	1/8	- 345011725	-56YZ	230	6.6/2.5	1.65	Standard	63/8	10184	301.00	200.25	37.0
		-3450.	- 48YZ	115/230	14.07 .0	1.65	Standard	5\%/8	6×421	215.00	142.70	28.0
		- 3450	66YZ	115/230	12.5/6.3	1.25	Standard	$6{ }^{3} / 8$	10189	181.00	120.25	28.0
41/2.	1/5	$\begin{gathered} 3450 / 1725 \\ 3450 \\ 3450 \end{gathered}$	66YZ	230	6.813.3	1.5	Standard	$6^{3 / 8}$	12182	334.00	219.00	35.0
			$66 Y 2$	115/230	17.08.5	1.5	Standard	$63 / 8$	6×494	296.00	204.75	34.0
			56 YZ	1151230	16.5/8.3	1.1	Standard	63/8	10185	208.00	13920	28.0
2	1/4	$\begin{gathered} 3450 / 1725 \\ -3450 \\ -3450 \end{gathered}$	56 YZ	230	8.013.1	$\begin{aligned} & 1.3 \\ & 1.3 \\ & 1.1 \end{aligned}$	Standard Standard Standard	$\begin{aligned} & 698 \\ & 63 / 8 \\ & 63 / 8 \end{aligned}$	$\begin{aligned} & 10183 \\ & 6 K 495 \\ & 10191 \end{aligned}$	382.00	$\begin{aligned} & 250.25 \\ & 242.25 \\ & 166.50 \end{aligned}$	40.0
			56 YZ	115/230	21.0110 .5					350.00		35.0
	-		56YZ	$115 \% 230$	18.7/8.8					254.00		36.0
21/2	-	3450	56 YZ	230	10.0	1.04	Standard	63/8	$1{ }^{10192}$	315.00	206.50	39.0
3	-	3450	56 YZ	208-230	12.9/11.7	1.15	High	63/8	10190	366.00	239.75	40.0

MANY BRANDS OF PLUMBING PRODUCTS AVAILABLE

ELKAY Habsey Taylor SL■AN.

VANGUARD BY RHEEM - BEMIS - PARKER HANNIFIN - CHICAGO FAUCETS • IN-SINK-ERATOR

SQUARE FLANGE SWIMMING POOL PUMP MOTORS

PUMP
 MOTORS

- Two-compartment design protects components
- Enlarged terminal lead routing area
- NEMA 56YZ frame with special 303 stainiess threaded shaft 1/2"-20 UNF2A RH threaded 1/2" from end
- Encapsulated voltage change plug design for mistake-free voliage connection
- Locked double-sealed ball bearings
- 1081 approvable

Typical Uses: Swimming pool pump applications only. Square flange NEMA 56 YZ frame mounting with 48 frame motor diameter allows motors to be used as direct replacement on selected pumps.
Type: Capacitor-start
Bearings: Ball
Mounting: Flange, horizontal or vertical shaft down
Enclosure: Open dripproof
Thermal Protection: Auto
Insulation Class: B
NEMA Frame: 56 YZ
Ambient: $50^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CCW facing shaft, nonreversible
Finish: Black
Brand: GE

A WIDE SELECTION

OF POOL AND SPA
PUMPS AND
ACCESSORIES
IS AVAILABLE,
SEE PAGES 2847-2851

SWIMMING POOL AND POOL/SPA PUMP MOTORS

SQUARE FLANGE SWIMMING POOL PUMP MOTORS

- Special service factors up to 1.95 provide reserve margin for intermittent overloading
- Easy access rear canopy and 1/2"-14 NPS threaded conduit connection aid installation
- NEMA 48Y frame with No. 303 stainless steel threaded shaft (1/2"-20 UNF-2A RH threaded-1/2" from end)
- Shaft also has anti-backlash impeller spin-off locking screw
- Double-sealed ball bearings
- 1081 approvable - -
pumps requiring square flange face motors. Exact replacement for motors mounted on Teel jet pumps and pumps manufactured by and for Sta-Rite, Sears, Red Jacket, and Hayward.
Type: Capacitor-start
Bearings: Ball
Mounting: Flange, horizontal or vertical shaft down
Enclosure: Open dripproof
Thermal Protection: Auto
insulation Class: B
Ambient: $50^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CCW, nonreversible facing shaft
Finish: Black
Brand: A.O. Smith
 swimming pool pumps, jet and centrifuga

HP	Nameplate RPM	NEMA Frame	Volts 60 Hz	Maximum Ampst at Nameplate Volts		Service Factor	$\begin{aligned} & \text { A.O. Smith } \\ & \text { Model } \end{aligned}$	Stock No.	List	Each	
1/3	3450	48Y	- 1152230	=- $8.2 / 4.1$		1.95	SQ1052	14050	\$149.00	\$102.50	
1/2	3450 3450	48Y	$\therefore 1115230$ $\therefore \quad 115230$	$\because ⺀ .11: 8 / 5.9$,	1.9	SQ1052	1K051	160.00 184.00	110.10	$\therefore 19.0$
1	3450	48Y	$-115 / 230$	19.29.6		1.65	SQ1102	1 K 053	215.00	148.05	.226.0
$11 / 2$	3450	48Y	230	10.4		1.47	SQ1152	1K054**	278.00	204.00	${ }^{2} 800$
2	3450	48Y	230	11.2		1.3	SQ1202	1K055*	366.00	291.25	- 320

(*) Capacitor-start, capacitor-run

ABOVE GROUND POOL/SPA PUMP MOTORS

- Easy access rear canopy and 1/2"-14 NPS threaded conduit connection aid installation
- NEMA 56C frame carbon steel shoft (key not inciuded); 563303 stainless steel mareccea shori (F/16"-20 Unf2A RH ihreaded 11/16" Srom end)
- Double-sealed ball bearing at both ends with shaft end bearing locked
- 1081 approvable

Typical Uses: In-ground and above ground swimming pool and hot tub pumps. Also used on jet or centrifugal pumps and similar applications requiring a NEMA 56C or 56.J face mounting.

Type: Capacitor-start
Bearings: Double-sealed ball
Mounting: Horizontal or vertical, shaft down. Dripproof when mounted horizontally as supplied. Rainshield (not included) required for vertical dripproof applications.
Enciosure: Open dripproof
Thermal Protection: Auto
Insulation Class: B
Ambient: $50^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CCW, nonreversible facing shaft Finish: Black
Brand: A.O. Smith

Capactor-start, capactor-run.

SWIMMING POOL PUMP MOTORS

PUMP
MOTORS

Two－compartment design protects

 components－Encapsulated voltage change plug design for mistake－free voltage con－ nection
－ 56 C främe 303 stainless steel shaft； 56J frame 303 stainless steel shaft 7／16！＂－20 UNF：2A RH threaded 11／16＂from end
－Enlarged／easy terminal lead routing －Locked double－sealed ball bearings －Easy access to shaft to hold impeller
－ 1081 approvable
Typical Uses：In－ground and above ground swimming pool and hot tub pumps．Also used on jet and centrifugal pumps and similar applications requiring a NEMA 56C． or 56J face mounting．
Type：Capacitor－start Bearings：Ball
Mounting：Face，horizontal or vertical， shaft down
Enclosure：Open dripproof
Thermal Protection：Auto
Insulation Class：B
Ambient： $50^{\circ} \mathrm{C}$
Duty：Continuous
Rotation：CCW，nonreversible facing shaft Finish：Black
Brand：GE

3450 RPM	1750 RPM	Namealate RPM	NEMAR Frame	Volts 60 Hz	Full－Load Amps at Namepiate Volts	Service factor	Efficiency	GE Stack Mo．	Stock No．	List	Each	sis． Wt
要栄												
1／2	$1 / 16$	$\begin{gathered} 3450 / 1725 \\ 3450 \end{gathered}$	56 C 56 C	$\frac{115}{115 / 230}$	$\begin{array}{r} -7.42 .4 \\ -7.42 .7 \end{array}$	$\begin{array}{r} 1.65 \\ -1.60 \end{array}$	Standard Standard	$\begin{array}{r} \mathrm{Cl103} \\ \mathrm{Cl} 1093 \end{array}$	$\begin{aligned} & 2 K 422 \\ & 2 K 411 \end{aligned}$	$\begin{aligned} & \$ 272.00 \\ & 152.00 \end{aligned}$	$\begin{array}{r} \$ 195.75 \\ 109.35 \end{array}$	$\begin{aligned} & 21.0 \\ & 18.0 \end{aligned}$
314	$\begin{aligned} & 1 / 10 \\ & 1 / 10 \end{aligned}$	$\begin{gathered} 34591525 \\ 34501725 \\ 3450 \\ 3450 \end{gathered}$	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{C} \\ & 56 \mathrm{C} \\ & 56 \mathrm{C} \end{aligned}$	$\begin{gathered} 115 \\ 230 \\ 115 / 230 \\ 115 / 230 \end{gathered}$	$\begin{aligned} & 10.013 .4 \\ & 4.7 / 1.7 \\ & 7.6 / 3.8 \\ & 9.8 / 4.9 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 1.50 \\ & 1.65 \\ & 1.50 \end{aligned}$	Standard Stand．urd IIgh Stanuard	C1104 C110 C1436 C1094	$\begin{aligned} & 2 K 423 \\ & 2 k 424 \\ & 5 U 251 \\ & 2 K 412 \end{aligned}$	$\begin{aligned} & 27800 \\ & 280.00 \\ & 189.00 \\ & 172.00 \end{aligned}$	$\begin{aligned} & 200.50 \\ & 201.75 \\ & 123.70 \\ & 123.75 \end{aligned}$	$\begin{aligned} & 200 \\ & 20.0 \\ & 19.0 \\ & 20.0 \end{aligned}$
1	18	$\begin{gathered} 3450 / 1725 \\ 3450 \end{gathered}$	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{C} \end{aligned}$	$\begin{gathered} 230 \\ 115 / 230 \end{gathered}$	$6.0 / 1.8$ $10.2 / 5.1$	$\begin{aligned} & 1.40 \\ & 1.65 \end{aligned}$	－Standard	$\begin{aligned} & \mathrm{C} 1106 \\ & \mathrm{C} 1095 \end{aligned}$	$\begin{aligned} & 2 K 425 \\ & 5 \mathrm{tin} \end{aligned}$	$\begin{array}{r} -286.00 \\ \hline 196.00 \end{array}$	$\begin{aligned} & 206.00 \\ & 134.40 \end{aligned}$	$\begin{aligned} & 28.0 \\ & 35.0 \end{aligned}$
$11 / 2$	1／5	$\begin{gathered} 3450 / 1725 \\ 3450 \end{gathered}$	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{C} \end{aligned}$	11530	$\begin{array}{r} \hline+7.082 .2 \\ 14.87 .4 \end{array}$	$\begin{aligned} & 1.50 \\ & 1.50 \end{aligned}$	High High	C1107	$\begin{array}{r} 5 U 122 \\ 5 U 127 \end{array}$	$\begin{aligned} & 335.00 \\ & 261.00 \end{aligned}$	$\begin{aligned} & 230.25 \\ & 179.75 \end{aligned}$	$\begin{aligned} & 35.0 \\ & 40.0 \end{aligned}$
2	． $1 / 4$	$3450 / 1725$ 3450	$\begin{aligned} & 56 \mathrm{C} \\ & 56 \mathrm{C} \end{aligned}$	230 230	$8.7 / 2.9$	，$\because, 1.30$	High	C14427	Eut55	$\begin{array}{r} 471.00 \\ 319.00 \end{array}$	$\begin{array}{r} 307.00 \\ -208.00 \end{array}$	$\begin{array}{r} 40.0 \\ 40.0 \end{array}$
3	－	3450	56 C	230	13.0	1.15	High	C1439	54153	388.00	266.25	49.0
Qug	Ex 苑	2202	案㹲	4xisk		5617814	5					
1／2	1／16	$\begin{gathered} 3450 / 1725 \\ 3450 \end{gathered}$	$\begin{array}{r} 56 J \\ -56 J \end{array}$	$\begin{aligned} & 115 \\ & \mathbf{1 1 5} 230 \end{aligned}$	$\begin{aligned} & 7.4 / 2.4 \\ & 7.4 / 2.7 \end{aligned}$	$\begin{aligned} & 1.65 \\ & \because \quad 1.60 \end{aligned}$	Standard	$\begin{array}{ll} \mathrm{C} 1108 \\ \mathrm{Cl} 1098 \end{array}$	$2 K 427$	277.00 157.00	$\begin{array}{r} 199.50 \\ 112.95 \end{array}$	21.0 18.0
3／4	$\begin{aligned} & 1 / 10 \\ & 1 / 10 \end{aligned}$	$\begin{gathered} 3450 / 1725 \\ 3450 / 1725 \\ 3450 \\ 3450 \\ 3450 \\ \hline \end{gathered}$	$\begin{aligned} & 565 \\ & 56 J \\ & 56 J \\ & 56 J \\ & 56 J \end{aligned}$	$\begin{gathered} 115 \\ 230 \\ 115 / 230 \\ 115 / 230 \\ 115 / 230 \\ \hline \end{gathered}$	$10.0 / 3.4$ $4.7 / 1.7$ $-7.5 / 3.8$ $-9.9 / 4.9$ $-9.8 / 4.9$	$\begin{aligned} & 1.50 \\ & 1.50 \\ & 1.65 \\ & 1.50 \\ & 1.00 \end{aligned}$	Standard Standard －High Standard Standard	$\begin{array}{r} \mathrm{C} 1109 \\ \mathrm{C} 1110 \\ \mathrm{C} 1437 \\ \mathrm{C} 1099 \\ \mathrm{C} 1321 \\ \hline \end{array}$	$\begin{aligned} & 2 K 428 \\ & 2 k 429 \\ & 50152 \\ & 2 K 418 \\ & 54144 \end{aligned}$	$\begin{array}{r} 283.00 \\ 285.00 \\ \therefore \quad 19.00 \\ 20.00 \\ 15.00 \\ \hline \end{array}$	$\begin{array}{r} 204.00 \\ 205.25 \\ 133.15 \\ .127 .35 \\ \therefore 107.75 \\ \hline \end{array}$	$\begin{aligned} & 24.0 \\ & 24.0 \\ & 19.0 \\ & 20.0 \\ & 15.0 \end{aligned}$
1	－1／8	$\begin{gathered} 34501725 \\ 3450^{\circ} \\ 3450 \end{gathered}$	$\begin{aligned} & 56 \mathrm{~J} \\ & 56 \mathrm{~J} \\ & 56 \mathrm{~J} \end{aligned}$	$\begin{gathered} 230 \\ 115 / 230 \\ 115 / 230 \end{gathered}$	6．0／1．8 10．6／5．3 12．7／6．3	$\begin{aligned} & 1.40 \\ & 1.65 \\ & 1.00 \end{aligned}$	Standard Standard Standard	$\begin{aligned} & \text { C1111 } \\ & \text { C1100 } \\ & \text { C1318 } \end{aligned}$	$\begin{aligned} & 2 k 430 \\ & 50119 \\ & 5 \cup 141 \end{aligned}$	$\begin{array}{r} 291.00 \\ 201.00 \\ 177.00 \end{array}$	$\begin{array}{r} 209.50 \\ 137.80 \\ 121.50 \end{array}$	$\begin{aligned} & 28.0 \\ & 35.0 \\ & 19.0 \end{aligned}$
11／2	1／5	$\begin{gathered} 3450 / 1725 \\ 3450 \\ 3450 \\ \hline \end{gathered}$	$\begin{aligned} & 56 \mathrm{~J} \\ & 56 \mathrm{~J} \\ & 56 \mathrm{~J} \end{aligned}$	$\begin{aligned} & -230 \\ & 115 / 230 \\ & 115 / 230 \end{aligned}$	$\begin{aligned} & 7.02 .2 \\ & 14.877 .4 \\ & 15.87 .9 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 1.50 \\ & 1.00 \\ & \hline \end{aligned}$	Standard High Standard	-C 1112 C 1101 C 1319	$\begin{aligned} & 5 U 123 \\ & 5 U 220 \\ & 5 U 242 \\ & \hline \end{aligned}$	$\begin{array}{r} 340.00 \\ 266.00 \\ 202.00 \end{array}$	$\begin{array}{r} 233.75 \\ 182.50 \\ 138.65 \end{array}$	$\begin{aligned} & 35.0 \\ & 40.0 \\ & 21.0 \end{aligned}$
2	－二	$\begin{aligned} & 3450 \\ & 3450 \end{aligned}$	$\begin{aligned} & 56 \mathrm{~J} \\ & 56 \mathrm{~J} \end{aligned}$	${ }_{115}^{230} 230$	$\begin{gathered} 8.8 \\ -19.29 .6 \end{gathered}$	$\begin{aligned} & 1.30 \\ & 1.00 \end{aligned}$	High Standard	$\begin{array}{r} \mathrm{C} 1102 \\ \mathrm{Cl} 320 \end{array}$	$\begin{aligned} & 5 U 121 \\ & 50143 \end{aligned}$	325.00 267.00	$\begin{array}{r} 212.00 \\ .174 .25 \end{array}$	$\begin{array}{r} 40.0 \\ 23.0 \end{array}$
3	－	3450	56 J	230	13.0	1.15	High	－C1440	51154	393.00	269.75	49.0

SWIMMING POOL RUMP MOTORS

CAST-IRON FLANGE SWIMMING POOL PUMP MOTORS

- Casi-iron flange provides maximum
protection against effects of pool chemicals
- NEMA service factors Up to 1.6 pro vide reserve margin for intermittent overloading
- Copper windings have moisture-resis tant insulation
- 56C frame steel shaft with key; 56J frame stainless steel shoft $7 / 16^{\text {n }}$-20 UNF-2A RH threaded 11/16" from end
- Easy access two-compartment designi
- 1081 approvable

Typical Uses: In-ground and above ground swimming pool and hot tub pumps. Also used on jet and centrifugal pumps and similar applications requiring a NEMA 56C or 56 J face mounting.
Type: Capacitor-start
Bearings: Double-sealed ball
Mounting: Face, horizontal or vertical, shaft down
Enclosure: Open dripproof
Ambient: $40^{\circ} \mathrm{C}$
Insulation Class: B
Thermal Protection: Auto
Duty: Continuous
Finish: Gray

Typical Uses: Circulator/coolant, aquarium, chemical, magnetic, and evaporative cooler pumps, beverage dispensers, and applications where a totally enclosed motor for operating in noncombustible, dusty, dirty areas is required.
Special Feotures: Internal cooling fan. Stud mounted models have four $2^{\prime \prime}$ dia. OC x $1 / 2^{n}$ long studs out shaft endshield.
Windings: Copper
Body Diameter: 4"
Shaft Dimensions: $5 / 16 \times 2^{\prime \prime}$

- GENERAL APPLICATION PUMP MOTORS

For Complete Specifications and Additional Pump Motors, See Page 112 .

HP	Nameplate RPM	Rotation Facing Shatt	Volts 60 Hz	Full-Load Amps ot Namepiate Volts	Bearings	$\begin{aligned} & \text { Ovar- } \\ & \text { Length } \end{aligned}$	Stack No.	List	Each	Shpg. Wt.
1/8	3000 3000	Rev.\# Rev. \#	$\frac{115}{230}$	1.8	Sleeve Sleeve	$\frac{65}{7 / 8}{ }^{1 / 4}$	$31292 *$ 41090	$\$ 75.00$ 83.00	$\$ 65.50$ 68.20	6.0 6.0
1/20	3000	CW	115	1.6	Sleeve	525/16	3 H 069	51.00	38.55	4.4
	1550	CW	115	2.0	Sleeve	$515 / 16$	5×001	55.00	42.25	4.6
	1550	CW	115	2.0	Ball	$515 / 16$	5×004	70.00	53.75	4.7
	1550	CCW	115	2.0	Ball	515/16	3 M 290	70.00	53.75	4.6
为										
1/20	1550	CW	115	20	Sleeve	67/8	$5 K 002$	63.00	48.35	5.6
1/15	1550	CW	115	2.3	Sleeve	75/16	3M364 \dagger	69.00	52.95	6.7

(*) Foot mounted capacitor and mounting bracket included. (t) Equipped with 5.0 cubic-inch junction box
(\ddagger) Also operable on 50 Hz at $5 / 6$ of 60 Hz rated speed and HP. (\#) Wired for CW rotation.

\because SWIMMING POOL PUMP MOTORS

ALUMINUM FLANGE SWIMMING POOL PUMP'MOTORS AMA \times ? AT

- Unique reverse air flow design minimizes corrosive elements on the shaft end
- Easy access two-compartment design is contractor friendly
- Dichromate-plated beäring lock tabs allow easier bearing removal, eliminate need for plate alignment and reduce corrosion
- Rust resistant 416 stainless steel shaft; special sealer on rotor inhibits rust in off-season
- Large 63/8" barrel diameter to improve heat dissipation
- All copper windings
- 1081 approvable

Typical Uses: In-ground swimming pool and hot tub pumps. Designed for ease of direct replacement of many popular pumps.
Type: Capacitor-start
Bearings: Double-sealed ball
Mounting: Face, horizontal or vertical shaft down
Enclosure: Open dripproof
Thermal Protection: Auto
Insulation Class: B
Ambient: $50^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CCW facing shaft, nonreversible
Finish: Black
Brand: Dayton

PUMP MOTORS

SPA AND WHIRLPOOL PUMP MOTORS

DAYTON BRAND, SPA AND WHIRLPOOL BATH AND ABOVE GROUND POOL MOTORS

- Easy access two-compartment design
- Convenient $\mathbf{1 2}$ or $\mathbf{3}$ o'clock conduit fittings
- Rust-resistant shaft 1/2n dia. 3/8"-16 UNC-2A RH threaded 9/16" from end
- 1081 and 1795 approvable

Typical Uses: On pumps for 'spás, whirlpools, hot and jetted tubs. Sturdy 14 gauge slotted base on three inch centers. Replaces many popular spa and tub pump motors.
Type: Capacitor-start or split-phase
Mounting: Rigid base with four 8-32 extend-
ed thru-bolts : $:$
Enclosure: Open dripproof
Service Factor: 1.0
Thermal Protection: Auto
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CCW facing shaft, nonreversible
Finish: Black
Brand: Dayton

(*) Comunents: 1) Conduit at 12:00. 2) Low starting amp design. 3) Internal capacitor. 4) Split-phase. 5) Capacitor-start.

A WIDE SELECTION OF SWIMMING POOL, JETTED TUB, AND SPA PUMPS IS AVAILABLE, SEE PAGES 2847-2849

ABOVE GROUND POOL／SPA PUMP MOTORS

PUMP

 MOTORS
GE BRAND，ABOVE GROUND POOL／SPA PUMP MOTORS

－Two－compartment design protects components
－Slinger on shaft
－ 416 stainiess steel shaft $1 / 2^{*}$ dia． 3／8＂－16 UNC－2A RH threaded 9／16＂ from end
－Locked double sealed ball bearings：
－ 1081 approvable
Typical Uses：Used on pumps for spas，hot tubs，above ground pools，and jetted bath－ tubs．
Type：Split－phase or capacitor－start
Bearings：Ball \because
Mounting：Rigid base with four 8－32 extend－ ed thru－bolts
Enclosure：Open dripproof
Service Factor： 1.0
Thermal Protection：Auto Insulation Class：－B
Ambient： $55^{\circ} \mathrm{C}$
Duty：Continuous
Rotation：CCW facing shaft，nonreversible
Finish：Flat black
Brand：GE

\qquad
\qquad $\therefore:$ \qquad i
 E

CHOOSE FROM MANY BRANDS OF INDUSTRIAL PUMPS

including Little Giant，Alldos， gersoll－Rand，Hale，and Teel

39．8．2 F니N －フiッツ～

CARBONATOR PUMP MOTORS

- 60/50 Hz

- Reversible rotation by easy reconnection
- Sleeve bearings suitable for all-angle operation - Threaded condúit hole Typical Uses: Specially designed endshield' has extended hub and short; slotted $5 / 8^{\prime \prime}$ diameter shaft for close coupling the carbonator pump to the motor. Also used for liquid transfer pumps, vending machine pumps, and other close-coupled pump applications.

Type: Split-phase
Bearings: Sleeve
Mounting: Extended hub and cradle base
Enclosure: Open dripproof
Thermal Protection: Auto
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: Dayton

HP	Name 60 Hz	7PM 50 Hz	NEMA Frame	Volts 60 Hz	Full LoadAmps at60 Hz .50 Hz ServiceFactor					Stack No.	List	Each	Shpg
1/4	1725	1425	48YZ	115/230	4.8/2.4	6.63 .3	1.0			$6 K 160$	\$94.00	\$68.25	. 14.0
1/3	. 1725	1425	48YZ	115/230	6.0/3.0	$7.2 / 3.6$				$5 K 887$	98.00	71.15	15.0
1/2	1725	1425	48YZ	115/230	7.6/3.8	9.0/4.5	1.0		B	$3 \mathrm{K090}$	133.00	110.20	18.0

Threaded conduit hole

- Reversible rotation by easy reconnection
Typical Uses: Specially designed endshield has extended hub and short. slotted $1 / 2^{\prime \prime}$ diameter siaft for close coupling the carbonatur pump to the motor. Also used for liquid transfer pumps, vending machine pumps, and other close-coupled nump applications.

Type: Split-phase
Mounting: Extended hub and cradle base with studs Enclosure: Open dripproof Service Factor: 1.0
Thermai Protection: Auto
NEMA Frame: 48Y
Ambient: $40^{\circ} \mathrm{C}$
Duly: Continuous
Rotetion: CW/CCW
Finish: Gray
Brand: GE

GE BRAND

SUMP PUMP \& GLASS WASHER MOTORS

PUMP

 MOTOR
DAYTON BRAND, SUMP PUMP MOTOR

Typical Uses: Direct replacements for OEM supplied motor on sump pumps. Shaft endshield has extended hub for mounting directly on $11 / 2$ or $13 / 4^{n}$ OD pump support columns.

Use on other applications, such as glass washers, voids warranty.

Type: Split-phase
Mounting: Hub
Service Factor: 1.0
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Finish: Black
Brand: Dayton

*) Includes float-type switch and 8 ft . 3 -conductor cord.

GE BRAND, SUMP PUMP MOTOR

Typical Uses: Direct replacements for OEM supplied motor on sump pumps. Shaft endshield has extended hub for mounting directly on $1^{1 / 2^{\prime \prime}} O D$ pump support columns.
Use on other applications, such as glass washers, voids warranty.

Type: Split-phase Bearings: Sleeve Mounting: Hub Enclosure: Open Service Factor: 1.0 Thermal Protection: Auto Insulation Class: B Ambient: $40^{\circ} \mathrm{C}$ Duty: Continuous Finish: Black
Brand: GE

DAYTON BRAND, GLASS WASHER MOTOR

- Gosixeted conciuit tox
- Drain hole in shaft end endishield
- Double-sealed ball bearings with moisture-resistant grease
- Note: recommended for use with GFCI switch motor control No. $5 \mathbf{Z 9 7 4}$

Type: Split-phase
Bearings: Ball
Mounting: Vertical shaft down on metal standpipe
Enclosure: TENV
Service Factor: 1;0
Thermal Protection: None Insulation Class: A
Typical Uses: Replacement on most OEM glass washers.

Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous Finish: Black
Brand: Dayton

MAN̈Y BRANDS OF POWER TOOLS AVAILABLE

SEE WARRANTY INFORMATION ON PAGE OPPOSITE INSIDE BACK COVER

PUMP
MOTORS

3-PHASE SUBMERSIBLE PUMP MOTORS:

Corrosion-resistant stainloss steel shell

- Hermetically sealed stator
- Water lubricated carbon sleeve and kingsbury-type thrust bearings
- Lubricant replenishing filtered check valive
- Pressure equalizing diaphragm
- Replaceable motor lead wire assembly
- Splined, stainless steel shaft
- UL 778 recognized

Typical Uses: Motors manufactured for dependable operation in wells with $4^{\prime \prime}$ or $6^{\prime \prime}$ inside diameter or larger.

Type: 3-wire, 3-phase
Mounting: NEMA mounting dimensions
Enclosure: TENV sealed watertight
Duly: Continuous in $86^{\circ} \mathrm{F}$ ($30^{\circ} \mathrm{C}$) water at $1 / 4 \mathrm{ft} . / \mathrm{sec}$. for 4" $^{\prime \prime}$ motors:" $1 / 2 \mathrm{ft} / \mathrm{sec}$. for $6^{\prime \prime}$ motors
Rotation: Must run CCW facing shaft when combined with pump for maximum pump pressure and capacity
Lead Wire Assembly: $11 / 2-2$ HP motors include $48^{\prime \prime}$ assembly; 3 thru $7^{1 / 2}$ HP 4^{n} motors include $100^{\prime \prime}$ assembly; all $6^{\text {n }}$ motors include $150^{\prime \prime}$ assembly. All lead wire assemblies include a ground wire.
Brand: Franklin

SINGLE-PHASE SUBMERSIBLE PUMP MOTORS

PUMP

 MOTORS- Corrosion-resistant stainless steel shell
- Hermetically sealed stator
- Water lubricated carbon sleeve and kingsbury-fype thrust bearings
- Built-in lightning profection on 4" motors
- Lubricant replenishing filtered check valve
- Pressure equalizing diaphragm
- Replaceable motor lead wire assembly
- Splined, stainless steel shaft
- UL 778 recognized

CAUTION: Refer to page 5 for proper thermal protection and other motor selection information.

Typical Uses: Motors manufactured for dependable operation in wells with 4^{n} or 6^{n} inside diameter or larger.
Type: 2-wire split-phase; 3-wire capacitor-start
Mounting: NEMA mounting dimensions
Enclosure: TENV sealed watertight
Duty: Continuous in $86^{\circ} \mathrm{F}$ $\left(30^{\circ} \mathrm{C}\right)$ water at $1 / 4 \mathrm{ft} . / \mathrm{sec}$. for $4^{\prime \prime}$ motors, $1 / 2 \mathrm{ft} . / \mathrm{sec}$. for $6^{\text {n }}$ motors.
Rotation: CCW facing shaft end
Lead Wire Assembly: 1/3 thru 2
HP motors include $48^{\prime \prime}$ assembly; 3 thru 5 HP 4" motors include $100^{\prime \prime}$ assembly; all $6^{\prime \prime}$ motors include 150^{n} assembly. All lead wire assemblies include a ground wire.
Control Boxes: Use either a CSIR or CSCR control box. CSCR control boxes feature extra capacitor, more efficiency, a cut down on maximum service factor amps, and less noise.
Brond: Franklin

HP			Volts 60 Hz	Rated Amps	Service Factor	Nax S.F. Amps	Thrust Rating ths.	Thermal Protection	Franktin Model	Stock No.	List	Each	Shipg. Wt.	Required CONTROL BOX			
			Control Box Type											Stock Ho.	Each		
1.3	3	360		115	80	1.75	92	300	Auto ${ }^{+}$	21450290	1D12S	\$24600	\$177.50	160	CSIR	$4 \mathrm{4P40}$	\$42.40
	3	3400	50	40	1.75	4.6	340	Ausot	21.30360	10129	24500	177.50	160	CSIR	4P842	42.40	
	$\frac{2}{2}$	3150	11.5	8.0	1.75	จ 2	300	Auto ${ }^{\text {+ }}$	244 況 20	+E121	287.60	297.00	16.0			-	
	2	3450	230	4.0	1.75	4.6	300	Auto \dagger	244 50390	10122	23700	207.00	16.0	-			
1/2	3	3450	115	-. 10.0	1.60	12.0	300	Auto \dagger	21450490	10130	234.00	168.75	18.0	CSIR	$4 \mathrm{PB42}$	43.70	
	3	3450	230	5.0	1.60	6.0	300	Auto \dagger	21450590	10131	234.00	168.75	18.0	CSIR	1 19146	43.00	
	3	3450	230	5.0	1.60	4.2	300	Autot	21450590	10131	234.00	168.75	18.0	CSCR	$4 \mathrm{P843}$	63.60	
	2	3450	115	10.0	1.60	12.0	300	Auto'	24450490	10123	276.00	199.00	18.0		-	-	
	2	3450	230	6.0	1.60	6.0	300	Auto \dagger	24450590	1 1 124	276.00	199.00	18.0	-			
$3 / 4$	3	3450	230	6.8	1.50	8.0	300	Austo ${ }^{+}$	21450790	10132	280.00	201.75	21.0	CSIR	19147	45.50	
	3	3450	230	6.8	1.50	6.7	300	- Auto ${ }^{\text {¢ }}$	21450790	10132	280.00	201.75	21.0	CSIR	4 P 844	68.80	
	2	. 3450	230	6.8	1.50	8.0	300	Auto ${ }^{\text {+ }}$	24450790	10125	333.00	240.00	21.0				
1	3	3450	230	8.2	1.40	9.8	650	Auto \dagger	21450890	10133	292.00	210.50	24.0	CSIR	$1{ }^{1} 145$	46.90	
	3	3450	230	8.2	1.40	7.0	650	Auto ${ }^{+}$	21450890	10133	292.00	210.50	24.0	CSCR	$4 \mathrm{P845}$	70.10	
	2	3450	230	8.2	1.40	9.8	650	Auto \dagger	24450880	10126	357.00	257.50	23.0				
11/2	3			10.0	1.30	11.5		Manual \ddagger	22430092	10134	374.00		27.0	CSCR	$4 \mathrm{P846}$	79.90	
	2	3450	230	10.6	1.30	13.1	650	Autot	24430990	10127	466.00	335.75	30.0		4 P		
2					1.25	13.2		Manualf	22430192	$3 \mathrm{K990}$	448.00	323.00		CsCR	2PC15	110.00	
	3	3450	230	10.0	1.25	13.2	650	Manual	22430192.	$3 \mathrm{K990}$	448.00	323.00	300	Deluxe CSCR*	10152	152.00	
3		3450	230		1.15	17.0	1500	Manual	22430283	3K991	785.00	565.50	52.0	CSCR	$2 P C 16$	35.50	
	3	3450	230	14.0	1.16	17.0	1500	Manual ${ }^{\text {a }}$	22430283	$3 \mathrm{K991}$	785.00	565.50	52.0	Deluxe CSCR*	10151	167.75	
5	3	3450	230	23.0	1.15	27.5	1500	Manuait	22430383	3K992	965.00	696.00	61.0	CSCR	10153	205.00	
	3	3450	230	23.0	1.15	27.5	1500	Manual	22430383	3 K 992	. 965.00	696.00	61.0	Deluxe CSCR*	2 PC 17	224.25	
5	3	3450	230	23.0	1.15	27.5	1500	Manual \ddagger	22611090	10095	1236.00	890.00	105.0	CSCR	10153	205.00	
	3	3450	230	23.0	1.15	27.5	1500	Manuali	22611090	10095	1236.00	890.00	105.0	Deluxe CSCR*	$2 \mathrm{PC17}$	224.25	
71/2	3	3450	230	36.5	1.15	42.1	1500	Manual \ddagger	22611190	10097	1455.00	1048.00	120.0	Deluxe CSCR*	10148	305.00	
10	3	3450	230	44.0	1.15	51.0	3500	Manual	22611290	10119	1634.00	1178.00	135.0	Deluxe CSCR*	ID149	449.00.	
15	3	3450	230	62.0	1.15	75.0	3500	Manual \ddagger	22611390	10120	2123.00	1529.00	146.0	Deluxe CSCR*	$2 \mathrm{C150}$	707.50	

(*) Deluxe box includes magnetic contactor. Recommended for water systems that utilize a pressure switch
(\dagger) Automatic themal protection in motor. (\ddagger) Manual reset thermal protection in control box

APPLIANCE/TOOL MOTORS

AC/DC VACUUM MOTORS

5.7 INCH DIAMETER THRU-FLOW VACUUM MOTORS/BLOWERS

Applications: For replacing motors in canisw features: Permanently lubricated bearings. ter vacuums, utility vacuums, spas, Copper windings. sprayerfoggers, air samplers, and commercial vacuums. For dry, clean air installations only.

Mounting: All position
Enclosure: Open

Ambient: $40^{\circ} \mathrm{C}$
Duly: Intermittent
Average Life: 500 hours
Brand: Ametek
Insulation Class: A

Styla	Dia.	Binwer Stanges	Volts 50/EN Hz	Max. Amps	Thernal Protection	Bearings	Ovarail Ht.	Vacrum (ln . $\mathrm{H}=\mathrm{O}$ Seated!		$\begin{aligned} & \text { Max. } \\ & \text { Wirt } \end{aligned}$	Special Fraturas*	Amotek Mode!	Stock No.	List	Each	Shpg. WE
A	5.7	2	120	10.6	None	Ball/Ball	$515 / 16^{\prime \prime}$	114.4	1013	365	1	116432 -00	211422	\$83.00	\$69.00	5.1
A	5.7	2	120	9.0	Auto	Ball/siv	6.	-100.0	$\therefore 104.0$	-323	. 1	- 116671.50	448898	84.00	69.85	6.1
A	5.7	2	120	8.8	None	Ball/ball	545/76	105.9	- 107.0	- 316	- 1,3	116227-00	2 2N199	03.00	77.30	5.5
A	5.7	2	120	8.0	Auto	Ball/slv	$513 / 16$	92.0	99.0	257	1	115744	2\%198	85.00	70.70	5.0
A	3.7	2	120	8.0	Yone	Bal/hall	59/6	920	990	257	1	115750	2 M 262	81.00	67.35	4.9
A	\%	2	120	7.7	Auto	Balltsali	\%/4	902	91	211	1	116137-10	211420	72.00	59.45	\%
A	5.7	2	120	8.0	None	Balls:	5%	320	980	260	1.	115737	2 M 263	74.00	54.50	4.0
A	5.7	2	120	8.2	None	Ball/adil	$59 / 10$	91.2	95.0	245	-1	$116311-01$	27192	66.00	\$4.90	4.9
A	5.7	2	120	7.7	Auto	Ball/iv	59/6	00.2	94.0	241	1	116669.50	211422	66.00.	54.90	4.2
A	5.7	2	120	7.7	None	Ball/Siv	5\%/26	- 90.2	94.0	241	1	116311.00	$4 \mathrm{HE96}$	69.00	49.05	5.2
A	5.7	2	120	7.7	None	Ball/siv	67/16	- 90.2	94.0	241	2	11688350	24193	56.00	46.60	4.9
A	57	2	380	5.1	Auto	Ball/mall	$61 / 3$. 28.9	119.0	345	1	11660400	401900	93.00	77.30	5.8
A	5.	$\stackrel{2}{2}$	$\therefore 0$	5.8	\ofte	Batuisali	$61 / 5$	93.7	113.0	51	1	116111-60	4 AFO	93.00	77.30	5.7
A	$\stackrel{3}{7} 7$	2	240	10	None	Bull/ $\mathrm{S}_{\text {\% }}$	513/1,	878	102.0	248	1	116312.00	201423	69.00	57.35	4.2
A	3.7	2	240	4.0	tuto	Malisiv	5\%	87.8	1020	243	1	116670-50	2 M 424	7500	62.35	4.1
A	5.7	2	240	4.7	None	Ball/Bail	61/20	98.3	112.3	346	1	116943-00	481902	85.00	70.70	7.0
	6.7	2	220	3.5	None	- Rall/isk	69/6	- 78.0	89.0	196	1	115756	24182	84.00	69.85	4.9
A	6.7	2	100	12.2	None	- Ballizalr	61/6	- 96.3	112.0	361	1	$116831-00$	4 4906	76.00	63.20	8.0
A	6.7	2	$24 \dagger$	16.7	None	, Ball/Ball	69\%16	47.9	65.4	90	1	116846-40	44895	168.00	131.30	5.4
盛	5.7	2	120	10.8	None	Ball/Ball	$63 / 16$. 100.4	1220	447	1	116923	4×903	93.00	77.30	[. 4
8	5.7	2	120	9.6	None	Ballsty	$6{ }^{129} / 18$	- 86.4	115.0	356	1	116982	4×1982	77.00	84.00	5.4
8	5.7	2	120	9.5	Nome	Eall/Ball	$5^{13 / 15}$. 96.4	115.0	356	1	116146-00	2 m 186	80.00	74.85	5.0
8	6.7	2	120	9.5	Auto	Ball/3all	593/16	96.4	115.0	356	1	116884-49	4 mg 05	87.00	72.30	5.4
c	5.7	. 1	120	6.8	Auto	Bal/Slv	$41 / 2$	63.0	112.0	180		116455-50	201425	53.00	44.05	3.0
c	5.7	1	120	6.8	None	Ball/Siv	$41 / 2$	-63.0	112.0	190	1	$116309-00$	$2 \mathrm{M194}$	45.00	37.45	4.4
C	5.7	1	120	6.8	None	Bali/slv	$41 / 2$	-63.0	-112.0	189	2	116881-50	4 H 911	47.00	39.10	4.0
c	5.7	1	120	6.4	Nome	Ball/Sty	$41 / 2$	- 67.4	+ 107.0	177	1	118717	2 m 264	69.00	49.05	4.4
c	5.7	1	240	3.8	Auto	- Ball/Sly	$4{ }^{13 / 16}$. 61.7	- 113.0	197	1	11666850	2 M 427	62.00	51.60	3.1
C	5.7	1	220	3.8	None	Ball/stv	$41 / 2$	61.7	- 118.0	198	1	11691000	2 m 426	64.00	44.90	3.1
\%	5.7	1	240	4.2	Nome	Ball/siv	$439 / 15$	6 㭲.	. 120.0	235	2	116882.50	4×909	54.00	44.90	6.0
c	5.7	1	100	11.3	None.	Ballishy	$51 / 4$	- 76.6	- 122.0	343	1	116851-70	$4 \mathrm{Mr12}$	68.00	56.55	5.4
D	5.7	1	120	6.9	None	Ball/3y	$41 / 2$	60.6	123.0	227	2	116297 -00	2 n 203	56.00	46,60	3.5
E	5.1 -	1	120	72	Nome	Rall	513/16	- - 73.3	118.0	282	2,4,3	$1168883-00$	4×970	78.00	64.85	5.0
E	5.1	1	120	72	None	Ball	$55^{13 / 16}$	- 66.5	114.8	268	2,4	116988-00	4 M 969	67.00	55.70	4.0
E	5.1	1	120	6.4	None	Ball	$513 / 16$	64.9	113.3	259	2,4	116981-00	4×971	66.00	54.90	6.0
F	5.1	1	120	6.4	Nane	Rall	6\%/4	64.9	113.3	259	2.4	116988.00	4×972	70.00	58.20	4.0
E	6.1	1	120	6.0	None	Ball	65/16	64.8	108.8	234	2,4	117135-00	$4 \mathrm{4}+973$	64.00	53.20	5.0
A	4.8	2	120	6.0	None	Balu/slv	$51 / 86$	76.3	85.8	171	1	$116148-00$	418974	95.00	79.00	3.5
A	4.3	2	120	7.5	None	Ball/Ball	$6^{121 / 36}$	$\because 70.8$	92.6	177	1	11687800	4×975	89.00	74.00	5.0
C	4.3	1	120	5.3	None	Bal/Slv	7/16	43.9	79.2	86	1	116877.00	$4 \mathrm{Mg76}$	51.00	42.40	3.5

(*) Speciai Featuress (1) Metal mounting brackets, (2) Thermoset innckets; (3) Two speed; (4) Shaft extension. (t) DC Volts

[^34]
VACUUM MOTORS/BLOWERS, BRUSHLESS BLOWERS, AND POWER NOZZLE MOTORS

7.5 INCH DIAMETER INDUSTRIAL/COMMERCIAL VACUUM MOTORS/BLOWERS

Applications: Commercial vacuums, dental evacuators, hopper loaders, and material handling and transfer systems.
feafures: Permanently lubricated ball bearings, peripheral discharge, long life design; and copper windings.

Bearings: Ball Mounting: All position
Enclosure: Open
Thermal Profection: None
Insulation Class: A (except Nos. 4 M880 and 4 M 878 are Class B)
Ambient: $40^{\circ} \mathrm{C}$
Duty: Intermittent
Average Life: 1000 hours
Brand: Ametek

Blower Starges	$\begin{aligned} & \text { Yolts } \\ & \text { 5MAm0 } \\ & \text { Hz } \end{aligned}$	Max.	Overall Ht .	Yacumm (Ita. $\mathrm{H}=0$ Satled)		$\begin{aligned} & \text { Maxt } \\ & \text { Air } \\ & \text { Watts } \end{aligned}$	Spac. feat:	Amutek	Stock No		Each	Stipg. Wt.
3332222	120	11	97/18"	-88.2	126.0	360		114787	2M1	\$405.00	\$336.75	12.0
	220	5.2	97/16	84.2	122.0	354		114789	4 m 877	497.00	413.00	13.0
	$42 \pm$	30.0	97/16	87.9	126.0	360	-	115419	4M876	589.00	489.75	13.0
	120	10.6	85/i6	73.4	131.0	329	-	114786	4M881	401.00	333.50	11.0
	220	4.8	$88 / 16$	70,2	146.0	329		114788	4 M 879	475.00	395.00	12.0
	115.	10.0	101/2	69.6	. 132.0	315	1	114586	4M880	1455.00	1211.00	16.0
	230	5.0	101/2	61.2	123.0	299	1	114589	4 M 878	1587.00	1278.00	11.0

(*) Special Features (1) Hazardous duty Chass I Group D; Class II Groups E, F, and G. (\ddagger) DC Volts.

$\therefore-5.7$ INCH DIAMETER BRUSHLESS BLOWERS

Applications: Air beds, office equipment, material mandling, and packaging equipment.
features: $50 / 60 \mathrm{~Hz}$, continuous long life operation, low noise to power ratio, adjustable air performañce, compact sizè, and air intake and exhaust tube.

Blower Stages	Volis 60 Hz	Max. Amps	Duerall Ht.	Vacumm (In. $\mathrm{H}_{2} \mathrm{O}$ Sealed		Spec. Feat.*	Anmetek Modei	Stock No.	List	Each	Shipg. Wt.
3	120	5.2	$7{ }^{\text {7 }}$	75.0	30.0	2	116632 -06	4M96	\$70900	\$626.00	6.5
2	120	4.8	71/8	49.0	90.0	2	116636043	$4 N 963$	763.00	621.50	7.0
1.	120	4.6	$5{ }^{2 / 8}$	34.0	72.0	2	116634-01	4M965	728.00	592.50	6.0
1	120	4.8	61/6	28.0	120.0	2	116637.03	4 4966	739.00	601.50	5.5
3	120	5.2	78/8	75.0	50.0	1	116638-08	$4 \mathrm{H962}$	774.00	630.00	6.0
2	120	'4.8	71/8	49.0	900	1	$116642-01$	4M1964	768.00	625.50	5.3
1	120	48	64/3	980	1290	1	11644301	$4 \mathrm{M967}$	74500	506.50	4.9
1	123	4	5\%	24.0	T2. 3	1	11664001	$4 \mathrm{M968}$	733.80	557×3	3.0

*) Specta Features f1) Electronce controh, analog voltage control, $0-10$ Vin $D C$ (not provicied),
(2) Mecharncal controf, aduistabie 4-curn potentometer

Bearings: Ball
Mounting: All position Enclosure: Open
Thermal Protection: Auto Insulation Class: A
Ambient: $40^{\circ} \mathrm{C}$
Ambient: $40^{\circ} \mathrm{C}$
Brand: Ametek

POWER NOZZLE MOTORS

Applications: Suitable for motorized brush drive power head replacements
features: Thermoset plastic housing threaded mounting inverts, and thermal cutoff protector
Bearings: Ball/Sleeve
Mounting: 2.25" OC tapped \#8.32; No. 4M978 10-32

Enclosure: Open
Thermal Protecton: One time non-reset Insulation Class: A
Ambient: $40^{\circ} \mathrm{C}$
Duty: Intermittent
Rotation: CCW facing shaft
Average life: 200 hours
Brand: Ametek

$\mathrm{HP}^{\text {P }}$	RPM	Volts 60 Hz	Input Wats	Shaft	Dverall Length	Ametak Miadel	Stock Na.	List	Each	Shpg.
0.15	19,500	120	480	. $315 \times 1.18^{\prime \prime}$	$4.68{ }^{\prime \prime}$	118154.54	$4 M 979$	\$40.00	\$25.90	1.6
0.16	20,000	120	240	. 315×0.88	4.38	118155.54	4 M 977	- 40.00	25.90	1.6
0.12	15,000	120	300	. 315×0.88	4.38	118157.54	4 4 978	40.00	25.90	1.6
0.09	12,000	120	240	. 316×1.09	4.69	118158.54	4M980*	60.00	41.95	3.0

(*) 4M980 geared shaft, includes bracket for Electrolux mounting.
等

WIDE RANGE OF CLEANING SUPPLIES AND EQUIPMENT AVAILABLE,
SEE INDEX AT BACK OF CATALOG FOR COMPLETE LISTINGS

APPLIANCE／TOOL MOTORS
 53．7 INCH DIAMETER BYPASS AC／DC ． 20．

Applications：Central，càrwash，and utility Features：Permanently lubricated bearings．Open enclosure．Class A insulation．No vacuums；steam carpet cleaners；commer－Acustek models up to 10 dB quieter．thermal protection． $40^{\circ} \mathrm{C}$ Ambient． cial／industrial vac systeems；wet／dry uses．

Style	$\begin{aligned} & \text { Blower } \\ & \text { Stages } \end{aligned}$	Vohs 50 50 Hz	$\begin{aligned} & \text { Max. } \\ & \text { Amps } \end{aligned}$	Bearings	Overall Ht	Yacuum lia． H20 Sealed）	(2 CFMM	Max．Air －Watts	$\begin{gathered} \text { Special } \\ \text { Fpatures* } \end{gathered}$	Ametak	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	List	Each	$\begin{aligned} & \text { Shpg. } \\ & \mathbf{W} \end{aligned}$
B	3.	120	13.5	Ball	$81 / 16^{4}$	437.1 －	101.2	＂485	1，3	116765－13	4N921	\＄163．00	\＄127．20	7.6
	3	120	13.5	Ball	81／16	： 137.1	101.2	โ－4485	$\because 1$	11676500	44922	147.00	－ 122.20	76
	3	120	10.7	Ball	783／16	＇117．4	＇ 89.0	－1． 368		116565－13	4M923	143.00	118.85	7.0
	3	120	10.7	Ball	713／16	117.4	99.0	－3－368		116565－00	4M925	134.00	111.35	6.8
	3	240	6.2	Ball	719／16	115.5	83.0	345	2	116859400	4\＃944	139.00	115.50	3.9
$\begin{aligned} & \hline \mathbf{B} \\ & \mathbf{B} \\ & \mathbf{8} \\ & \mathbf{B} \\ & \hline \end{aligned}$	3	${ }^{120}+$	10.7	Ball	$7{ }^{13 / 16}$	-117.4	－ 89.0	386	$-2,3,5$	116565－29	4 m 924	－149．00	－123．80	7.1
	3	$24 \dagger$	21.5	Ball	73／16	67.6	9．－69．0	142	，2，3：	116515－13	41019	－160．00．	－132．95	6.7
	3	$36 \dagger$	17.9	Ball	$7{ }^{13 / 16}$	74.0	\％－76．0	－		， 11661313	4－918：	－ 151.00	－ 132.50	6.6
	3	${ }_{120}^{36} \dagger$	17.17	Brall：	731／16	74.0	76.0	185	2，3，4	116513.32	4M920	159.00	－132．15	7.4
	2	120	11.7	－ －Ball		106.7	112.0	404.	$\therefore 2,3$	－116472－13	． 4 m932	$\bigcirc 12200$	1201．40	
$\begin{aligned} & \hline \mathbf{B} \\ & \mathbf{B} \\ & \mathbf{B} \\ & \mathbf{B} \\ & \hline \end{aligned}$	$\stackrel{2}{2}$	120		Ball		106.7	1120	， 6.404		：11647200．	24432	110.00	114．91．40	
	2	120	\％ 6	Ball	7	92.5	97.4	301	－ 23,7	11647437	44983	109.00	90.60	6.4
	2	120	，F\％ 8.9	Ball	7	92.5	97.4	301	：－2，7	116474－00	4M938	104.00	86.45	9.0
	2	120		Ball－	$6^{1 / 2}$	92.5	101.0	298	2，3	11611400	$4{ }^{4} 939$	118.00	98.10	6．7
	2	120	＋ 0.0	Ball	61／2	91.3	104.0	300	－3，	116207－00	2M201	11000,	$\therefore 91.40$	5.0
$\begin{aligned} & \hline 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$		120	8.0	Ball	$61 / 18$	88.1	96.0	289	20，${ }^{\text {c }}$ ，	115894	9M926	－ 06.00	88.10	5.6
	2	120	8.0	Ball	61／16	88.1	96.0	289	$\cdots 2$	116210－50	4 4－927	$\because 106.00$	－87．30	－5．6
	2	120	8.2	Ball	$61 / 2$	88.2	105.5	285	2，4	116210－85	4 41928	111.00	92.25	5.6
	2	120	区 8.6	Ball	$63 / 2$	81.8	97.0	248	2.3	11639200	21430	88.00	73.15	4.6
	2	120	8.6	Ball	$61 / 2$	81.8	97.0	250	，	116392－01．	4 41929	86.00	71.45	5.3
$\begin{aligned} & \hline 8 \\ & 8 \\ & 8 \\ & \mathbf{B} \\ & \mathbf{B} \end{aligned}$	2	240	4.6	Ball	615／16	86.8	96.0	269	324	－116213－00	4＊935：	126.00	5－104．70	5.9 －
	2	230	6.7	Ball		100.5	126.3	413	2.	［16353－00	4M936	124.00	－103．10	$5.9{ }^{\circ}$
	2	240	4.4	Ball	615／16	87.5	108.0	－ 317	2.3	－116420－13	4M934	102.00	84.80	5.0
		100	12.5	Ball		96.9	1081	35s	，	11110013	4 M 940	114.00	94.75	
	2	$24 *$	14.4	Ball	65／14	43.6	66.4	98	2，3	116：57－00	$4 \mathrm{Mg33}$	18000	149.60	3.0
$\begin{aligned} & \hline \mathbf{B} \\ & \mathbf{B} \\ & \mathbf{B} \\ & \mathbf{B} \\ & \mathbf{C} \end{aligned}$	$\stackrel{\square}{2}$	$36{ }^{\text {3 }}$	15.1	Ball	$6^{615 / 16}$	82.8	77.0	161	2，3	${ }^{116409-13}$	4 M 331	145.00	120.50	7.0
	2	36	10.8	Ball	$61 / 2$	47.3	71.0	113	2,3	116158－01	4 M 932	173.00	143.75	5.8
	2	$36 \dagger$	10.8	Ball	$61 / 2$	47.3	71.0	113	2，3，4．	$116158-00$	4M930	188.00	156.25	5.2
	1	120	5.7	BallSileeve	47／16	47.8	93.0	157	1	116620－50	49941	64.00	53．20	4.2
	3	120	11.1	Ball	713／18	119．6．？	100.0	$\bigcirc 382$	2，3	116764.13	4 M 914	142.00	118.05	7.1
$\begin{aligned} & \hline \mathbf{c} \\ & \mathbf{c} \\ & \mathbf{c} \\ & \mathbf{c} \end{aligned}$		240	52	Ball	$713 / 16$	112.2	96.0	346	2，3	116945－1．3	4M913	147.00	122．20	7.1
		120	11.3	Ball	61515	107.1	110.0	387	2.3	116769－13	2M，433	12000	99．先	53
	2	120	9.2	Bet	61／2	91.5	1030	293	2，3	116758－13	2 m 267	90.00	74.85	4.9
	2	120	9.2	Ball	$61 / 2$	91.5	1020	293	2，3，6	11609513	$4 \mathrm{Mg16}$	90.00	74.85	5.8
	2	120	7.9	Ball	61／2	84.9	97.0	255	2，3	116757－13	2m266	81.00	67.35	4.9
CCDD				Ball			97.0	255		116024－13		82.00		
	2	240	4.9	＊Ball	7	95.2	111.0	362.	．2，3．	－116296－13	4 M 915	\％ 103.00	85.60	E，6－
	3	120	10.7	Ball	713／16	117.4	99.0	368	2，7	116566－13	4M945	138.00	114.70	6.9
	3	$24 \dagger$	21.0	Ball	713／16	67.2	69.0	142	2，3，7	11651413	4 4943	156.00	129.65	6.7
	3	$36 \dagger$	17.9	Ball	713／16	74.0	76.0	185	2，3，7	116512－13	4 4942	153.00	127.20	6.8
$\begin{aligned} & \hline \mathbf{D} \\ & \hline \end{aligned}$	\pm	\cdots	． 11.7	F Ball	7	106.7	112.0	404	23	116471－13	4 M 953	117.00	97.25	6.1
			－ 11.7			106.7	112.0	1． 404		116471－00	2 M 431	106.00	$\bigcirc 88.10$	4.9
	2	120		${ }^{-4}$ Ball	515／16	91.3	104.0	300		116212－00	4M954	109．00	：－90．60	5.5
	2	120	－0．1	Ball	615／16	93.2	101.0	332	2	11644800	41955	95.00	79.00	6.0
	－ 2	120	9.0	Ball Sleeve	68／16	90.3	100.0	：． 313	2	116493－50	4 M 949	79.00	65.70	5.2
D	\％ 2	120		BallSleeve	$6^{6 / 16}$	88.1	96.0	292		115757－P	2 2 265	88.00	73.15	4.9
	2		8.0	Sall	66／16	84.3	94.0	274	2	116336001	2 M 429	72.00	59.85	4.2
		120	¢ 8.0	Bab／Sleeve	${ }^{65 / 16}$	84.3	-94.0	274	$\cdots 2$.	11633600^{-}	$2 M 195$	－72．00	59.85	4.9
	2		－${ }_{4}^{5}$	－＇Ball	7	97.8 96.4	107.0 1120	389	2，${ }^{2} 6$	11635400 $116036-13$	4 H 951	131.00 10100	93．95	5.8 6.8
	2			Ball		96.4	112.0	360	2；3，6	116036－13	4 Mg 952	101.00	83.95	
$\begin{aligned} & \hline \mathbf{D} \\ & \mathbf{D} \\ & \mathbf{D} \\ & \mathbf{D} \\ & \hline \end{aligned}$		240	${ }_{32}^{3.3}$	Ball／sleeve	65／16	67.6	88.0	－ 185		${ }_{11612500}$	4×946	${ }^{87} 900$	69.00 80.60	
	${ }_{2}$	＋ 100	12．2	call	${ }_{6}^{671 / 16}$	69.0 86.9	82.0 108.1	． 211		${ }_{116658-13}$	4\＃948	97.00 116.00	80.60	${ }_{8.0 .4}^{6.3}$
	2	$24 \dagger$	14.4	Ball	$6^{1 / 2}$	48.6	66.4		2,3	$\therefore 116155-00$	2 M 189	163.00	135.45	5.4
	2	$36 \dagger$	15.1	Bail	$79 / 16$	62.0	77.0	163	2，3	－116406－13．	4 4950．	140.00.	116.35	6.1
$\begin{aligned} & \hline \mathbf{D} \\ & \mathbf{E} \\ & \mathbf{E} \\ & \mathbf{E} \\ & \mathbf{E} \end{aligned}$		${ }^{36 \dagger}$	10.8	Hall	$61 / 2$	47.3	70.7	113	23	116156.00	$2 M 190$	156.00	129.65	5.0
	1	120	7.0	Bal／Sleeve	$\mathrm{E}^{3} 1 \mathrm{La},-$	$\because 49.5$	133．0	． 291	－ 2.4	） 11619600	4M960	71.00	59.05	4.4
	1	120	． 5.7	BaluSleeve	${ }^{51 / 16}$	－50．1	95.0	188	2	116325－00	2 M 428	－ 56.00	2． 46.60	2.8
	1	$=220$	\square $-\quad 3.3$	BallSleeve	${ }^{60 / 16} 6^{+2}$	「 ${ }^{50.8}$	－99．0	201	$-4{ }^{-4}+$	： $116271-00$	4N957	－ 68.00	56.55	4.3
	1	220 220	$\begin{array}{r}3.8 \\ 3.8 \\ \hline\end{array}$	Bal／${ }^{\text {Bleeve }}$ BallSleave	$59 / 16$ $5 / 16$	46.9 45.9	137.0 129.0	${ }_{265}^{264}$	－ 2	$116340-00^{-}$ 115977.	4 4 958	${ }_{79.00}^{73.00}$	60.70 65.70	6.0 4.5

APPLIANCE/TOOL MOTORS

UNIVERSAL TYPE AC/DC.MOTORS

Typical Uses: Appliances, power tools, outdoor equipment, food processing equipment, gearmotors, blowers, pumps, and other applications where high horsepower output and small size are required. Series wound. Full-load speeds shown are adjustable with proper speed control. Average brush life approximately 300 hours, depending on application.
Enclosure: Open
Service Factor: 1.0
Thermal Prolection: None
Windings: Copper
Ambient: $40^{\circ} \mathrm{C}$
Finish: Gray enamel (except Nos. 5M069, 5M070, and 5M071 are black)
Brand: Dayton
(A) $23 / 4^{n}$ DIA., DOUBLE SHAFT

Mounting: Base with $23 / 16 \times 2^{7 / 16^{n}}$ OC
[B] \& $23 / 4^{"}$ DIA., SINGLE SHAFT
Mounting: Side mounted motors have two tapped \#10-32 holes, $23 / 16^{\prime \prime}$ OC on one or both sides
Special Features: No. 2M277 has externally replaceable brushes for extended motor life

(D $3^{\prime \prime}$ DIA., SINGLE SHAFT
Mounting: Stud, two threaded studs extended out shaft endshield, $27 / 18^{11}$ OC CSA Certified: 83496
[E] $3^{\prime \prime}$ DIA., SINGLE SHAFT
Mounting: Base for $1 / 10$ and $1 / 5 \mathrm{HP}$, two $1 / 4^{n}$ slots on $2^{15} / 16^{\prime \prime}$ centers
[f] $3^{\prime \prime}$ DIA, SINGIE SHAFT
Mounting: Base for $1 / 2 \mathrm{HP}$, four \#10-32 holes on $2 \times 2^{13 / 16^{n}}$ OC and four $1 / 4^{n}$ slots on $3^{1 / 4} \times 2^{13 / 16^{n}}$ OC

HP	Key	Namediase RFM	Ratanon Facing Shantian	Volts So Hz	Full: Load Amps	Bearings	$\begin{aligned} & \text { Ins. } \\ & \text { Elass } \end{aligned}$		Body Cia.	Overan bengh	$\begin{gathered} \text { Shati } \\ \text { Dimensians } \\ \text { Dia.xi } \end{gathered}$	Stock No.	List	Each	Stupg. W.
$1 / 15$	A	5090	COW	115	1.2	Sleeve	A		23%		$1 / 4 \times 1{ }^{\text {P }}$ ea	$2 \mathrm{moc6}$	\$42.50	\$37.90	- 2.2
1/15	${ }_{\text {B }}$	5000 5000	CCW	115	1.2	Sleve	A		23/4		1/4×3/4	$2 M 033$ 2 M 277	36.00 39.00	31.60 35.20	- 20
1/15	B	5000	CW	115	1.2	Sleeve	A		$22 / 4$	6\%	. $1 / 4 \times 3 / 4$	-2m034	35.00	31.60	- 2.0
$1 / 15$	B	5000	CCW	115	12	Ball	A		$23 / 4$	$51 / 4$	5/16×7/8	2N057	54.00	48.15	520
1/10	C	8000	CCW	115	1.5	Ball	A		$23 / 4$	49116	$1 / 4 \times 7 / 8$	$2 \mathrm{M037}$	63.00	56.15	323
1/7	D	10,000	CCW	115	20	Sleeve	F		3	49/16	$5 / 16 \times 1$	2 m 144	78.50	75.05	5.2
$1 / 1 /{ }^{1 / 5}$ $1 / 2$	$\begin{aligned} & \hline \mathbf{E} \\ & \stackrel{\mathrm{E}}{\mathrm{~F}} \end{aligned}$	10,000 10,000 10,000	CCW CCW CCW	115 115 115	1.5 3.1 7.3	Ball Ball Ball	F F F		3 3 3	6 89 8	$\begin{aligned} & 516 \times 1 \\ & 516 \times 1 \\ & 3 / 8 \times 11 / 4 \end{aligned}$	$\begin{aligned} & 5 M 069 \\ & 5 \times 1070 \\ & 5 \mathrm{Mot} \end{aligned}$	108.00 119.00 167.00	88.60 97.60 136.95	 4.1 8.5
Replacements for:				CARBON BRUSH REPLACEMENTS							COPPER COIL SPRANG REPLACEMENTS				
				Stack No.		Oty. $/ \mathrm{Pkg}$	List		Each/Pkg.		Stock No.	Oxy. /Pkg.		Each/ Pkg.	
2M033, 2M034, 2M037, 2M057;2M066, and 2M276, Original Motors				1R205		12	\$8.40		\$5.36		1R206.	- 12		\$4.32	
2M033A, 2M034A, 2M037A, 2M057B, and 2M066A New inotors				1R389		12	10.60		6.80 .		18390	- 12		4.95	
2m144 Motor				1R394		2 .	- 11.90		7.62		-	-	-		-
2 M 277 Motor				18410		6	24.00			18.45	-	-		-	-
5M069, 5M070, and 5M071 Motors				$5 \mathrm{M072}$		2	12.00			8.50	-*	-	-		-

UNIVERSAL TYPE AC/DC MOTORS

APPLIANCE/TOOL MOTORS

Typical Uses: Appliances, power tools, outdoor equipment, food processing equipment, gearmotor, blowers, pumps, and other applications where high horsepower output and small size are required. Series wound. Full-load speeds shown are adjustable with proper speed control. Average brush life approximately 300 hours, depending on application.
Enclosure: Open
Service Factor: 1.0
Thermal Protection: None
Windings: Copper
Insulation Class: A (except No. 2M139 is F)
Ambient: $40^{\circ} \mathrm{C}$
Finish: Gray enamel
Brand: Dayton

因 $35 / \mathrm{s}^{\mathrm{m}}$ DIA., SINGLE SHAFT

Mounting: Stud with two threaded studs extending out shaft endshield, $2^{7 / 16^{\prime \prime}}$
CSA Certified: 83496

B $31 / 2 \times 33 / 4^{n}$ RECTANGULAR, SINGIE SHAFT
Mounting: Bottom with four tapped \#10-32 holes, $2 \times 213 / 16^{1}$ OC
[0] 35/8" DIA., flexible SHAFT
OEM replacement for flexible shaft tools sold under many leading brand ames. 13/16-24 left hand threaded endshield for attaching flexibie shaft. Includes rockertype On/Off switch on motor shell. Six ft. 18/3 power cord. External brushes.
Mounting: Two \#10-32 threaded holes in now shell.
[D] $37 / \mathrm{s}^{17}$ DIA., SINGLE SHAFT External brushes for long motor life in industrial applications.
Mounting: Face with four tapped \#10-32, $3^{1 / 4^{\prime \prime}}$ OC 90° apart
CSA Certified: 87989

APPLIANCE/TOOL MOTORS

AUTOMATIC WASHER AND DISHWASHER REPLACEMENT MOTORS

AUTOMATIC WASHER MOTORS

Typical Uses: For replacing factoryinstalled motors in specific brands of home laundry appliances. Use on other applications voids warranty.
Special Features: Shaft and mounting dimensions are comparable to the original motor for easy replacement. Terminal switch is connected to motor in location convenient for installation. Wiring instructions included in carton; installation kit also included where required.

Type: Split-phase and capacitor-start

Replaces Original Motor \ln :	$\begin{aligned} & \text { Indus- } \\ & \text { try No. } \end{aligned}$	HP	$\begin{aligned} & \text { Name- } \\ & \text { plate } \end{aligned}$	Rotation Facing Shatt En	FullLoad Anps	$\begin{aligned} & \text { Ovi } \\ & \text { Dime } \\ & \text { Dia. } \end{aligned}$	verall ensions x Length	Stock No.		Each	Sthpg. Wt.
GE BRAND, SINGIE AND TWO SPEED											
General Electric	4109 4110	$1 / 2$ $1 / 2$	1725 1725	Rev Rev	8.5 8.5	$\begin{aligned} & 5^{2 x / 3 x} \\ & 5^{2 x / 2 m} \end{aligned}$	$\begin{aligned} & 6^{41 /(641} \\ & 6^{11 /(1 / 4} \end{aligned}$	$\begin{aligned} & \text { GKG29 } \\ & \text { GKF669 } \end{aligned}$	$\begin{aligned} & 599.00 \\ & 110.00 \end{aligned}$	$\begin{aligned} & \$ 54.45 \\ & 60.50 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$
(Mfr's. DB75S)	4216	$1 / 3$	1725	Rev	6.8 .	$50 / 12$	$6^{11 / 64}$	3 K 019	120.00	66.00	
Norge, Signature	4007 4212		$1725 / 1140$ $1725 / 140$	$\begin{aligned} & \substack{\text { Rev } \\ \operatorname{Rev}} \end{aligned}$	11.09 .0	$\begin{aligned} & 5^{22 / 3 / 20} \\ & 5^{2 x f f} \end{aligned}$	$\frac{7 / 8}{7 / 4 G}$	$\begin{aligned} & 6 \times 839 \\ & 3 * 069 \end{aligned}$	$\begin{aligned} & 18200 \\ & 129.00 \end{aligned}$	$\begin{aligned} & 72.60 \\ & 70.95 \end{aligned}$	16.0
Speed Queen	4121	$4 / 2$ $4 / 2$	$\begin{aligned} & 1725 / 1140 \\ & 1725 / 140 \end{aligned}$	$\begin{aligned} & \mathrm{Rev} \\ & \mathrm{Rev} \end{aligned}$	$\begin{aligned} & 8.78 .0 \\ & 9.47 .0 \end{aligned}$	$5^{299} / 32$ 520/se	${ }_{9}^{101 / 4 / 4}$	$\begin{aligned} & \hline \begin{array}{l} 6 \times 549 \\ 3 K 079 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 115.00 \\ & 128.00 \end{aligned}$	$\begin{aligned} & \hline 6325 \\ & 70.40 \end{aligned}$	
Whirpool, Kenmore	4091	1/2	$1725 / 1140$	CW	8.4770	$5^{29 / 5}$	$8{ }^{\text {a/m }}$	6K889	90.00	49.50	16.0
White-Westinghouse * ${ }^{\text {CPA }}$ *	9019	1/2	$1725 / 140$	Rev	9.1/7.8	5*/32	103/4	3K364*	150.00	82.50	
Speed Queen	4121	$1 / 2$	1725/1140	Rev	9.28 .5	$61 / 3$	101/2	4 K 166	115.00	79.35	
Acmiral Easy, Frankian, Gibson Hamilton and Relvinator	9007	$1 / 2$	$1725 / 1140$	Rev	9.088 .2		83/4	${ }_{4}^{4} 1890$	144.00		
Whirtpool, Kenmore	4091	$1 / 2$	17251140	CW	9.88 .7	$6^{1 / 8}$	$91 / 2$	41861	91.00	6275	18.0
Maytag	8018-4061	$1 / 2$	1725/1140	Rev	8.518 .2	${ }^{61 / 8}$	91/3	${ }^{2 \times 174}$	145.00	7235	18.0
Speed Queen		1/2	17251140	Rev Rev	${ }_{9}^{9.888 .2}$	61/8 ${ }_{6}^{61 / 8}$	97/8	2K184	14200	71.00	18.0
Frigidaire	-		$1725 / 1140$	$\stackrel{\mathrm{Rev}}{\mathrm{Rev}}$	9.38 .0 10.889	61/8	:71/2	$\frac{2 \times 175}{2 \times 185}$	149.00 14000		
Wharlpon. Kenmare	4061	$1 / 2$	1725	CW	8.8	61/s	81/2	2K177	145.09	72.35	17.0

AUTOMATIC DISHWASHER MOTORS

Typical Uses: For replacing factory- Type: Split-phase installed notors in specific hrands of Vols: 115 home dishwashet appliances. Ese on other Eearings: Sleave applications vords warranty.

Service Factor: 1.0
Special Features: Shaft and mounting Thermai Protection: Auto dimensions are comparable to the original motor for easy replacement. Terminal switch is connected to motor in location convenient for installation. Wiring instructions included in carton; installation kit also included where required.

Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Windings: Copper
Brand: Emerson and GE

Replaces Original Motor in	Indus- try No.	HP	$\begin{gathered} \text { Namt } \\ \text { nlate } \end{gathered}$	Rotation Faciay Shaft End	$\begin{aligned} & \text { Full- } \\ & \text { Load } \\ & \text { Anaps } \end{aligned}$		$\begin{aligned} & \text { all } \\ & \text { cions } \\ & \text { angsth } \end{aligned}$	$\therefore \begin{gathered} \text { Stock } \\ \therefore \text { Na. } \end{gathered}$	List	Each	Supg.
W\&M ${ }_{\text {Whirlpool }}$		1/3	3450 3450	$\begin{aligned} & \text { Rev } \\ & \text { Rev } \end{aligned}$	5.0 5.3	61/2"	$\begin{aligned} & 5^{5 / 1 / 161} \\ & 6^{6 / 32} \end{aligned}$	$\begin{aligned} & 4 K 850^{4} \\ & 6 \times 8800 \end{aligned}$	$\$ 74.00$ 103.00	$\begin{aligned} & 50.70 \\ & 56.65 \end{aligned}$	$\begin{array}{r}9.0 \\ 11.0 \\ \hline\end{array}$
$\begin{aligned} & \text { D\&Mt' } \\ & \text { Frigidaire } \end{aligned}$	4093 \ddagger	$\frac{1 / 3}{1 / 3}$	$\begin{aligned} & 3450 \\ & 3450 \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Rev } \\ \text { Rev } \end{array} \end{aligned}$	6.5 6.3	$\begin{aligned} & 619 / 61 \\ & 65 / 16 \end{aligned}$	$\begin{aligned} & 59 / 16 \\ & 57 / 8 \end{aligned}$	$\begin{aligned} & \hline \mathbf{4 K 1 8 0 \%} \\ & 2 \times 124 \end{aligned}$	65.00 120.00	$\begin{aligned} & 44.85 \\ & 59.85 \end{aligned}$	9.2

(t) Includes Admural, Caloric, Chambers, Fngidarre, Gaffers \& Satuler, Gibson, Kevinator, Kenmore, Magic Chef Modern Maid, Norge, Philco, Preway Roper and Westinghouse.
\pm -
(\ddagger) Used on dishwashers built after 1966. (*) Includes relay.
Pump Seal Kit for Nos. 4K180 and 4K860: 3-pc. assembly requires no lubrication or sealant during installation other than water. Five 3-pc.assemblies per package. No. 1A683. Pump Seal Kit. Shpg. wt. lbs. 0.2 List $\$ 40.00$. Each .

HOME AND COMMERCIAL REPLACEMENT APPLIANCE MOTORS

DRYER REPLACEMENT MOTORS

Typical Uses: For replacing factoryinstalled motors in specific brands of home laundry appliances. Use on other applications voids warranty.
Special feotures: Shaft and mounting dimensions are comparable to the original motor for easy replacement. Terminal switch is connected to motor in location convenient for installation. Wiring instructions included in carton; installation kit also included where required.

Bearings: Sleeve Volts: 115
Service Factor: 1.0
Thermal Protection: Auto

Insulation Class: B
Ambient: $4 \theta^{6} \mathrm{C}$
Duty: Continuoús
Brand: Emerson and GE

Replaces Original Motor lis:	$\begin{aligned} & \text { Endustry } \\ & \text { No. } \end{aligned}$	HP	$\begin{aligned} & \text { Hame- } \\ & \text { Prate } \end{aligned}$	Rotation Facing Lead End	$\begin{aligned} & \text { Full- } \\ & \text { Load } \\ & \text { Amps } \end{aligned}$	Overall Dimensions Dia. x Length	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	List	Each	$\begin{aligned} & \text { Stapg. } \\ & \mathbf{W} 2 \end{aligned}$
圌										
General Electric	4056	$1 / 3$	1725	CW	6.4	$52 / 72 \times 109 / 16^{\prime \prime}$	6 K 988	\$117.00	\$64.35	120
Norge, Signature	4215	1/2	1725	CW	7.2	589/22 $9^{91 / 64}$	3 \%048	110.00	60.50	15.0
Speed Queen (Mfr's. 52697)	4105	14	1725	CW	5.4	$51 / 32 \times 88 / 4$	6K548	109.00	59.95	9.5
Whiripool, Kennaore	4096	1/3	1650	CCW	5.6	5/16x 900/64	6 K 088	85.00	46.75	9.5
White-Westinghouse	9006	$1 / 4$	1725	CCW	4.8	$529 / 2 \times 105 / 320 r$.	6K568	- 108.00	59.40	8.0
3kxtw										
Norge, Signature	4075	$1 / 2$	1725	CW	7.4 :	52/se $\times 815 / 16$	6K758	108.00	59.40	15.0
Maytag	407	$1 / 4$	1725	CW	${ }_{5}^{60}$	$54 / 4 \times 91 / 2$	26120*	${ }^{138.00}$	${ }^{6885}$	120
Maytas		$1 / 4$	1725	${ }_{\text {CW }}^{\text {CW }}$	5.4	$51 / \times 91 / 2$	2K149	138.00 10100	6885	120
Speed Queen Frigidaire	4213 4214	$1 / 4$ $1 / 4$	1725 1725	$\mathrm{CW}_{\mathrm{CW}}$	5.4 6.0	$51 / \times 95 / 16$ $51 / 4 \times 10^{7 / 8}$	${ }^{4} \times 16163$	101.00 139.00	${ }^{60.50}$	120
Gibsor, Admiral, Kelvinator	4094	$1 / 4$	1725	CCW	5.2	$51 / 4 \times 10$	2×125	153.00	76.70	120
White-Westinghouse		$1 / 4$	1725	CCW	4.2	$51 / 4 \times 101 / 2$	$2 \mathrm{K159}$	121.00	60.05	9.5
Adruiral, Gibson, Frigidaire, Easy, Kelvinator		13	1725	CCl	6.4	51/4 $9^{1 / 1 / 3}$	ax183	154.00	9240	11.0
Kenmore, Whirlpool Norge	${ }_{4017-4698}^{4096}$	$1 / 3$	$\begin{aligned} & 1725 \\ & 1725 \end{aligned}$	$\begin{aligned} & \text { CCW } \\ & \text { Rev. } \end{aligned}$	5.9 8.2	$\begin{aligned} & 51 / 4 \times 913 / 16 \\ & 53 / 4 \times 93 / 4 \end{aligned}$	$\begin{aligned} & 4 K 079 \\ & 2 K 015 \end{aligned}$	17200	49.70 54.60	10.0

(*) Single staft dis sign

COMMERCIAL WASHER AND DRYER REPLACEMENT MOTORS

Typical Uses: Built specifically for replacenten: usa an rommereal trexers manuiac
tured by Cissel. Hueusch, and wasners by Speed Queen.
Special Features: Dual voltage on capacitor models. $3 / 4^{\prime \prime}$ dia. shaft bushing included with No. 3K038.
Bearings: Prelubricated ball
Mounting: Cradle
Enclosure: Open dripproof
Thermal Protection: Auto (except No. 3K038 has none)
Windings: Copper

HP	$\begin{aligned} & \text { Name- } \\ & \text { plate } \end{aligned}$	Volts 60 Hz	$\begin{aligned} & \text { Full-Load } \\ & \text { Amps at } \\ & 115 y{ }^{2} 230 \end{aligned}$	Service Ftictor	$\begin{aligned} & \text { Shaft } \\ & \text { Dimensions } \\ & \text { Dia. x Length } \end{aligned}$	$\begin{aligned} & \text { Industry } \\ & \text { No. } \end{aligned}$	Stock No.	List	... Each.	$\underset{\substack{\text { Shpg } \\ \text { St }}}{ }$
HYy										
1/3	1725 1725	115523 115×23	$\begin{array}{ll}7.0 \\ 9.2 & 3.5 \\ 4.6\end{array}$	${ }_{1.25}^{1.35}$	$58 \times$ $3 / 4 \times$	4048	$4 K 136$ $6 K 135$	$\$ 193.00$ $\mathbf{2 6 9 . 0 0}$	$\$ \begin{aligned} & 120.65 \\ & 127.30 \end{aligned}$	21.0
1/3	1725-	115	$25.5-\cdots$	1.35	58×50/16	4050	3K038	171.00	94.75	19.0
1/2	1725/1140	115	9.2	1.0	$1 / 2 \times 33 / 4$	-	2K181	182.00	. 91.00	12.0
3 When										
1/3	1725	115	5.9	-	58			151.00	75.50	

APPLIANCE/TOOL MOTORS

POWER TOOL AND VIBRATOR MOTORS

DAYTON BRAND, POWER TOOL MOTORS :

- CW/CCW rotation by easy raconnaction : :A...
- Suitable for all position mounting
- Ball bearing designs are doubleshielded

Typical Uses: High speed moderate starting torgue woodworking and metal-working tools; wood lathes, sanders, grinders, table saws, planers and other applications where maximum HP load will net exceed nameplate rating. "
Enclosure: Open dripproof
Service Factor: 1.0
Insulation Class: A
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: Dayton

*) Equpped wah Ourof swatch on shed and 6 ft. 3 -conductor cord see
2.

VIBRATOR MOTORS

Typical Uses: For use with optional No. C703 strap-type mounting base in a wide range of furniture; industrial, and lab applications where ventilation is not impeded.
Special Features: No exposed moving parts. Equipped with 10 ft . 3 -conductor cord set and in-line On/Off switch
Type: Shaded pole
HP: 1/200
Nameplate RPM: 1550
Volts: $115,60 \mathrm{~Hz}$
Full-Lood Amps: 0.5
Bearings: Sleeve
Mounting: Base

Enclosure: Open
Service Factor: 1.0
Thermal Protection: Impedance
Windings: Copper
Insulation Class: A
Dimensions: $31 / 2^{\prime \prime}$ long $\times 35 / 16^{n}$ dia
Ambient: $40^{\circ} \mathrm{C}$
Finish: Black enamel
Brond: Dayton
No. 3M564. Shpg. wt. 2.7 libs. List... $\$ 42.00$.
Each.
©. 2C703. Strop Type Base with bolt
mounting holes $7 / 8 \times 3^{\prime \prime} \mathrm{OC}$.
Shpg. wt. 0.4 lbs. Lis \qquad . $\$ 7.83$.
Each $\$ 4.69$; Lots 4

SEWING MACHINE MOTORS

$\therefore, \therefore \quad$ DAYTON BRAND, 3-PHASE

- NEMA service factors provide a reserve margin for intermittent overloading or fluctuating (high/low) voltage conditions

- NEMA design B

Typical Uses: Designed for operating indus-trial-type sewing machine clutches. Also used for other belt-driven applications where 3-phase power is supplied.
Bearings: Double-shielded ball
Mounting: Cradle base
Enclosure: Open dripproof
Windings: Copper
Ambient: $40^{\circ} \mathrm{C}$.
Duty: Continuous
Rotation: CW/CCW
Finish: Gray
Brand: Dayton

为

GE BRAND, SPLIT-PHASE
All-angle sieeve bearings
Typical Uses: Designed for operating indus-trial-type sewing machine clutches. Also used for other belt-driven applications where maximum HP load will not excced nameplate rating.
Type: Split-phase
Bearings: Sleeve
Mounting: Cradle base
Encilosure: Open dripproof
Thermal Protection: None
Insulation Class: B
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Finish: Gray enamel
Brand: GE

MOTOR PULLEY REPLACEMENT FOR DOMESTIC SEWING MACHINES

MOTOR MOUNTING BASES

MOTOR ACCESSORIES

Used to mount shaded pole and PSC motors in in direct-drive heating and air conditioning motors. Includes set of clamps (except No. 2W345).

FOR SW DIA MEMA 42 FRAME MOTORS WITH2YARESLLENTRINGS

$=7^{H}$		Length	Shatt Height	$\begin{gathered} \text { GE } \\ \text { Stock } \\ \text { Mo. } \end{gathered}$	Stock No.	List	Each	$\begin{aligned} & \text { Shpg. } \\ & \text { Wht } \end{aligned}$
11/16 ${ }^{6}$	$3 \mathrm{~m} / \mathbf{u c}^{\prime \prime}$	$51 / \%^{\prime \prime}$	${ }^{26 / 88^{4}}$	A449	49750	\$1200	\$5.14	1.2
11/16	$31 / 6$	53/8	25/8	A450		12.00	5.14	2
11/16	$31 / 6$	$55 / 8$	25/8.	A451	4M646	12.00	5.14	1.2
171/4						1200	5.14	1.2
1 $1 / 4$	3/4	51/4	31/2	A455	$41 / 336$	10.00	5.14	1.2

$\mathrm{AlOl}^{\mathrm{Hol}}$	ting	$\begin{aligned} & =1 \% \\ & =\text { tongte } \end{aligned}$	Shaft Height	$\begin{aligned} & \text { GE } \\ & \text { Slock } \\ & \text { Ho. } \end{aligned}$	Na.	"List	Each	Shpg
11/4*	4/ ${ }^{-}$	41/8'	$31 / 2^{4}$	A468	44154	\$18.00	57.93	20
114/k	4/	43/8	$31 / 2$	A469	44775	18.00	$=-7.193$	20
11/6	4\%	45/8	$31 / 2$	A470	447756	18.00	-7.93	1.5
1 $11 / 4$	9/h	47/8	$3{ }^{1 / 2}$	A471	41975	18.00	-7.34	1.2
1r1/6	\% $\%$	$51 / 8$	$31 / 2$	A472	441758	18.00	$\cdots \cdot 793$	-1.5
90/6	9/h	53/8	$31 / 2$	A473	4*159	18.00	7.93	20
911/5	9/h	$55 / 8$	$31 / 2$	${ }^{\text {A474 }}$	44760	18.00	7.93	1.8
811/15 10176	4/h	${ }_{6}^{61 / 16}$	31/2	A476 A476	447761	18.00 1890	7.93 7.93	18

	$\begin{aligned} & \text { unting } \\ & \text { es } 0 C \\ & B \end{aligned}$	Length	Shaft Height	Stock Ro.	List	Each	Shpg. Wt.
811/8"	43/4"	4/2*	$3^{\prime \prime}$	3M490	\$765	\$6. 12	1.1
111/26	4 $31 / 4$	5is	3	3\%4491	705	612	1.0
119	43/4	$51 / 2$	3	314932	7.65	6.12	1.0
111/16	43/4	$4{ }^{3 / 4}$	3	3M443	7.65	6.12	1.0
11/6	41/6	45\% ${ }^{1 / 6}$	3	3H494	7.65	6.12	1.0

ADJUSTABLE ṠTEEL MOTOR BASES

Simplify floor-mounting and belt fension adjustment on NEMA 254 thru 449 frame molors.
Fabricated steel mounting bases have two adjusting bolts to position mounted motor

(*) May also be used if the motor frame is succeeded by $\mathrm{S}, \mathrm{T}, \mathrm{TS}$, U, US or any letter combination as long as the

MOTOR ACCESSORIES

MOUNTING BRACKETS \& BASE AND RUBBER MOUNTS

Dayton

Torsion-flex bracket is designed to effectively dsolate duti prevent inssloman nordtions from ienching the blower honsing and causing noise. Fits NEMA 42 and 48 frame motors; metal inserts are supplied for adapting bracket to NEMA 42 frame. No pre-assembly; bracket clamps to motor shell. Instructions included.

Stainless steel band adjusts to fit motors 3 to $7^{\prime \prime}$ in diameter. Lock-on hangers slide on band for ease of handling, Hangers have $1 / 4 \times 7 / 8^{\text {n }}$ slots. Knockouts expand slots to $3 / 4 \times 15 / 16^{\prime \prime}$.
No. 3M133. Shpg. wt. 0.6 lbs. List $\$ 12.40$.
Each.. $\$ 9.92$

MOTOR MOUNTING BRACKETS FOR 9 TO $12^{\text {T }}$ DIA. BLOWER HOUSINGS

$\therefore \begin{aligned} & \text { Fits } \\ & \text { Blower } \\ & \text { Whreel } \end{aligned}$	- Bracket	$\therefore \quad$Fits NEMA (Mamme (Motor Siza)	Stock Na.	List	$\begin{gathered} 3 \\ 3 \end{gathered}$	
9 or $10^{\prime \prime}$ Dia.	Torsion Flex	42/48	5×247	\$13.00	\$10.60	1.6
12 Dia.	Resilient Ring	-48	40266	32.25	19.31	2.0
$\begin{aligned} & \text { 9Dia. } \\ & \text { io Dia. } \end{aligned}$	Welded Rings Welded Rings	$\begin{aligned} & \frac{42}{48} \end{aligned}$	$\begin{aligned} & 3 M 146 \\ & 3 \mathrm{~m} 147 \end{aligned}$	$\begin{aligned} & 16.35 \\ & 16.35 \end{aligned}$	$\begin{aligned} & 9.80 \\ & 9.80 \end{aligned}$	$\frac{1.0}{3.0}$

Resilient ring-mounted bracket fits NEMA 48 frame motors w, th $21 / 2$ " dia. "esinient rings. Adjustabie to itt rings $31 / 2$ to $61 / 8^{m}$ on conter. Hardware included.
Welded 3 -ring brackets include adjustable motor bracket with 3 welded rings and rubber grommets for mounting to blower housing.

RUBBER MOUNTS FOR MOTOR NOISE REDUCTION

Used on fans, blowers, compressors, pumps, etc., to reduce noise. Not recommended for suspended load applications.
Natural rubber isolators are chemically bonded to steel. Fasten between motor and rails or base.

ADAPTER BRACKET

For 3.3 ${ }^{\text {* }}$ diameter motors (GE 51 frame). For resilient or solid mount $25 / 16^{n}$ radius. No. 4M738. GE (A418). Shpg. wt. 0.1 lbs. List \$5.00. Each ..35

APPENDIX 5

IEC INDUSTRIAL CONTROL RELAYS

ELECTRICAL CONTROLS

MINIATURE IEC CONTROL RELAYS

- 600 volt, 10A rating
- Ideal for OEM and panel builders
- DIN mounting copability saves space and simplifies mounting
- Relays can also be panel mounted
- Built-in cavity for easy insertion of a transient suppressor.
- Dimensions: $2.2 \mathrm{H} \times 1.1 \mathrm{~W} \times 2.4^{\text {H }} \mathrm{D}$

10 Amp	No. of Fixed Contacts		Coil Vottage © 60 Hz	Square D Model 8501...	Stock. No.	-	List	Each .	Shpg. Wht
	NO	NC							
	1	1	120	PR1.11EV02	48509		\$40.00	\$33.80	0.3
2 Pole	2	0	120	PR1.20EV02	48510		40.00	33.80	0.3
	2	0	240	PR1.20EV03	48511		40.00	33.80	0.3

IEC CONTROL RELAYS

- 600 volt, 10A rating
- Relays have serrated contacts which provide a wiping action to ensure excellent performance with low control voltage (24 volts)
- Basic four-pole relay can be installed with a snap-on adder cartridge in two or four poles in a combination of NO and NC contacts
- Standord instantaneous auxiliary contact blocks available for front snap-on or side snap-on. See listing on page 440
- DIN rail mounting capability in both AC and DC ratings
- Built to a design specification of 30,000,000 mechanical operations

Contral Crrturt	No at Comacts		Contact Conituration		H	Dimensions (in.J	9	Telemecamque Madel	Stock No.	List	Each	Shno
AC		$\xrightarrow{24 \mathrm{VAC}}$	$\frac{8}{2}$	2	2.91	1.77	3.15 3.15	CALDNe2B6	$\begin{aligned} & 48540 \\ & 48541 \end{aligned}$	$\begin{array}{r} \$ 57.00 \\ 57.00 \end{array}$	$\begin{aligned} & \$ 48.20 \\ & 48.20 \end{aligned}$	0.7
		120VAC	-3	1	2.91	1.77	3.15	CA2DN31G6	48542	57.00	48.20	0.7
		24.at	1	二	3918	1.77	315	FLDN 40 B6 	$\begin{aligned} & 48543 \\ & 485.4 \end{aligned}$	$\frac{5700}{5750}$	48.29	0.7
DC	4	2 tyO	2	2	291	1.77	4.72	Ca3DN: 2 Bl	43545	1000.100	84.50	1.4
		$\underline{2}+70$	4	-	2.91	1.7	4.72	CA90) 4 (13D	48546	100.00	84.50	1.4

TIME DELAY CONTACT BLOCKS

- Snap-on front mounting
- Use with Telemecanique IEC industrial contral relays

Type	$\begin{gathered} \text { Contact } \\ \text { Contiguration } \end{gathered}$		Time-Delay Range (seconds)	Telemecanique	$\begin{aligned} & \text { Stock } \\ & \text { : Na. } \end{aligned}$	List	Each	Stpg.
	NO	NiC						
On-delay	1	1	$\begin{aligned} & 0.1 \text { to } 30 \\ & 10 \text { to } 180 \end{aligned}$	$\begin{aligned} & \text { LA\&DT2 } \\ & \text { LALDTT4 } \end{aligned}$	48547	$\begin{aligned} & \$ 120.00 \\ & 120.00 \end{aligned}$	$\begin{aligned} & \$ 101.40 \\ & \mathbf{1 0 1 . 4 0} \end{aligned}$	0.2
Off-delay	1	1	$\begin{aligned} & 0.1 \text { to } 30 \\ & 10 \text { to } 180 \end{aligned}$	${ }_{\text {LASDR2 }}$	$\begin{array}{r} 48549 \\ 48550 \end{array}$	$\begin{aligned} & 220.00 \\ & 120.00 \end{aligned}$	$\begin{aligned} & 101.40 \\ & 101.40 \end{aligned}$	0.2

WHEN DO YOU NEED A RELAY, CONTACTOR
OR MOTOR STARTER? SEE INDUSTRIAL CONTROL
TERMINOLOGY ON PAGES 480 AND 481

ELECTRICAL CONTROLS

NEMA INDUSTRIAL CONTROL RELAYS

GENERAL FEATURES

- Rugged heavy-duty design for improved performance, relim ability and long life
- Field convertible color-coded contact cartridges
- Replaceable coil
- Mechanical tie between all cartridges
- Operating temperature range: $-40^{\circ} \mathrm{C}$ to $71^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+160^{\circ} \mathrm{F}\right)$
$\because \quad \because \quad A C$ CONTROL RELAY FEATURES
* 600 volt, $10 A$ ćantinuous rating
- 2 to 12 pole relay
- Straight-fhrough wiring
- Plug-in contact cartridges for easy contact conversion and replacement
- Contact conversion without removing ferminal screws or wires
- Self-lifting pressure wire connectors
- Average operating time in milliseconds: 15 pick-up; 16 drop-out

AC MASTER RELAY FEATURES

- 600 volt, 20A contact rating due to use of Master Contact Cartridges
- Provisions for Standard Cartridges to be used in contact cavities not occupied by Master Cartridges in 2-8 pole AC relay
- Average operating time in milliseconds: 15 pick-up; 16 drop-out

DC CONTROL RELAY FEATURES

- 250 volt, 5 A rating
- 2 to 8 pole relay
- Offers all the same features as the AC Relay
- All contact polas are usable sincé no overlapping contacts are needed
- Average operating time in milliseconds: 37 pick-up; 21 drop-out

(*) A maximum of 8 NC contacts is allowed on $9-12$ pole relays. (\dagger) Attachments not permitted on this relay.

NEMA RELAY APPLICATION DATA

Need Assistance with Product Selection? We Appreciate
The Opportunity to Help You in Every Possible Way

NEMA INDUSTRIAL CONTROL RELAY ACCESSORIES

ELECTRICAL CONTROLS

MECHANICAL AC LATCH ATTACHMENT

Mounts on any 2 through 8-pole relay. AC latch attachment has a continuous duty 120 VAC coil which is replaceable. Square D brand (8501XLV02).
No. 4B518. Shpg. wt. 1.0 lbs. List $\$ 84.00$. Each \qquad $\$ 83.20$

PNEUMATIC TIMER ATTACHMENT

Mounts on any 0 through 4-pole AC or DC relay. It provides 1 NO and 1 NC convertible timed contacts, which are the same standard cartridges used on the basic relay (see below for standard cartridges). Timing range is $.2-60$ seconds.
No. 48531. Off Delay. Square D brand (8501XTDI). Shpg. wt. 0.8
lbs. List \$168.00. Each ... 166.50
No. 4B532. On Delay. Square D brand (8501XTE1). Shpg. wt. 0.8
Ibs. List \$168.00. Each... $\$ 166.50$

ADDER DECKS

Adder decks are used to increase the number of poles on a relay. Basic 4-pole relay can be easily converted to an 8-pole or 12 -pole relay by installing one or two adder decks. The same type adder deck can be used for both the middle and upper decks.
No. 4B512 comes with 2 convertible contact cartridges and will accept 2 additional convertible contact cartridges. Square D brand (8501XB20).
No. 48512. Shpg. wt. 0.5 lbs. List $\$ 24.00$. Each \qquad $\$ 23.76$
No. 4B513 comes with 4 convertible contact cartridges. Square D brand (8501XB40).
No. 48513. Shpg. wt. 0.5 lbs. List $\$ 48.00$. Each \qquad $\$ 47.55$

MOUNTING TRACK

Mounting track has pre-punched mounting holes to simplify mounting the track on control panel. Relay mounting screws are factory installed on track so that relays can be hung prior to tightening the screws. $9^{\prime \prime}$ long for 4 relays. Square D brand (8501 XM4).
No. 48519 . Shpg. wt. 0.7 lbs. List $\$ 9.90$. Each \qquad $\$ 9.80$

TRANSIENT SUPFRESSOR

Consists of an R-C circuit designed to suppress coil generated transients to approximately 200 percent of peak voltage. It is useful when switching NEMA control relays near solid state equipment. Mounts directlv on the coll and is designed for use
 No. 485:0. shps. wi. b.i ibs. List S2.

NEMA 1 ENCLOSURE
Two conduit knockouts are located in both the top and bottom of enclosure. Enclosure is furnished with self tapping screws for mounting the relay inside the enclosure. Accommodates 4 and 8 pole AC or DC relays, 12 -pole AC relay, 4 -pole AC latching relay, and 4-pole AC timing relay. Square D brand (9991UE7).
No. 48533. Shpg. wt. 4.4 lbs. List $\$ 42.00$. Each \qquad $\$ 39.30$
MAGNETIC COILS

	AC MAGNET COIL FOR				
Coil Volts © 60 Hz	Square 0 Nodel	Stock No.	List	Each	Shpg. Wt.
$\begin{aligned} & 24-60 \mathrm{VAC} \\ & 120-60 / 110-50 \end{aligned}$	9998×23				. 3
$\begin{aligned} & 120-60 / 110-50 \\ & 240-601220-50 \end{aligned}$	$\begin{aligned} & 9998 \times 44 \\ & 9998 \times 53 \end{aligned}$	$\begin{array}{r} 48535 \\ 48536 \end{array}$	$\begin{aligned} & 31.50 \\ & 31.50 \end{aligned}$	$\begin{array}{r} 29.45 \\ 29.45 \end{array}$	0.3 0.3
480-60/440-50	9998×62	48537	31.50	29.45	0.3
. . . DC MAGNET COIL FOR MAGNETIC CONTACTORS AND RELAYS					
Coil Volts	Square D Model	Stock No.	List	Each	Stpg. Wt.
24 VDC	$9998 \times \mathrm{D} 37$	48538	77.00	72,00	1.0

CONTACT CARTRIDGES

Standard Cartridge-Used for most applications. Standard cartridges are non-overlapping; rated NEMA A600 and NEMA P600. Black case. Square D brand ($8501 \mathrm{XC1}$)
No. 4B514. Standard Cartridge. Shpg. wt. 0.1 Dos. List..........\$12.00. Earh... .51:28.

Overlapping Corridge-ame NEMA A600 AC rating as standabis cartridge and a NEMA P150 DC rating. When used in normally open mode it will close early. When used in normally closed mode it will open late. If two or more are used together, normally open contacts will close before normally closed contacts open as the may preks up. Gvertap also oceurs during tropout. Red rase Square thrand (S501XC?)
No. 4B515. Overiapping Cartridge. Shpg. wt. 0.1 IUs. List..... $\$ 12.00$. Earn............. \$11.88
Master Cartridge-Features the same contact ranngs as standard cartridge, except it has 20 -ampere continuous current rating. It can be used in circuits where a master relay is required. Maximum of 6 master cartridges may be used on any 7 and 8 pole AC relays. Do not use any master cartridges on 9 through 12 -pole AC or DC operated devices. Blue case. Square D brand (8501XC4).
No. 48516. Master Cartridge. Shpg. wt. 0.1 lbs. List
. $\$ 30.00$.
Each.
. $\$ 29.70$

CONTACT CONVERSION

The contact cartridges of the NEMA relays can be easily converted from normally open to normally closed and vice versa without disturbing relay wiring or removing terminal screws. To convert contacts:

1. Remove relay cover and captive T-bar actuator
2. Remove contact cartridge and rotate 180°
3. Plug contact cartridge back in
4. Replace T-bar actuator and cover

GENERAL PURPOSE RELAYS

ELECTRICAL CONTROLS

- CROSS REFERENCE FOR OMRON RELAYS AND SWITCHES

Grainger Stock No.		P\&B	Magatecraft	Ma	turers' Catalog Guardian	umbers Sigma	Deltrel	Midtax	Aromat	Gordos
2 XCO	G7L-1A-BUB-J-CB-AC24	PRD-1AYO	W199ADBX-4	N/	N/A	N/A.	N/A	N/A	/ $/$	N/A
2×622	G7L-1A-BU8-J-CB-AC100/120	PRD-3AGO	W199ADX-4	NA	NA	N/A	NA	NA	N/ ${ }^{-}$	N/A
4 4710	G7L-1A-TUB-J-CB-AC24	N/A								
2×620	G7L-2A-EUB-J-CB-AC100/120	PRD-7AYO	N/A	NA	N / A	N/A $-\cdots \cdots$	N/A	N/A	N/A	N/A.
$2 \times \mathrm{C} 19$	G7L-2A-BUB-J-CB-AC24	PRD-7DYO	N/	N/A	N/A	N/A	NA	N/A	NA	N/A
34355	67L-2A-TUB-J-CB-AC160/129	N/A	N/A	N/A	N/A	N/	N/	N/A	N/A	N/A
34354	G7L-2A-TUB-J-CB-AC24	N/A	N/	N/A	N/A	N/A	N/A	NA	N/A	N/A
48711	G7L-1A-TUB-J-C8-AC100/120	N/A	N/A	N/A	N/A. $=$	N/A	N/A	N/A	N/	N/A
2W926	LY1-AC110/20	NA	N/A	N/A	N/A	N/A	N/A	N/A	HLI-115VAC	N/A
2W925	LY1-AC24	N/A	N/A	NA	NA	N/A	NA	NA	HLI-24VAC	N/A
2 N 927	LY1-DC24	N/A	. N/A	N/	N/A	N/A	NA	NA	HL1-24VDC	N/A
2 W 928	LY2-AC110/120	R10P11415-120	W78ARCSX11	RH2B-U-AC120	1390-2C-120A	76RS-120ACSCO	20613-80	258-12T200	HI2-115VAC	N/A
68874	LYZ-AC12	K10P1IA15-12	NA	RH2B-U-AC12	1390-2C-12A	NA.	- N/A -	258-12P200	HI2 $2 \mathrm{H}-\mathrm{ACl} 2$	N/A
$2 \times \mathrm{COO}$	LY2-AC200/240	K10PILA15-240	W78ARCSX12	RH2B-U-AC240	1390-2C-240A	N/A	N/A	258-12U200	H2-H-AC240	N/A
2W929	LY2-AC24	K10PILA15-24	W78ARCSX9	RH2B-U-AC24	1390-2C024A	76R2-24ACSC0	20612-82	258-12Q200	HIL-24VAC	N/A
$6 \mathrm{Ca73}$	LY2-DC12	K10P11D15-12	W78ARCSX7	RH2B-U-DC12	1391395-12D	N/A	N/A	258-128200	NA	N/A
27930	LY2-DC24	K10P11D15-24	W78ARCSX8	RH2B-U-DC24	1395-2C-24D	76R2-24DC-SCO	20612-80	258-12C200	HI224VDC	N/
$2 \times \mathrm{CO2}$	LY2F-AC110/120	N/A	W78ARCSX-5	RH2B-UT-AC120	1390F-2C-120A	N/A	N/A	25862 T 200	FILTM-AC120	N/A
$2 \times \mathrm{C01}$	LY2F-AC24	N/A	W78ARCSX 3	RH2B-UT-AC24	1390F-2C-24A	N/A	N/A	258-62Q200	H2-TMAC24	N/A
66876	LY2N-AC110H23	N/A	N/A	RH2B-U-ACL20	N/A	N/A	N/A	N/A	N/A	NA
66877	LY2N-AC220/240	N/A	N/A	RH2B-UL-AC240	N/A	N/	N/A	N/A	N/A	N/A
60875	LY2N-AC24	N/A	N/	RH2B-UL-AC24	N/A	NA	NA	N/A	N/A	N/
$2 \times C 04$	LY3-AC120	N/A	N/A	RH3B-U-ACL20	N/A	N/A	N/A	258.13 T 200	NA	N/A
$2 \times \mathrm{C03}$	LY3-AC24	N/A	N/A	RH3B-U-AC24	NA	N/A	N/A	258-130200	N/A \quad S	N/A
2×15	LY3-AC240	N/A	N/A	RH3B-U-AC240	N/A	N/A	N/A	258-13U200	NA . ${ }^{\text {N. }}$	N/A
66878	LY3-0C12	N/A	N/A	RH3B-U-DC12	N/A	N/A	N/A	258-13B200	N/A	N/A
6 C 879	LY3-DC24	N/A	NA	RH3B-U-DC24	N/A	N/A	N/	258-13C200	N/A	N/A
60882	LY4-AC12	N/A	N/A	RH4B-U-AC12	N/	76R4-12ACSC0	NA	258-14P200	N/A	N/A
2×607	LY4-AC120	N/A	NA	RH4B-U-ACL20	N/A	76R4-120ACSCO	N/A	258-147200	N/A	N/A
$2 \times \mathrm{Cag}$	LY4-AC24	N/A	N/A	RH4B-U-AC24	N/A	76R4-24ACSCO	N/A	258-14Q200	N/A	N/A
6 6880	LY4-DC12	N/A	N/A	-RH4B-U-DC12	N/A	76R4-12DCSC0	N/A	258-148200	NA	N/A
6 6881	LY4-DC24	N/A	N/A	RH4B-U-DC24	N/A	76R4-24DC-SC0	N/A	258-14C200	N/	N/A
6 C688	LY4N-AC120	N/A	N/A	RH4B-UL-ACL20	N/A.	N/A - .	N/A	N/ .	N/A	N/A
6 6883	LY4N-AC24	N/A	NA	RH4B-UFAC24	N/A.	N/A	N/A	NA	N/A	N/A
24192	MK2PN-S-AC24	KRPI1-AN-24	W88ANCPX7	RR2P-UL-AC24	1210N-2C-24A	50R0212-2AACSCO	2011782	N/A	NA	N/A.
2A193	MK2PN-S-AC120	KRP11-AN-120	W88ANCPX2	RR2P-U-ACl20	1210N-2C-120A	50RO2L2-120ACSCO	20117-84	N/A	N/A	N/
24923	MK2KP-AC120	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A
2 W 924	MK2KP-ACZ4	N/A	N/A	N/	N/A	N/	N/A	N/A	NA	N/A
2W919	MK2P-S-AC12	KRP11-AG-12	W88ACPX6	RR2P-U-AC12	1210-2C-12A	50R02-12ACSSCO	2010881	158.92 P 200	NA	N/A
2W921	MK2P-S-AC120	KRP11-AG-120	W88ACPX8	RR2P-U-AC120	1210-2C-120A	50R02-120ACSCO	20108-84	158.927200	N/A	NA
$2 N 920$	HKZP-S-AC24	KRP11-AG-24	W88ACPX7	RR2P-U-AC24	1210-2C-24A	50R02-24ACSCO	20108-82	158-92Q200	N/A	NA
$6 C 887$	MK2P-S-AC240	KRP11-AG-240	N/A	RR2P-U-AC240	1210-2C-240A	50R02-240ACSCO	20108-85	158.92 U 200	N/A	NA
$21 / 922$	MK3P5-S-AC120	KRP14-AG-120	W88ACPX12	RR3PA-U-AC120	1215-3C-120A	50R03-120ACSCO	20110-84	158.93 T 200	N/A	N/A
$6 \mathrm{CB88}$	MK3P5-S-AC24	KRP14-AG-24	W88ACPXII	RR3PA-U-AC24	1215-3C-24A	$50 \mathrm{RO3-24ACSCO}$	20110-82	158-92Q200	N/A	N/A
$6 \mathrm{C889}$	MX3P5-S-AC240	KRP14-AG-240	N/A	RR3PA-U-AC240	1215-3C-240A	50R03-240ACSCO	2011085	158-93U200	N/A	N/A
2W931	MY4-ACT10/120	KHU17A11-120	W78ACSX4	RY4S-U-ACI20	1310-4C-120A	67R4-120AC	20650-84	156-14T100	HCA-115VAC	N/A
$6 \mathrm{C886}$	MY4-AC12	KHL17A11-12	W78ACSX2	RY4S-U-AC12	1310-4C-12A	67R4-12AC	$20650-81$	156-14P100	HC4-12AC	N/4
2W932	MY4-AC24	KILC17A11-2.	W78ACSX3	RY4S-U-AC24	1310-4C-24A	67R424AC	$20650-82$	156-140100	HC42AVAC	M
66885	344 0.12		Wricsx	RX45以゙-12	1316-16-120	$67 \mathrm{R4}-12 \mathrm{DC}$	20649-81	156-14B100	HC4-12VDC	\checkmark,
24932		Fhililli-3	W78Cs\% 3	RYASt-20	1210-4C-2+D	67R+24DC	2061984	156-14C100	HC4-24VDC	\therefore 's
3 A353	WY4N-AC110/120	KHC17AIIN-120	N/A	RY4S-LTAC120	1310N-4C-120A	N / A	N/	156-147100L	IIC4-L-L20vac	N/
3 A351	MY4N-AC24	KHU17All 24	N/A	RY4S-UTAC24	1310N-4C-24A	N/A	N/A	156-14Q100LD	HC4L-24VAC	N/A
34352	MY4N-DC24	KHUITDIIN-24	NA	EY4S-UL-DC24	1310N-4C-24D	N/A	N/	156-14Cl00LD	HCAL-24VDC	N/A
$6 \mathrm{Csg1}$	G2R-1A-T-AC320	N/A	JR14-TM-120VAC	N/A						
6C890	G2R-1A-T-AC24	N/A	N/A	V/A	N/A	N/A	N / A	N/A	JRIA-TM-24VAC	N/A
C6835	25-1-3-96123	NA	$\underline{i} / \mathrm{A}$	RH1B-L-ACl2	NA	N/A	NA	N'A	N/A	Nit
Sony		$V 1$	N/	Fivibr ax2l	\because	v/	X	N/	N/A	N/A
6C833	Gand-i-	NA	N/A	REil3-CT-ACL20	λ, A	i/A	VA	N/A	N/A	N/A
$6 \mathrm{CCP9}$	G22-1-T-AC24	N/A	N/A	RHIB-LT-ACC24	V/A	N/A	N/A	N/A	N/A	N/A
6 6837	G28-2-S-AC120	N/A	N/A	N/A	N/A	N/A	V/a	NA	N/A	N/A
$6 \mathrm{C896}$	G2R-2-S-AC24	N/A								
6C901	G3NA-210B-AC100/120	N/A	W6110ASX-1	N/A	N/A	N/A	N/A	N/A	N/A	Gl20A10
66902	G3NA-2108-AC200/240	N/A	W6210ASX-1	N/A	N/A	N/A	N/A	N/A	N/A	g240A10
66900	G3NA-2108-DC5-24	NA	W6110DSX-1	NA	N/A	N/A	N/A	N/A	AQP10A2-24/30VDC	G120D10
66504	G3NA-2258-AC100/120	SSR-240A25	W6125ASX-1	N/A	N/A	N/A	N/A	N/A	N/A	G120A25
6 ccos	G3NA-2258-AC200/240	SSR-240A25	W6125ASX-1	NA	N/A	N/A	N/A	N/A	N/A	G240A25
66903	G3NA-225B-DC5-24	SSR-240D25	W6125DSX-1	N/A	N/A	N/A	N / A	N/A	N/A	G120A25
66907	G3NA-240B-ACID0/120	N/A	W6140ASX-1	N/A	NA	N/A	N/A	NA	N/A	G120A45
66908	G3NA-240B-AC200/240	N/A	W6140ASX-1	N/A	N/A	N/A	N/A	N/A	N/A	G240A45
6 C 906	GZNA-240B-DC5-24	N/A	W6140DSX-1	N/A	N/A	N/A	N/A	N/A	AQP40A2-24/30DVC	G120D45
60.910	G3NA-4408-ACt0a/120	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N / A
66909	G3NA-4408-DC5-24	NA	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A
4A709	G4B-112T1-FDC-US-RP-AC120	N/A	N/A	N/A	N/A	N/A	N/A	N/	JAIC-TM-AC120V.P	N/A
44708	G4B-112T1-FDC-US-RP-AC24	NA	NA	NA	N/A	N/A	N/A	N/A	JAIC-TM-AC24V-P	N/A
271934	G48-112T1-FD-US-RP-AC120	N/A	JAIA-TM-ACL20V-P	N/A						
$2 N 935$	G4B-112T1-FD-US-RP-AC24	N/A	N/A	N/ N	N/A	N/A	N/A	N/A	IAIA-TM-AC2AV-P	N/A
$2 W 937$	G5LE-114P-PS-DC12	N/A	N/A	RCNIV-5B12D	1575-1C-12C	N/A	* N/A	296-318300	HA1E-12DVC	N/A
2W936	G5LE-114P-PS-DC24	N/A	N/A	RCNIV-5B24D	1575-1C-24D	N/A	N/A	$29631 C 300$	HAIE-24DVC	N/
$6 ¢ 913$	G7J-2A2B-8-AC100/120	N/A	VC15S-2A2B-ACL20V	N/A						
$6 \mathrm{CO14}$	G7J-2A28-B-AC200/240	N/A	N/A	N/A	N/A	N/A	NA	N/A	VC20S-2A2B-AC240V	N/A
6 6915	G7J-2A2B-B-DC24	N/A	N/A	N/A	NA	N/A	N/A	N/A : 5	VC20S-2A2B-DC24	N/A
6 Cc 986	G7J-3A1B-AC200/240	N/A	NA	NA	N/A	N/A	N/A	N/A \because	VC20S3A1B-AC240V	N/A
6 C385	G7J-3A1B-B-AC100/120	N/A	N/A	NA	N/A	N/A	N/A	NA ${ }^{-\cdots}$	VC20S-3A1B-AC120V	N/A
66887	G7J-3A1B-DC24	NA	N/A	N/A	N/A	N/A	N/A	N/A	VC20S-3A1B-DC24V	N/A
66988	G7J-4A-B-AC100/126	N/A	VC20S-4A-AC120V	N/A						
66989	G7J-4A-8-AC200/240	N/A	N/A	N/	N/A	N/A	N/A	NA \because	VC20S-4A-240V	N/
66990	G7J-4A-B-DC24	N/A	VC20SVC20S-4A-DC2	N/A						

MY SERIES-Square Base
(N) Indicator lamp on Nos. 3A351, . Terminalion: Plug-In/Solder
LR31928 Rated, for $50 / 60 \mathrm{~Hz}$
. ${ }^{\text {E. }}$.

$\begin{aligned} & \text { Use } \\ & \text { Wimite } \\ & \text { Socke*** } \end{aligned}$	Coil Current Rating
2A584	46 mAA 46 mA 36.9 mA 36.9 mA 9.2 mA 9.2 mA 75 mA 91 mA

Omron Madel 	Stock
$\mathrm{AC2A}^{\text {a }}$	24932
NaC24	3A351\#
DC24	2 W 933
NDCe24	34352\%
AC120	2W1331
NAC120	34353\#
DC12	$6 C 885$
ACL2 6 c886

| | | Shpg. |
| :---: | :---: | :---: | :---: |
| List | Each | WL |
| $\$ 7.08$ | $\$ 6.21$ | 0.1 |
| 9.90 | 868 | 0.1 |
| 7.08 | 6.21 | 0.1 |
| 9.90 | 868 | 0.1 |
| 708 | 6.21 | 0.1 |
| 9.90 | 8.68 | 0.1 |
| 7.08 | 6.21 | 0.1 |
| 7.08 | 6.21 | 0.1 |

MK SERIES-Octal Base

- Nos. 2W924 and 2W923 magnetic Rated for $50 / 60 \mathrm{~Hz}$ latching type-resets at 80% of rated Termination: Plug-In voltage
- Indication lamp on Nos. 2A192 \& Mounting: Socket 24193

LY SERIES-Square Base
- Mounting: Socker; flance mount on Nos. $2 \times C 01 \& 2 \times C 02$ dio not require socket)

Contact Load Ratings				$\begin{gathered} \begin{array}{c} \text { Coil Ratings } \\ \text { Q EOHz } \end{array} \\ \text { Volts } \end{gathered}$	$\begin{gathered} \text { Use } \\ \text { With } \\ \text { Socker** } \end{gathered}$	$\begin{gathered} \text { Cail } \\ \begin{array}{c} \text { Currcin } \\ \text { Bating } \end{array} \end{gathered}$	Omron Model LY			Each	$\begin{aligned} & \text { Shisg. } \\ & \text { Wt. } \end{aligned}$
Nataf Mousian Pins	Form	Onematit: Current						$\begin{aligned} & \text { Stock } \\ & \text { No } \\ & \hline \end{aligned}$	List		
8	SPDT	15 A 15A	$1 / 2$	$\begin{aligned} & 94 \mathrm{ACC} \\ & 12 \mathrm{VDC} \\ & 12 \mathrm{VAC} \end{aligned}$		$\begin{gathered} 36 \mathrm{man} \\ 9.2 \mathrm{~mA} \\ 9 \end{gathered}$		$\begin{aligned} & 2 W 925 \\ & 2 W 2792 \\ & 2 W 926 \end{aligned}$	$\begin{gathered} 87.17 \\ \hline 7.12 \\ 7.47 \end{gathered}$	$\begin{aligned} & \$ 6.54 \\ & 6.24 \\ & 6.54 \end{aligned}$	1.1 0.1 0.1
8	DPITT	10×10	$1 / 2$	$\begin{aligned} & \text { 12VAC } \\ & \text { 2VDC } \\ & 244 \mathrm{DC} \\ & \text { 24VDC } \\ & 120 \mathrm{VAC} \end{aligned}$	$\underset{2 A 583}{2 A 598}$	$\begin{gathered} 91 \mathrm{~mA} \\ 75 \mathrm{~mA} \\ 46 . \mathrm{mA} \\ 36.9 \mathrm{~mA} \\ 9.2 \mathrm{~mA} \\ 4.6 \mathrm{~mA} \end{gathered}$	2AC12$2 \mathrm{CLCL2}$ 2AC24 22CCA 2AC120 $2 A C 240$		$\begin{aligned} & 8.38 \\ & 8.88 \\ & 8.38 \\ & 8.38 \\ & 8.38 \\ & 8.68 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 555 \\ 756 \\ 756 \\ 756 \\ 7.56 \\ 7.53 \end{array} \end{aligned}$	0.1 0.1 0.1 0.1 0.1 0.1
		$10 \quad 10$	1/2	$\begin{aligned} & \text { 2VVAC } \\ & 120 \mathrm{VAC} \end{aligned}$	Flange	46 mA 9.2 mA	$\begin{aligned} & \text { 2FAC24 } \\ & 2 F A C 120 \end{aligned}$	$\begin{aligned} & 2 \times \mathrm{COH} \\ & 2 \mathrm{xC00} \end{aligned}$	$\begin{aligned} & 8.565 \\ & 8.56 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & \mathbf{7 2 7 2} \\ & \hline .72 \end{aligned}$	0.1
8	DPDT w/LED Indicator	$10 \quad 10$	$1 / 2$	$\begin{aligned} & 120124 \mathrm{VAC} \\ & 2202020 \mathrm{FAC} \\ & \hline \end{aligned}$	$\begin{gathered} 2 A 5 S 3 \text { or } \\ 2 A 583 \end{gathered}$	96 mA 4.6 mA	2 NACO 4 2 NACl 10120 2NAC220/240	$\begin{aligned} & 6 \mathrm{CB75} \\ & 6 \mathrm{CB75} \\ & 6 \mathrm{ca77} \end{aligned}$	$\begin{aligned} & 11.25 \\ & 11.25 \\ & 11.75 \end{aligned}$	$\begin{aligned} & 10.15 \\ & 10.15 \\ & 10 . .50 \end{aligned}$	0.1 0.1 0.1
11	3PDT	$10 \quad 7.5$	- 12	$\begin{aligned} & 12 \mathrm{DDC} \\ & 24 \mathrm{CC} \\ & 24 \mathrm{VAC} \\ & 12 \mathrm{VAC} \\ & 240 \mathrm{VAC} \end{aligned}$	2×008	$\begin{array}{r} 112 \mathrm{maA} \\ 58.6 \mathrm{~mA} \\ 67 \mathrm{~mA} \\ 14.8 \mathrm{~mA} \\ \hline 8 \mathrm{~mA} \\ \hline \end{array}$	3DC12 3BC24 3AC24 3AC120 3AC240	$6 \mathrm{Cz788}$ 6279 $2 \times c 03$ 2×04 $2 \times \cos$	$\begin{aligned} & 11.47 \\ & 11.47 \\ & 11.47 \\ & 11.47 \\ & 12.05 \end{aligned}$	$\begin{aligned} & 70.35 \\ & 10.35 \\ & 10.35 \\ & 10.35 \\ & 10.88 \end{aligned}$	0.1 0.1 0.1 0.1 0.1
14	4PDT	$10 \quad 7.5$	- "12	12 VDC -12 VAC 24 VCC .24 VCC 120 VAC	$2 \mathrm{XC09}$	$\begin{array}{r} 120 \mathrm{~mA} \\ 170 \mathrm{~mA} \\ 69 \mathrm{~mA} \\ 80 \mathrm{~mA} \\ 16.4 \mathrm{~mA} \end{array}$		$\begin{aligned} & 6 C 880 \\ & 6 C 888 \\ & 6 C 281 \\ & 2 \times 006 \\ & 2 \times c 07 \end{aligned}$	$\begin{aligned} & 13.37 \\ & 13.37 \\ & 13.37 \\ & 13.37 \\ & 13.37 \end{aligned}$	$\begin{aligned} & 12.06 \\ & 12.06 \\ & 12.06 \\ & 1206 \\ & 12.06 \end{aligned}$	0.2 0.2 0.2 0.2 0.2
14	$\begin{aligned} & \text { 4PDT w/LED } \\ & \text { Indicator } \end{aligned}$	$10 \quad 7.5$	- 1/2	$\begin{aligned} & 24 \mathrm{VAC} \\ & 120 \mathrm{VAC} \end{aligned}$	2 XCO 9	$\begin{array}{r} 80 \mathrm{maA} \\ 16.4 \mathrm{~mA} \end{array}$	$\begin{aligned} & \text { 4NAC24 } \\ & 4 \mathrm{NACL} 20 \end{aligned}$	$\begin{aligned} & \hline 5 C 83 \\ & 65884 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.36 \\ & 18.36 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.58 \\ & 16.58 \\ & \hline \end{aligned}$	022

(f) $\mathrm{R}=$ Resistive Load; $\mathrm{I}=$ Inductive Load (\ddagger) Latching type (\#) Indicator lanp inctuded. (**) Order sockets on page 473 and 474.

GENERAL PURPOSE RELAYS

KUP SERIES-Square Base

- Load carrying capability up to 10 amps
- Rated for 50 Hz
- No. of Mounting Pins: 5, 8, or 11
- Termination: Plug-In/Solder
- Mounting: Socket/Flange

Type of Mounting	No. of Mounting Pins	Contact Load Ratings			Coil Ratings $@ 60 \mathrm{~Hz}$ Volts	Coil Current Rating	UseWithSucket \dagger	$\begin{aligned} & \text { P8B } \\ & \text { Model } \end{aligned}$	Stock No.	$\because \because 4$		
		Form	Operating Current © 240VAC \& 28VDC	${ }_{120 V^{H P}}^{240 V}$						List	Each	Shpg Wt.
Flange Mount	5	SPDT	10.0A	$1 / 3 \quad 1 / 2$	120VAC	$\begin{gathered} 17.5 \mathrm{~mA} \\ 51 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 5 \times 853 \\ & 5 \times 854 \end{aligned}$	$\begin{aligned} & \text { KUP-5A55-120 } \\ & \text { KUP-5D55-24 } \end{aligned}$	$\begin{aligned} & 2 \times c 49 \\ & 2 \times c 51 \end{aligned}$	$\begin{array}{r} \$ 11.29 \\ 10.34 \end{array}$	$\begin{array}{r} \$ 11.17 \\ 10.24 \end{array}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$
Socket Mount	5	SPDT	10.0	$1 / 31 / 2$	12VDC	100 mA	$\begin{aligned} & \text { 4A161 } \\ & \mathbf{1 A 2 4 7} \end{aligned}$	KUP-5D15-12	2×650	9.87	9.77	0.2
Socket Mount	8	$\begin{aligned} & \text { DPDT } \\ & \text { DPDT } \\ & \text { DPDT } \\ & \text { DPDT } \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & 10.0 \\ & 10.0 \end{aligned}$	$1 / 3 \quad 1 / 2$	$\begin{aligned} & 120 \mathrm{VAC} \\ & 240 \mathrm{VAC} \\ & 24 \mathrm{VDC} \\ & 110 \mathrm{VDC} \end{aligned}$	17.5 mA 8.75 mA 51 mA 11 mA	$\begin{aligned} & 5 \times 853 \\ & 5 \times 854 \\ & 4 A 161 \\ & 1 A 247 \end{aligned}$	KUP-11A15-120 KUP-11A15-240 KUP-11D15-24 KUP-11D15-110	$\begin{aligned} & 3 A 985 \\ & 3 A 986 \\ & 4 A 366 \\ & 2 \times C 42 \end{aligned}$	$\begin{aligned} & 12.60 \\ & 15.33 \\ & 11.97 \\ & 16.27 \end{aligned}$	$\begin{aligned} & 12.47 \\ & 15.17 \\ & 11.85 \\ & 16.12 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.2 \end{aligned}$
Flange Mount	8	$\begin{aligned} & \text { DPDT } \\ & \text { DPDT } \\ & \text { DPDT } \\ & \text { DPDT } \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & 10.0 \\ & 10.0 \end{aligned}$	1/3 1/2	$\begin{gathered} 24 \mathrm{VAC} \\ 120 \mathrm{VAC} \\ 12 \mathrm{VDC} \\ 24 \mathrm{VDC} \end{gathered}$	$\begin{gathered} 168 \mathrm{~mA} \\ 17.5 \mathrm{~mA} \\ 100 \mathrm{~mA} \\ 51 \mathrm{~mA} \end{gathered}$	-	$\begin{aligned} & \text { KUP-11A55-24 } \\ & \text { KUP-11A55-120 } \\ & \text { KUP-11D55-12 } \\ & \text { KUP-11D55-24 } \end{aligned}$	$\begin{aligned} & 2 \times C 41 \\ & 4 A 062 \\ & 2 \times 043 \\ & 3 A 987 \end{aligned}$	$\begin{aligned} & 13.23 \\ & 18.22 \\ & 12.39 \\ & 12.39 \end{aligned}$	$\begin{aligned} & 13.09 \\ & 13.08 \\ & 12.26 \\ & 12.26 \end{aligned}$	0.2 2.0 0.2 0.2
Socket Mount	11	3PDT 3PDT 3PDT 3PDT 3PDT	$\begin{gathered} 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ =10.0 \end{gathered}$	$1 / 3 \quad 1 / 2$	$\begin{gathered} 120 \mathrm{VAC} \\ 240 \mathrm{VAC} \\ 12 \mathrm{VDC} \\ 24 \mathrm{VDC} \\ 110 \mathrm{VDC} \end{gathered}$	24 mA 12 mA 100 mA 51 mA 11 mA	$\begin{aligned} & 5 \times 853 \\ & 5 \times 854 \\ & \text { 4A161 } \\ & \text { 1A247 } \end{aligned}$	KUP-14A15-120 KUP-14A15-240 KUP-14D15-12 KUP-14D15-24 KUP-14D15-110	$\begin{aligned} & 3 A 988 \\ & 3 A 989 \\ & 3 A 990 \\ & 3 A 991 \\ & 2 \times C 48 \end{aligned}$	$\begin{aligned} & 14.07 \\ & 16.69 \\ & 13.75 \\ & 13.75 \\ & 18.06 \end{aligned}$	$\begin{aligned} & 13.93 \\ & 16.53 \\ & 13.62 \\ & 13.62 \\ & 17.88 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.2 \end{aligned}$
Flange Mount	11	3PDT 3PDT 3PDT 3PDT	10.0 10.0 10.0 10.0	1/3 1/2	$\begin{gathered} 24 \mathrm{VAC} \\ \text { 120VAC } \\ 240 \mathrm{VAC} \\ 24 \mathrm{VDC} \end{gathered}$	$\begin{gathered} 115 \mathrm{~mA} \\ 24 \mathrm{~mA} \\ 12 \mathrm{~mA} \\ 51 \mathrm{~mA} \end{gathered}$	--	KUP-14A55-24 KUP-14A55-120 KUP-14A55-240 KUP-14D55-24	$\begin{aligned} & 2 \times C 46 \\ & 4 A 367 \\ & 2 \times C 47 \\ & 4 A 063 \end{aligned}$	$\begin{aligned} & 14.49 \\ & 14.49 \\ & 17.22 \\ & 14.23 \end{aligned}$	$\begin{aligned} & 14.34 \\ & 14.34 \\ & 17.05 \\ & 14.08 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.3 \\ & 0.2 \\ & 0.2 \end{aligned}$
Socket wiNeon	11	3 PDT	10.0	$1 / 3 \quad 12$	120VAC	2 mmA	5×89	KUP-14A35-120	$2 \times \mathrm{C} 44$	17.01	16.84	0.2
Socket wifron \& Fusth-To-iest	11	3PDT	10.0	$1 / 312$	$120 \mathrm{~S}^{\prime} \mathrm{C}$	24 mA	$4+i \cdot 1$ $1 A 247$	KUP-14A45-120	$2 \times C 45$	18.79	18.60	0.2

KUMP SERIES—Square Base

- Load carrying capability up to 15 amps
- Rated for 50 Hz
- No. of Mounting Pins: 8 or 11
- Termination: Plug-In
- Mounting: Socket

(\dagger) Order sockets on page 473:*

USE AIR MOTORS WHERE ELECTRIC MOTORS ARE IMPRACTICAL

A compact, lightweight source of smooth, vibrationless power, Dayton Speedaire rotary vane air motors can be used in applications where electric or hydraulic motors are impractical. Unlike an electric motor, the air motor runs cool to prevent heat
buildup and provides smooth startups. Use air motors in batch mixers, conveyors, and hoists. With no heat buildup or sparks, air motors are ideal for explosion-proof applications. See Index under Air Motors.

Potter \&
Brumfield
KRPA SERIES-Octal Base

- Load carrying capability up to 10 amps
- Rafed for 50 Hz
- Constructed to provide long operating life and reliability
- No. of Pins: 8 or 11
,it Termination: Plug-In
Mounting: Socket

$\begin{gathered} \begin{array}{c} \text { No. of } \\ \text { Mounting } \\ \text { Pins } \end{array} \end{gathered}$	Contact Load Ratings			$\begin{gathered} \hline \text { Coil Ratitgs } \\ \text { © Solizs } \\ \hline \text { Volts } \\ \hline \end{gathered}$	$\begin{gathered} \text { Coil } \\ \begin{array}{c} \text { Current } \\ \text { Rating } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { Use } \\ \text { WWith } \\ \text { Sockett } \end{gathered}$		$\begin{aligned} & \text { Slock } \\ & \text { No. } \end{aligned}$	List	Each	${ }^{\text {Shppg }}$
	Form	Operating Current 120.	${ }_{120}{ }^{\text {HP }} 240 \mathrm{~V}$								
8	$\begin{aligned} & \text { PPDT } \\ & \substack{\text { DPDT } \\ \text { DPDT }} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~A} \\ & 5.0 \\ & 5.0 \end{aligned}$	1/10. 1/6	24 VAC 120 VAC 24VDC	$\begin{gathered} 186 \mathrm{~mA} \\ 17.5 \mathrm{~mA} \\ 51 \mathrm{~mA} \end{gathered}$	68852	$\frac{\text { KRPA-11AY-24 }}{\text { KRPA-11AY-120 }}$ KRPA-11DX 24	$\begin{aligned} & 2 \times c 30 \\ & 2 \times 29 \\ & 2 \times c 33 \end{aligned}$	$\begin{aligned} & \$ 17.01 \\ & \mathbf{\$ 1 7 . 0 1} \end{aligned}$	$\begin{aligned} & \$ 16.84 \\ & 16.84 \end{aligned}$ 16.63	0.2 0.2 0.2
8	$\begin{aligned} & \hline \text { DPDT } \\ & \hline \mathrm{DPDT} \\ & \mathrm{DPDT} \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & 10.0 \end{aligned}$	1/3 1/2	24 VAC 120 VAC 240 VAC	$\begin{gathered} 84 \mathrm{~mA} \\ \begin{array}{c} 17.5 \mathrm{~mA} \\ 8.75 \mathrm{~mA} \end{array} \end{gathered}$	5×852	KRPA-1AGG-24 KRPA-11AG-120	$\begin{aligned} & 34992 \\ & 3 A 993 \end{aligned}$ $4 A 064$	$\begin{aligned} & 17.48 \\ & 1788 \\ & 18.41 \end{aligned}$	$\begin{aligned} & 17.30 \\ & 17.30 \\ & 18.23 \end{aligned}$	0.2 0.2 0.2
8	DPDT	10.0 10.0	1/3 1/2	${ }_{\text {24VDC }}^{12 \mathrm{~V}}$	$\begin{array}{r} 100 \mathrm{~mA} \\ 5 \operatorname{lmA} \end{array}$	5×852	KRPA-11的-12	3A9994	${ }_{17}^{17.48}$	17.30 17.30	0.2
8	DPDT	10.0 10.0	1/3 1/2	48 VDC	${ }_{11.5 \mathrm{~mA}}^{26}$	5×852	KRPA-11DG-48	2×2 $2 \times C 32$	18.37 18.94	18.20 18.75	${ }_{20}^{0.2}$
11	$\begin{aligned} & 3 \text { 3PDT } \\ & 3 \mathrm{PDT} \\ & 3 \mathrm{PDT} \\ & 3 P D T \\ & 3 P D T \end{aligned}$	10.0 10.0 10.0 10.0 10.0 10.0	1/3 1/2	2 VAC 120 VAC 240 VAC ${ }_{24 \mathrm{VDC}}^{12 \mathrm{VC}}$	$\begin{gathered} 8.4 \mathrm{~mA} \\ 17.5 \mathrm{~mA} \\ 8.75 \mathrm{~mA} \\ 100 \mathrm{~mA} \\ 51 \mathrm{~mA} \end{gathered}$	${ }^{6 \times 156}$		44065 $3 A 996$ 4 4066 $2 \times 634$33	$\begin{array}{r} 21.47 \\ 22.47 \\ .268 \\ .2 .130 \\ .21 .31 \\ \hline \end{array}$	$\begin{aligned} & 21.25 \\ & 21.25 \\ & 22.45 \\ & 21.45 \\ & 21.10 \\ & \hline \end{aligned}$	0.3 0.2 0.2 2.0 0.2
8 w/Indicator	$\begin{aligned} & \text { DPDT } \\ & \text { DPDT } \\ & \text { DPDT } \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$	1/3 1/2	24 VAC 120 VAC 24 VDC	$\begin{array}{r} 84 \mathrm{~mA} \\ 17.5 \mathrm{~mA} \\ 51 \mathrm{~mA} \end{array}$	5×852	KRPA-11AN-24 KRPA-11DN-24	$\begin{aligned} & 2 \times 288 \\ & 34998 \\ & 34999 \end{aligned}$	$\begin{aligned} & -19.90 \\ & \hline 19.90 \\ & 19.79 \end{aligned}$	$\begin{aligned} & 19.70 \\ & 19.70 \\ & \hline 19.59 \end{aligned}$	0.2 0.2 0.2
11 w/fldicator Lamp	${ }_{3 P D T}$	10.0 10.0	1/3 1/2	$\xrightarrow{120 \mathrm{VaC}}$	$\underset{\substack{17.5 \mathrm{~mA} \\ 51 \mathrm{~mA}}}{ }$	6x156	$\frac{\text { KRPA }}{\text { KRPA } 14 \mathrm{AN} \text {-120 }}$	44365 $2 \times C 35$	${ }_{23}^{24.25}$	23.01	${ }_{0.2}^{0.2}$

KA SERIES
Suircble for multipole switching Rated for 50 Hz
No. of Mounting Pins: 8
Termination: Solder

- Mounting: \#6-32 stud

No. at Mountring Pins	Contact Loat Ratings			$\begin{aligned} & \text { Cosl Ratungs } \\ & \Theta 60 \mathrm{~Hz} \end{aligned}$	Coll Current Rating	P\&B Model	Stack No.	List	Each	¢
	- Form	Operating Current © 12dVAC								
				Volts						
	DPDT		10.0A	120VAC	17.5 mA	KA-11AG-120	44067	\$26.07	\$25-80	0.2
8	DPDT		10.0	12VDC	100 mA	KA-11DG-12	44068	25.63	25.40	0.2
	DPDT		10.0	24VDC	51 mA	KA-11DG-24	44069	25.63	25.40	0.2

Potter \& Brumfield

KR SERIES-Octal Base

Rated for 50 Hz =

- Hermetically sealed
- For Class I, Div. 2, hazardous locations
- No. of Mounting Pins: 8 or 11
- Termination: Plug-In - Mounting: Socket

No. of Mounting Pins	Contact Load Ratings ${ }^{\text {- }}$		$\begin{gathered} \hline \text { Coil Ratings } \\ \Theta 60 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & \text { Coil } \\ & \begin{array}{c} \text { Current } \\ \text { Rating } \end{array} \end{aligned}$			$\cdots \begin{gathered} \text { Stock } \\ \text { Ro. } \end{gathered}$	List	Each	${ }_{\text {Sut }}$ We
	Form	Operating Current © 12IVAC								
8	DPDT	10.0 A 10.0	$\begin{aligned} & 120 \mathrm{VAC} \\ & 24 \mathrm{VDC} \end{aligned}$	$\underset{5 \operatorname{lmA}}{17.5 \mathrm{~mA}}$	5×852	KR-11AGE-120	44070	$\begin{aligned} & 580.32 \\ & 78.64 \end{aligned}$	$\begin{aligned} & \$ 79.55 \\ & 77.90 \end{aligned}$	0.3 0.3
11	${ }^{3 P D T}$	10.0 10.0	240VAC	$\begin{gathered} 17.5 \mathrm{~mA} \\ 51 \mathrm{~mA} \end{gathered}$	6X156	KR-14AGE-120	4A072	$\begin{aligned} & 104.89 \\ & 104.05 \end{aligned}$	$\begin{aligned} & 103.85 \\ & 103.05 \end{aligned}$	0.3 0.5

(\dagger) Order sockets on page 473.

470

GENERAL PURPOSE RELAYS AND THERMAL CIRCUIT BREAKERS

ELECTRICAL CONTROLS

Potter a Brumfield Penei cuicuts	- Precision breakers to protect instrumentation				W28 SERIES Single pole, thermal type breakers securely snap into standard panel cutouts from the front panel; can be prewired in front of the panel, then snapped into place. Feature a reset button that cannot be pulled out manually to disconnect circuit. When an overload ocruts and breaker opens, reset button and white indicator extena for visual teip fidicatmo. Deiecter strensth is over 1500 V rins. Connections are made with $0.250^{\prime \prime}$ quick connertors.							
	applications Use to replace costly fuses LR15734	Series	Rating in Amps	Trip Time ${ }^{6}$ 200% of Rating	$\frac{\text { Resut }}{\text { Timat }}$	Max. Operating Vothage	letorrupt Capacity	P\&B Model W28-	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	List	Each	$\begin{aligned} & \text { Strpg. } \\ & \text { Whe } \end{aligned}$
(14.46-3605)		W28	0.25			\%		XQ1A-0.25	44037	\$6.30	S6.24	0.5
18			0.5 10	$\begin{aligned} & \text { 4.5-28 } \\ & \text { sec. } \end{aligned}$	180 sec max		-		${ }_{4}^{44038}$	6.30 6.30	624 624	0.1 0.1
$(15.875 \cdot 16.1295)^{4}$			20			$\begin{gathered} 32 \mathrm{VDC}, \\ 250 \mathrm{VAC}, \\ e 5060 \mathrm{~Hz} \end{gathered}$	1000A 250 VAC, 50160 Hz $\stackrel{8}{4}$32 VDC	xQ1A-2	4040	6.55	6.48	
			30		10.60 sec .			XQ1A3	44041	3.50	3.47	0.1
$1{ }^{-140.550}$			5.0					XQ1A-5	44042	3.50	3.47	0.1
+ ${ }^{(13.716-13.970)}$			8.0					XQLA8	4044	${ }_{3.50}$	347	0.1
1 1			10.0					XQ1A-10	41045	${ }_{3.50}$	3.47	0.1
			12.0					XQ1A-12	44046	3.50		0.1
			15.0					XQ1A-15	44047	3.50	3.4	

Counters for Process Control and Time Studies
Redington and Omron counters in this catalog will help control production lines and provide valuable information to make systems more efficient. Included are impulse counters, resettable counters, motion and hand activated counters.

ELECTRICAL CONTROLS

GENERAL PURPOSE AND LATCHING RELAYS

GENERAL PURPOSE RELAYS

T90 SERIES

- PC board design-applications include heating, ventilating, air conditioning, appliance markets, and others
- Switches resistive loads up to 30A
- Open style No. 4A048; sealed immersion cleanable Nos. 4A049, 4A050
- No. of Mounting Pins: 6
- Termination: PC board terminal
- Mounting: PC board

No. of Mounting Pins	Contact Load Ratings				$\begin{aligned} & \text { Coil Ratings } \\ & \text { Q } 60 \mathrm{~Hz} \\ & \cdot V_{\text {Ootage }} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Coil } \\ \text { Current } \\ \text { Rating } \end{gathered}$	$\begin{aligned} & \text { P8B } \\ & \text { Model } \end{aligned}$		List	Each	Shpg.
	Form	240VAC and 28VDC - (Resistive)	120 N	240 V							
6	SPDT	${ }_{10 \mathrm{~A}}^{20 \mathrm{~A}}$	$\stackrel{\mathrm{NO}}{\mathrm{N}: 1} 11 / 4$	${ }_{1 / 2}$	$\begin{aligned} & 12 \mathrm{DDC} \\ & \text { } 24 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 77 \mathrm{~mA} \\ & 77 \mathrm{~mA} \\ & 36 \mathrm{~mA} \end{aligned}$	T90N5D12-12 T90S5D12-12 T90S5D12-24 MSTD24		$\begin{gathered} \begin{array}{c} +3.60 \\ 5.05 \\ .5 .05 \end{array} \end{gathered}$	$\begin{gathered} \$ 3.56 \\ \hline \mathbf{5 . 0 0} \\ \mathbf{5 . 0 0} \end{gathered}$	0.1 0.2 0.1

LATCHING RELAYS

KUL SERIES

Potter \& Brumfield

E22575

No. of Mounteng Pins	Contact Load Ratings				Coil Ratings 60 Hz Yoltage	Coil Current Rating	Use With Socket*	P\&B Model	Stock No.	List	Each	Shpg. Wht
	Form	$\underset{\text { (Resistive) }}{\text { Amps }}$	1200V	2401								
11	DPDT	10A @ 28IDC or 2AOVAC. , MFF	1/4	1/3	$\begin{aligned} & \text { 120VAC } \\ & \text { 12VDG } \end{aligned}$	$\begin{array}{r} 32 m A \\ -133 m A \\ 6 \times 3 m A \end{array}$	1A247. 4A161.		$\begin{aligned} & 3 A 965 \\ & 2 \times 636 \\ & 3 A 966 \end{aligned}$	$\begin{array}{r} \$ 33.81 \\ 40.63 \\ 44, .63 \end{array}$	$\begin{array}{r} \$ 33.50 \\ 40.50 \\ 40.30 \end{array}$	0.3 3.2 0.2

RELAY SOCKETS		ELECTRICAL CONTROLS
	- Brass connectors - Replaces equivalent Aromat, Custom Connector, Deltrol, Fujitsu, Guardian, IDEC, Magnecraft, Midrex, Omron, Potter Brumfield, Square D, and Struthers Dunn brands; see chart on page 474	- Nos. 5X852, 5X853, 6X156, 2A582, 2A584 and 4A161 feature pressure clamp screws that handle wire sizes from 22 AWG to 12 AWG - DIN units can be mounted to No. 6X295 (order on page 474) DIN track or surface mounted
NO. 5×852	NO. 6X156	\therefore NO. 5X853
Socke: Octal	Socket: Octal	Socket: Square
No. of Pins: 8	No. of Pins: 11	No. of Pins: 11
Mounting: DIN/Screw	Mounting: DIN/Screw	Maunting: DIN/Screw
Terminals: Screw	Terminals: Screw	Terminals: Screw ${ }^{-}$
Electrical Ratings: 300VAC, 10A	Electrical Ratings: 300VAC, 10A	Electrical Ratings: 300VAC, 10A
Dimensions: 2.362L x 1.575W x 0.866"D	Dimensions: $2.362 \mathrm{~L} \times 2.323 \mathrm{~W} \times 0.866^{\prime \prime} \mathrm{D}$	Dimensions: $3.071 \mathrm{~L} \times 1.693 \mathrm{~W} \times 0.984^{\text {n }} \mathrm{D}$
No. 5X852. Shpg. wt. 0.1 lbs. List...... $\$ 4.43$. Each... $\$ 3.77$	No. 6X156. Shipg. wt. 0.1 lbs. List...... $\$ 9.37$. Each.. $\$ 7.97$	No. 5X853. Shpg. wt. 0.2 lbs. List.... $\$ 10.29$. Each.. $\$ 8.75$
NO. 4A161	NO. 5×854	NO. 1 A247
Socket: Suquare	Socket: Square	Socket: Square
No. wif Pins: 11	No. of Pinst 11	No. of Pins: 11
Mounting: Screw	Mounring: Screw	Mounting: Screw
Termingis: Screw	Termmass Quick Connect	Terminais: PC Board
Electrical Ratings: 300VAC, 15A	Electrical Ratings: $300 \mathrm{VAC}, 10 \mathrm{~A}$	Electrical Ratings: $300 \mathrm{VAC}, 10 \mathrm{~A}$
Dimensions: 3.150L $\times 1.700 \mathrm{~W} \times 0.895^{\prime \prime} \mathrm{D}$	Dimensions: $2.030 \mathrm{~L} \times 1.500 \mathrm{~W} \times 0.640^{\mathrm{n}} \mathrm{D}$	Dimensions: $2.030 \mathrm{~L} \times 1.500 \mathrm{~W} \times 0.640 \mathrm{D}$
No. 4A161. Shpg. wt. 0.1 lbs. List...... $\$ 9.27$. Each.. 57.88	No. 5×854. Shpg. wt. 0.1 lbs. List...... $\$ 2.37$. Each.. $\$ 2.02$	No. 1A247. Shpg. wt. 0.1 lbs. List......\$2.42. Each.. $\$ 2.06$
NO. 2A582	NO. 2A583 -	NO. 2A584
Socket: Square	Socket: Square	Socket: Square
No. of Pins: 8	No. of Pins: 8	No. of Pins: 14
Mounting: DIN/Screw	Mounting: PC Board	Mounting: DIN/Screw
Terminals: Screw	Terminals: PC Board	Terminals: Screw
Electrical Ratings: 300VAC, 10A	Electrical Ratings: $300 \mathrm{VAC}, 10{ }^{-1}$	Electrical Ratings: 300VAC, 7A
Dimensions: $2.736 \mathrm{~L} \times 1.181 \mathrm{~W} \times 0.984{ }^{\text {n }}$ D	Dimensions: $1.156 \mathrm{~L} \times 0.843 \mathrm{~W} \times 0.437{ }^{\text {T }}$	Dimensions: 2.559L $\times 1.81 \mathrm{~W} \times 0.984 \mathrm{CD}$
No. 2A582. Shpg. wt. 0.1 lbs . List...... $\$ 8.24$. Each.. $\$ 7.00$	No. 2A583. Shpg. wt. 0.1 lbs. List...... \$2.22. Each. \qquad	No. 2A584. Shpg. wt. 0.1 lbs. List.... $\$ 11.69$. Each..\$9.94

RELAY SOCKET COMPATIBILITY CHART

The chart below identifies national bränd sockets. Fit is determined by the fünber relay series that can be used with relay of relay pins not exceeding the socket pin

Socket Steck No.	Alien Bradley	Aromat	Deltrol	Eagle Signal	Fujitsu	Guardian	. HECC:	Magnecratt	Midtax	Omman	P8B	Sigma	Square	Stuttiers Dunf
$\begin{aligned} & 5 \times 852, \\ & 6 \times 156 \end{aligned}$	$\begin{aligned} & 700 \mathrm{HA} \\ & 700 \mathrm{HT} \\ & 700 \mathrm{HR} \end{aligned}$	\cdots	105	$\begin{aligned} & 200,22 \\ & 23,35 \mathrm{P} \end{aligned}$	FRL-256	$\begin{aligned} & 1210 \\ & 1215 \\ & 1410 \\ & 1415 \end{aligned}$	RR2P RR2KP RR3PA	$\begin{aligned} & 88,211 \\ & 21,214 \\ & 250 \mathrm{CP} \end{aligned}$	155	$\overline{\mathrm{MK}}$	$\frac{\mathrm{KRP}}{\mathrm{KBP}}$ KRPA CG,CHICK	$\begin{aligned} & 5,42 \\ & 38,50 \end{aligned}$		$\begin{aligned} & 214, \mathrm{~A} 314, \\ & 326,327 \\ & 392 \end{aligned}$
$\begin{aligned} & 5 \times 83, \\ & 5 \times 884, \\ & 1 A 247, \\ & 4 \mathrm{~A} 161 \end{aligned}$	$\begin{aligned} & 700 \mathrm{HB} \\ & 700 \mathrm{HS} \end{aligned}$	HP	$\begin{aligned} & 165,166, \\ & { }_{268}, \end{aligned}$	$\begin{aligned} & 30,31, \\ & 33 \end{aligned}$	FRL-253	$\begin{array}{ll} 1510 & \because \\ 1515 \\ 1390 \\ 1395 \end{array}$	RR1BA RR2BA RR3B	$\begin{aligned} & 388, \\ & 388 \mathrm{CP} \\ & 388 \mathrm{ICP} \end{aligned}$	157	MJ	ct Cu,ku KUL,KUP	$\overline{68}$	$\begin{aligned} & \mathbf{K U} \mathbf{U} \\ & \therefore \because \end{aligned}$	$\begin{aligned} & 288, \\ & 286,287, \\ & 292, A 283 \end{aligned}$
24584	700 HC	HC	280	10,17P	FRL-263	$\begin{aligned} & 1390 \mathrm{~S} \\ & 1395 \mathrm{~S} \\ & 1310,1315 \end{aligned}$	RY4S RM2S RY42S RY2KS	$78 \mathrm{Cs}$	$\begin{aligned} & 156, \\ & 158 \\ & \hline 15 \end{aligned}$	$\frac{\mathrm{MY}}{\mathrm{MYK}}$	KH	67		C281,282 \cdots.
$\begin{aligned} & \text { 2A582, 2A583 } \\ & 2 \times C 08,2 \times C 09 \end{aligned}$	700 HF	HL	290	$16 Q$	FRL-263	$\begin{aligned} & 1310 \mathrm{~S} \\ & 1315 \mathrm{~S} \end{aligned}$	${ }_{\text {RH2B }}$	78RCS :	$\because 258$	LY	$\begin{aligned} & \mathrm{K}-10 \\ & \mathrm{~K}-20 \end{aligned}$	76	-	C281

Helpful Terminology \& Technical Data Available
Data is included on many of the product areas in this catalog, including motors, air compressors, air moving equipment, hydraulics, lighting, pumps, and much more. See Index for complete listings.

OPTO-ISOLATED SOLID-STATE RELAY
Potter \& Brumfield SSRT SERIES

- SPST-NO solid-state Triac output - Typical turn-on and turn-off at first zero crossover
- Isolation voltage 4000 V rms; insulation resistance $10^{10} 0 \mathrm{hms}$
- \#6-32 input screw terminals
- \#8-32 output screw terminals
- Heatsink thermal resistance rating is $2^{\circ} \mathrm{C} / \mathrm{W}$: typical flat surface area per unit is 36 square inches. Mount relays to heatsink using thermal joint compound.

LUTRON*

Thomas8Betts

BELIL: CAROL

MANY BRANDS OF
electri-flex
ELECTRICAL PRODUCTS AVAILABLE
minerallacic Clectic company
\qquad
(*) Appleton
Tonllied
RACO
\therefore 为

- Use for switching motor loads in applications such as elevators, machine tools, air handling, and HVAC equipment
- Screw head terminals
- Silver cadmium oxide, self-wiping contacts
- Molded thermoset plastic bose
- Pull-in at 85% or less of normal AC voltage at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$

Dayton

Dimensionally interchangeabis Potter \&i Brumfield, Magnecraft, $=$ Deltrol, and other brands

- $11 / 2$ HP models mount on two 3/16" dia. hole for conventional mounting; 20 amp, I HP model has one \#6-32 rapped mounting hole and locating tab
- All coils rated for $50 / 60 \mathrm{~Hz}$

30 AMP, $11 / 2$ HP, SPDT MODELS

Contact Form	Contact Load Ratings			Coil - Current Rating	$\therefore \begin{gathered} \text { Stack } \\ \text { No. } \end{gathered}$	List	Each	Shpg.
		$\begin{aligned} & \text { Qi } 120 \\ & \text { VAC } \\ & \text { HP } \end{aligned}$						
SPDT	30A	$1^{11 / 2}$	$\begin{aligned} & 24 \mathrm{VAC} \\ & \text { 120VAC } \\ & 24 \mathrm{VDC} \end{aligned}$	410 mA 85 mA 84 mA	$\begin{aligned} & 3 \times 744 \\ & 3 \times 745 \\ & 3 \times 747 \end{aligned}$	$\begin{gathered} \$ 18.07 \\ 18.07 \\ 181730 \end{gathered}$	$\$ 15.36$ 15.36 14.70	0.6 0.6 0.6

30 AMP, $11 / 2$ HP, DPDT MODELS

30 AMP, $11 / 2$ HP, SPST MODELS

20 AMP, 1 HP, SPST MODELS

-
Contact
Form
SPST, Mormaily Open, Doutble Make

DAYTON RELAY CROSS REFERENCE ON PAGE 464

Dust Cover for Power Relays
(Use with all base mount power relays, except No. 4A022)
Sheet metal base with knockouts for $0.5^{\prime \prime}$ diameter conduit and cover fitted with screws. Mounting: three \#10 holes on 1.875 x $4.125^{\prime \prime}$ centers; cannot be used with No. 4 A022 relay. 4.125 centers; cannot be used
Dimensions: $5.31 \mathrm{~L} \times 3.38 \mathrm{~W} \times 3.13^{n} \mathrm{D}$.

No. 4A079. Shpg. wt. 1.0 lbs. List $\$ 16.47$. Each

－Screw terminals
－Rated for 50 Hz

Contact Ratings 960 Hz							$\begin{gathered} \text { Coil } \\ \text { Ratings } \\ \text { Rottaga } \end{gathered}$	Coil CurrentReting	$=*$ P\＆B Madah	Stack No．	List	Each	$\begin{aligned} & \text { Shpg. } \\ & \text { Wht } \end{aligned}$
Form	$\begin{aligned} & 125 \\ & V 00 \end{aligned}$	$\begin{aligned} & \text { Amp } \\ & 240 \\ & \text { VAC } \end{aligned}$	Resis VFS VAC	27 VAC	$\begin{aligned} & 600 \\ & \text { Vac } \end{aligned}$	$\begin{gathered} \mathrm{HP} \\ 120 / 240 / \\ 250 \end{gathered}$							
SPST－NO	－	－	－	25	10	U－12	24 VAC	410 mA	PRD－IAYO－24	2xC54	\＄16．06	\＄55．90	0.5
SPST－ NO－Double Make	20	－	－	30	10	U－2	$\begin{aligned} & 12 \mathrm{VDCC} \\ & 24 \mathrm{VDC} \end{aligned}$	$\begin{gathered} 169 \mathrm{~mA} \\ 84 \mathrm{~mA} \\ 84 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & \text { PRD-3DGO-12 } \\ & \text { PRD.3DG0024 } \\ & \text { PRD-3DHO-24 } \end{aligned}$	$\begin{aligned} & 4 A 3321 \\ & 4 A 328 \\ & 4 A D 23 \end{aligned}$	$\begin{aligned} & 15.33 \\ & 15.33 \\ & 18.27 \end{aligned}$	$\begin{aligned} & 15.17 \\ & 15.17 \\ & 18.09 \end{aligned}$	0.6 0.5 0.6
SPST－ MO－Double Make	－	－	40	25	－	1／1／2	$\begin{gathered} 12 V A C \\ 24 V A C \\ 120 V A C \end{gathered}$	$\begin{gathered} 820 \mathrm{~mA} \\ 410 \mathrm{~mA} \\ 85 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & \text { PRD } 3 \mathrm{AYO}-12 \\ & \text { PRD-3AYO-24 } \\ & \text { PRD } 3 \mathrm{YYO}-120 \end{aligned}$	$\begin{array}{r} 44074 \\ 44075 \\ 40.075 \end{array}$	$\begin{aligned} & 16.06 \\ & 16.06 \\ & 16.06 \end{aligned}$	$\begin{aligned} & 155.90 \\ & 15.90 \\ & 15.90 \end{aligned}$	0.6 0.6 0.5
	－	－	－	25	10	$1-2$	l20VAC	85 ma	PRD－5AYO－120	4 A016	18.43	18.24	0.5
spot	二	\bar{Z}	\bar{Z}	$\begin{aligned} & 30 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.5 /-2^{2} \\ & 1 / 1 /-12 \\ & 1 /-1 \end{aligned}$	12 VDC 12 VDC 2 WM	169 mA \because	$\begin{aligned} & \text { PRD-5DGO-12 } \\ & \text { PRD-5DYO-12 } \\ & \text { PRD-5DYO- } 24 \end{aligned}$	$\begin{aligned} & 4 A 076 \\ & 2 \times 7 \times 55 \\ & 2 \times 556 \end{aligned}$	$\begin{gathered} 17.64 \\ 17.80 \\ 17.85 \end{gathered}$	$\xrightarrow{17.46}$	0.6 9.5 9.5
DPST－NO	－	30	－	4	10	$1 / 12$	，	cisma		44878	19.84		
DPST－MO	－	25	－	20	10	$1-2$	$\begin{aligned} & 24 \mathrm{FCC} \\ & 120 \mathrm{AC} \\ & 220 \mathrm{VC} \\ & 240 \mathrm{AC} \end{aligned}$	H10ma 47 mA 43 mA		$\begin{aligned} & 2 \times 67 \\ & 39560 \\ & 3451 \\ & 2 \times 658 \end{aligned}$	$\begin{aligned} & 19.93 \\ & 19.94 \\ & 20.37 \\ & 20.37 \end{aligned}$	$\begin{aligned} & 19.75 \\ & 19.74 \\ & 20.17 \\ & 20.17 \end{aligned}$	03 1.0 0.5 0.7
	－	25	－	20	10	1／－2	$\frac{19 \mathrm{VDO}}{151}$	$\begin{aligned} & 169 \mathrm{~mA} \\ & 8 \mathrm{BA} 4 \end{aligned}$	PRD.DYOLI	$\begin{aligned} & 2 \times C 59 \\ & 48.617 \end{aligned}$	$\frac{19.32}{1028}$	$\begin{aligned} & 19.13 \\ & 19.13 \end{aligned}$	07 9.6
bpat	－	25	－	20	10	1／－2		430 ma sime ＋3ma		42019 38963 44020	$\begin{aligned} & 24.78 \\ & 2478 \\ & 25.20 \end{aligned}$	$\begin{aligned} & 24.52 \\ & 24.52 \\ & 24.94 \end{aligned}$	0.7 1.0 0.7
	－	25	－	20	10	U－2	$\begin{aligned} & \text { I2VDC } \\ & 24 V 0 C \end{aligned}$	$\begin{aligned} & 169 \mathrm{~mA} \\ & 84 \mathrm{~mA} \end{aligned}$	PRD－11DYO． 12 PRD－11DYO－24	$\begin{aligned} & 44021 \\ & 30964 \end{aligned}$	$\begin{aligned} & 24.13 \\ & 24.13 \end{aligned}$	$\begin{aligned} & 23.90 \\ & 23.90 \end{aligned}$	0．7
DPDT	－	30	－	20	10	1／2	$\begin{aligned} & 24 \mathrm{VAC} \\ & 120 \mathrm{VAC} \end{aligned}$	$\begin{array}{r} 410 \mathrm{~mA} \\ 855 \mathrm{~mA} \end{array}$	PRD－11AGO24 PRD－11AGO－120．	$\begin{array}{r} 4 A 018 \\ \sim \\ \sim \end{array}$	$\begin{array}{r} 24.67 \\ 24.67 \end{array}$	$\begin{aligned} & 24.43 \\ & 24.42 \end{aligned}$	0.7 1.0
$\begin{aligned} & \text { DPDT } 8 \\ & \text { SPDT } \end{aligned}$	－	25	－	20	10	$1 /-2$	120VAC	85 ma	PRDA－11AYA－120	44022	37.90	37.55	0.7
DPDT	20	－	－	－	－	－	12 VAC 2 VADC	85 ma 84 mA		$\begin{aligned} & 4 \mathrm{~A} 024 \\ & 2 \times \mathrm{CD} 2 \end{aligned}$	$\begin{aligned} & 27.56 \\ & 26.88 \end{aligned}$	$\begin{aligned} & 27.30 \\ & 26.65 \end{aligned}$	0.7

世的號

LEUIDI	electri－flex	LUTRON ${ }^{\text {a }}$
（6）Appleton	Thomase8etts	∇

ELECTRICAL CONTROLS

POWER RELAYS

G4B SERIES

- Top mounted quick-connect .187" spade coil terminals; .250" for load terminal
- Operates at 80 to $\mathbf{1 1 0 \%}$ of rated voitage. Dropout at 30% of rated voltage
- Dielectric strength $\mathbf{2 0 0 0}$ VAC, 1 min.
- Flange type mounting bracket

OmROn.

541643
. Dimensions: $1.52 \mathrm{~L} \times 1.28 \mathrm{~W} \times 2.00^{\prime \prime} \mathrm{D}$

G7L AND G7J SERIES

- Top mounted quick-connect .250" spade or screw terminals available
- Dielectric strength 4000 VAC, 1 min.
- Push-to-test button
- Flange type mounting bracket

Contact Form ${ }^{*}$	No. and Trpe of Mounting Terminations	Contact Load Ratings 240 VAC						Coil Ratings es $50 / 50 \mathrm{~Hz}$ Voltage	Coil Current Rating		Stock No.	Lis	Each	Shpg
		Operating (Resistive) ${ }^{7}$	$\begin{aligned} & \text { urrent Amps } \\ & \text { (Inductiva)* } \end{aligned}$	FLA	LPA	120VA	NAC							
SPST-NO	$\begin{aligned} & \text { 4, Spade } \\ & \text { 4, Screw } \\ & \text { 4. Spade } \\ & \text { 4. Screww } \end{aligned}$	$\begin{aligned} & 30 \mathrm{~A} \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$		102A	11/2	3	$\begin{aligned} & 24 \mathrm{VAC} \\ & 24 \\ & 120 \\ & 120 \end{aligned}$			$\begin{aligned} & 4 A 710 \\ & 2 \times 1 \times 21 \\ & 4 A 711 \\ & 27 C 22 \end{aligned}$	$\begin{gathered} \$ 11.91 \\ 14.92 \\ 11.91 \\ 119.92 \end{gathered}$	$\begin{aligned} & \mathbf{5 1 0 . 4 4} \\ & 13.08 \\ & 10.44 \\ & 13.49 \end{aligned}$	0.2 0.3 0
DPST-NO	6. Sizacie 6 Screw 6, Screw	25 25 25 25	10 10 10 10		102	1	2	$\begin{aligned} & 214 A C \\ & 24 \\ & 120 \\ & 120 \end{aligned}$			$\begin{aligned} & 3 A 354 \\ & 2 \times 19 \\ & 34355 \\ & 2 \times 250 \end{aligned}$	$\begin{aligned} & 1234 \\ & 15.50 \\ & 12.34 \\ & 1.65 \end{aligned}$	$\begin{aligned} & 336 \\ & 13.72 \\ & 10.81 \\ & 13.72 \end{aligned}$	0.3 0.2 0.3
DPST-FOO EDST-NC	$\begin{aligned} & 10 \text { Screw } \\ & 60.5 r e w \\ & 0 \text { crew } \end{aligned}$	25 NO 18 NC 25.28 MC 25. $\mathrm{Mas} \mathrm{NC}^{\circ}$	$\begin{aligned} & 25 \mathrm{NO} \mathrm{NNC} \\ & 25 \mathrm{NO} \mathrm{NC} \\ & 25 \mathrm{NosNC} \end{aligned}$	17	102	1%	5	$\begin{aligned} & 200 / 120 \mathrm{VAC} \\ & 20020 \\ & 2.41 \mathrm{Cl} \end{aligned}$	1720.4 mA $8.5 / 102 \mathrm{~mA}$	G7J-2A2B-B-AC100/120 G7J-2A2B-B-4C200240 $\mathrm{C}_{\mathrm{Z}}^{\mathrm{T},-2 \mathrm{~L}} \mathrm{2} \mathrm{B}-\mathrm{E}-\mathrm{DC} 4$	$\begin{aligned} & \text { 6C913 } \\ & \text { SC914 } \\ & 6 \mathrm{CST5} \end{aligned}$	$\begin{aligned} & 33.36 \\ & 3.447 \\ & 30.14 \end{aligned}$	$\begin{aligned} & 29.40 \\ & 30.40 \\ & 66.51 \end{aligned}$	0.5 0.5 0.5
3PST-NOI SPST-NC	10 Screw In. brrew 10, Screw	25 NO NaC 25 NOK NC $25 \mathrm{NO} / 8 \mathrm{NC}$	$25 \mathrm{NO} / 8 \mathrm{NC}$ 25 NOM NC $25 \mathrm{NO} / \mathrm{NC}$	17	102	$11 / 2$	5	$\begin{aligned} & 100122 \mathrm{VAC} \\ & 200 / 20 \\ & 2 \mathrm{VDC} \end{aligned}$	$\begin{gathered} 171204 \mathrm{nuA} \\ 8.5 / 102 \mathrm{~mA} \\ 79 \mathrm{md} \end{gathered}$	$\mathrm{GH}=3 \mathrm{AB}-\mathrm{B}-\mathrm{DC} 2$	$\begin{aligned} & \text { 6CSSS } \\ & 6 \mathrm{CP88} \\ & \text { عCSS7 } \end{aligned}$	$\begin{aligned} & 3333 \\ & 34.47 \\ & 30.18 \\ & \hline \end{aligned}$	$\begin{aligned} & 39.40 \\ & 30.40 \\ & 26.60 \end{aligned}$	0.5 0.5 0.5
4PST-NO	$\begin{aligned} & \text { 10, Screw } \\ & 10, \text { Screw } \\ & 10 \text {, Screw } \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \end{aligned}$	17	102	11/2	5	$\begin{aligned} & 1000120 \mathrm{VAC} \\ & 200240 \\ & 24 \mathrm{VDC} \end{aligned}$	$\begin{array}{\|} 17 / 20.4 \mathrm{~mA} \\ 8.5 / 10.2 \mathrm{~mA} \\ 79 \mathrm{~mA} \end{array}$	G7J-4A-B-AC100/120 G7J-4A-B-AC2001240 G73-4A-B-DC24	$\begin{aligned} & 6 c 888 \\ & 6 c 989 \\ & 6 C 990 \end{aligned}$	$\begin{aligned} & 33.36 \\ & 34.47 \\ & 30.18 \end{aligned}$	$\begin{aligned} & 29.40 \\ & 3.40 \\ & 2.60 \end{aligned}$	0.4 0.5 0.5

(*) $\mathrm{NO}=$ Normally Open; NC $=$ Normally Closed.

- Suitable for motor loads, HVAC equipment, pumps, and welding equipment
- Enclosed relays designed to switch loads to 20 amps (DPDT); 30 amps (SPDT)
- Pull-in at 85% of nominal voltage for AC coils or 75\% for DC coils
- Silver cadmium oxide contacts
- Non-socket mount-use $1 / 4^{\prime \prime}$ quickconnect
- Operating femperature -45° to $+50^{\circ} \mathrm{C}$ (DC); -45° to $+45^{\circ} \mathrm{C}$ (AC)

Contact Form	Contact Load Ratings (Resistive \& Inductive)	Coil Ratings © $50 / 60 \mathrm{~Hz}$ Voltage	$\begin{gathered} \text { Coil } \\ \text { Current Rating } \end{gathered}$	Stock No.	List	Each	Shpg.
SPDT	$30 \mathrm{~A} @ 120240 \mathrm{VAC} ; 1 \mathrm{HP} @ 120 \mathrm{VAC} ;$ $11 / 2 \mathrm{HP} @ 240 \mathrm{VAC} ; 25 \mathrm{~A} @ 28 \mathrm{VDC}$	$\begin{aligned} & 24 \mathrm{VDC} \\ & 120 \mathrm{VAC} \end{aligned}$	51 mA 24 mA	$\begin{aligned} & \text { 2A544 } \\ & \text { 1A489 } \end{aligned}$	\$12828	$\begin{array}{r} \$ 10.90 \\ \mathbf{1 1 . 8 2} \end{array}$	0.2
DPDT	$20 \mathrm{~A} @ 120 / 240 \mathrm{VAC} ; 3 / 4 \mathrm{HP}$ @ 120 VAC ; $11 / 2 \mathrm{HP} @ 240 \mathrm{VAC} ; 20 \mathrm{~A} @ 28 \mathrm{VDC}$	$\begin{aligned} & 24 \mathrm{VDCC} \\ & 24 \mathrm{VAC} \\ & 120 \mathrm{VAC} \end{aligned}$	51 mA 115 mA 24 mA	$\begin{aligned} & \text { 2A545 } \\ & \text { 1A4900 } \\ & \text { 1A491 } \end{aligned}$	$\begin{aligned} & 15.76 \\ & 16.89 \\ & 16.89 \end{aligned}$	$\begin{aligned} & 13.40 \\ & 14.36 \\ & 14.36 \end{aligned}$	0.2 0.2 0.2

LAMINATED SOLENOIDS AND SOLENOID VALVE SELECTION DATA

ELECTRICAL

 CONTROLS
(*) Subtract Gravity Value from force given in table when solenoid is being operated against gravty or add Gravity Value when solenoid is operated with granty.
(+) Values are $\pm 10 \%$ (\ddagger) 100% rated voltage at $35^{\circ} \mathrm{C}$. (\#) UL Recognized (ES3929) and CSA (LRS508).

HOW TO ORDER SOLENOID VALVES

The selection of a solenoid valve for a particular control application requres the following information:

- Fiuid to be conmrolled
- Capacity required (GPM or CFM)
- Maximum operating pressure differential (MOPD)
- Minimum operating pressure differential
- tiecricai characteristics (power source available]
- Safe warking pressure required (maximum system pressurel
- Environmental conditions

DESCRIPTION

Solenoid valve bodies are of packless construction, provide shut-off in systems controlling the flow of water, air, and steam. Nof for use in explosive atmospheres. Rated in accordance with standards sanctioned by the Fluid Control Institute, Inc. and the National Fluid Power Association (NFPA). Valves are spring loaded and can be mounted in any position. All units have 400 stainless steel plungers with 300 stainless steel enclosing tubes.

SOLENOID TYPES AVAILABLE

General Purpose Types with Buna N discs and gaskets available in 2 or 3 way types, normally open or closed, with brass or stainless steel bodies.
Low Pressure Steam Types with ethylene propylene discs and gaskets available in 2 way, normally closed brass bodies.
High Pressure Steam Types with Teflon reinforced dises and ethylene propylene gaskets available in 2 way, normally closed brass bodies. Note: some leakage can be expected with both air and water.
400 Stainless Steel Valve Bodies available with or without adjustable metering. Adjustable metering provides for varying flow applications such as carwash detergent dispensing systems.

BOX FRAME TYPE SOLENOIDS

- Pull type
- Varnished cotton tape coil insulation
- Phenolic bobbins (2A170 has nylon with brass tube bobbin)
- Steel, zinc dichromate plated, frames
and plungers
- Steel spring
- Type 1 solder lug coil terminations - Continuous duty cycle rated at $40^{\circ} \mathrm{C}$
- Individually packaged

Volts	$\begin{gathered} \text { Coil } \\ \text { Reistance } \end{gathered}$	$\underset{\text { Cinsulation }}{\text { Coil }}$	Wats	${ }_{\text {ted }}^{\text {Amps** }}$		$\mathrm{L}_{\mathrm{W}}^{\text {Dimensions (lm.). }}$			Mitg. Holes, In. from Plunger L	Dormeyar Madel	Stack No.	List	Each	Shpg.
120 VAC 24 VAC	$\begin{gathered} 234.0 \Omega \\ 9.6 \\ 72.3 \end{gathered}$	Class A	$\begin{aligned} & 7.8 \\ & 7.3 \\ & 8.8 \end{aligned}$	$\begin{array}{r} 0.10 \\ -0.53 \\ 0.37 \end{array}$	$\begin{aligned} & 0.44 \\ & 2.20 \\ & 0.37 \end{aligned}$	$15 / 18.15 / 16$		1 $12 / 3$	27/30	B21-1-A-1 B21-253-A.1	$\begin{aligned} & 2 A 167 \\ & 24168 \\ & 21669 \end{aligned}$	$\begin{array}{r} \$ 13.65 \\ \begin{array}{l} 13.65 \\ 14.57 \end{array} \end{array}$	$\begin{array}{r} \$ 9.69 \\ \mathbf{1 0 . 6 9} \end{array}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$
24VDC	60.0	Class A	10.6	0.44	0.44	15/6	15/15	2	2/20	B24-253-A-1	24170	17.99	12.94	0.5

C-FRAME TYPE SOLENOIDS

- Steel, xinc dichromate plated frames and plungers
- Cotton fape and varnish coil insulation (Polyester encapsulated coil on No. 2A173)
- Solder lug coil terminations
- Continuous duty cycle rated at $40^{\circ} \mathrm{C}$
- Rated $120 \mathrm{VAC} / 60 \mathrm{~Hz}$
- Individually pockaged

DC POWER SOLENOIDS

Control DC Starting Motors on Gasoline-Engine Driven Auxiliaries

70 SERIES

- Applications include remote control of power circuits on battery charging systems, low voltage DC motor generator sets, golf carts, and in-plant lift trucks
- Dust-proof enclosure
- Termination 5/16"-24 UNF-2A thread
- Mounting hardware included 120 SERIES
- Applications include marine engines, garden and lawn tractors, airport service vehicles, and material handling equipment
- Compact, water resistant and able to withstand high temperature and high vibration conditions
- Intermittent duty cycle: 30 seconds ON maximum; 6 minutes OFF minimum

124 SERIES

Applications include baftery charging power circuits, low voltage DC motor generator sets, golf carts, reversing circuits in winch applicotions, and industrial lift trucks

- Dust and splash proof
- Termination 5/16"-24 UNF-2A thread
- Meet UL 583 Industrial Truck Standard 586 SERIES
- Applications include battery charging power circuits, low voltage DC motor generator sets, golf carts, reversing circuits in winch opplications, and industrial lift trucks
- Termination 5/16"-24 UNF-2A thread

FOR A COMPLETE LISTING AND ORDERING INFORMATION

SEE PAGE 2360

SOLENOIDS

LAUNDRY EQUIPMENT SOLENOIDS- For Hotpoint, Maytag, Norge, Speed Queen,

Key	$1 / \beta^{1}$	ths. Pe	$\frac{L e n g}{1 / 4}$	Stroke		
A	8	7	7	$6^{1 / 2}$		-
B	19	19	20	21	20	15
C	$2^{1 / 2}$	2	$11 / 2$	Max.		
D	8	7	7	61/2	- 6	-
E	24	23	24	23	23	15

- Pull type
- Intermittent duty for replacement service on home laundry washers and dryers
- Rated $115 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
- 3 minute maximum on time
- Flanged base, except No. 2X868 channel U type
- Terminals $1 / 4^{\prime \prime}$ spade for quick instal-lation-for quick-disconnects, see page 698

Key	Coil Resistance		Seated Amps	Watts	L	Dimensions W	D	- Mtg. Holes	Dermeyer Model	Stack No.		List	-	Esch	Shpg. Wt.
A	18.20Ω		. 55	24	$24 / 2^{\text {I }}$	$1^{13 / 164}$	$2^{1 / 16}$	$2^{\prime \prime} \mathrm{OC}$	7014	2X661		\$19.38		\$14.82	1.1
B	4.20		1.10	- 40	263/64	23/8	215/18	2	7258	2×662		29.04		22.01	2.7
C	60.00	-	. 36	$\cdots \quad 14$	$139 / 64$	13/16	17/16	$13 / 8$	7690	2×867		15.47	\because	- 12.08	0.5
D	18.20		. 55	* 24	2	$7 / 8$	$2{ }^{15 / 32}$	Channel U	7467	2×868		18.46		14.12	1.2
E	4.50		1.20	-- - 48	$263 / 64$	$23 / 8$	215/16	$2^{4} \mathrm{OC}$	7612	4×317		27.52		20.44	2.7

PUSH OR PULL TYPE SOLENOIDS

- Applications include mactine tools. appliances, vending mechines
- Rated $115 \mathrm{~V}, 60 \mathrm{~Hz}$
- Attach plunger to either end depending on whether a push or pull actionis required
- Class A coil insulation-for usa . temperatures under $230^{\circ} \mathrm{F}$ (105 i with maximum temperature rise of $120^{\circ} \mathrm{F}\left(65^{\circ} \mathrm{C}\right)$
12" leads

Pull fype
Rated 24 VDC
Polyester coil insulation
Corrosion resistant steel plunger
Stainiess steel plunger cavity
Corrosion resistant steel plunger stop
- Spring steel, zinc plated, lock washer
- Steel, zinc chromate plated housing - 6" lead coil termination
- Continous duty cycle rated at $40^{\circ} \mathrm{C}$
- P16 series equivalent to obsolete P6 series

Gravity Value*	Oz. Pull vs. Length of Stroke								Solenoid Series
	1/16"	1/8	$1 / 4^{-}$	3/6	$1 / 2^{\prime \prime}$	5/3	-		
${ }_{0}^{0.60} \mathrm{oz}$	$38.0{ }^{18.0 \mathrm{z}}$: 20.0 oz		${ }^{1.8} .8$	${ }_{4.0}^{1.0}$	${ }^{0.7500} 2$		$\begin{aligned} & \text { Maximum } \\ & \text { Stroke } \end{aligned}$	P4 P16
Ampst © Max. Strake		Dia. -Length (to plunger)		Darmayer Model	Stack No.		List	Each	Shag.
0.27		$3 / 4^{-1}$		P416-2L	$2 \mathrm{2A1}$		27.8	\$16.	0.2

(*) Subtract Gravty Value from force given in table when solenold is being operated against gravity or add Gravity Value when solenoid is operated with gravity.
(\dagger) Values are $\pm 10 \%$ (\ddagger) 100% rated voltage at $35^{\circ} \mathrm{C}$. (\#) Intermittent duty cycle. Maximum 2% oN time and 75% OFF time. Oñ time not to exceed more than 3 minutes at $25^{\circ} \mathrm{C}$ (room temperature) ambient temperature.

DC POWER SOLENOID DIMENSIONS

OUTDOOR EQUIPMENT

OUTDOOR EQUIPMENT

 DC POWER SOLENOIDS

 DC POWER SOLENOIDS}

Control DC Starting Motors on Gasoline-Engine Driven Auxiliaries

70 SERIES

2.

- Applications include remote control of power circuits on battery charging systems, low voltage DC motor gener ator sets, golf carts, and in-plant lift trucks

- Applications include marine engines, garden and lawn tractors, airport service vehicles, and material handling equipment vibration conditions
- Intermittent duty cycle: $\mathbf{3 0}$ seconds ON maximum; 6 minutes OFF minimum

HOW TO ORDER
DC POWER SOLENOIDS
See Page 2361
For Dimensions

1. Select coil voltage

2. Determine whether isolated or ground coil is required by matching number of terminals to original part. Example: SPNO grounded coils have a total of 3 terminals; SPNO isolated coils have a total of 4 terminals; and SPDT isolated coils have a total of 6 terminals.
3. Determine pole form: Single Pole, Normally Open (SPNO) or Single Pole, Double Throw (SPDT)
4. Determine maximum inrush and carrying current and match to appropriate listing in chart above
5. In starting applications, select intermittens duty coils
6. Closely match mounting dimensions on page 2361 with original part
NOTE: Caution must be used in coil selection for use in $\mathbf{1 2}$ volt systems where battery charging may be exposed to continuous, higher-than-raked voltage.

INPUT/OUTPUT RELAY MODULES

IAC/OAC, IDC/ODC SERIES
Opto-isolated solid-state input/output modules provide a means of reliably interfacing provide a means of reliably interfacing based control systems and external input devices and loads.
Series compatible. On modules of the same voltage type, $A C$ or $D C$, output of the output modules is compatible with the input modules. This makes them ideal for sexies operation applications. Output modules can be controlled from sinking (NPN) or sourcing (PNP) logic.
Color-coded by function: IAC-AC input (yellow), OAC-AC output (black), IDC-DC input (white) and ODC-DC output (red). All models have standard plug-in enclosure with captive hold down screw for quick interchanging. Continuous duty. Isolation voltage is 4000 V rms; isolation resistance 10^{3} ohms. High immunity to transfent notse. less than $3000 \mathrm{~V}_{p-p^{* *}}$. UL Recogmzed (I2:5ns) anu (E29244).

MOUNTING BOARDS
 FOR I/O MODULES

Mounting boards accept 4,8 or 16 input/output modules in ant combimation. Insert and
remove modules quickly and easily, without disturbing field wiring. Once inserted, secure modules to board by threading captive hold-down screws into the nuts attached to board.
LED status indicator, plug-in 5 -amp fuse and 3.3 K ohm pull-up resistor are provided on the mounting board for each module. Each module position may be.color coded for convenience.
Screw ferminals in barrier strips are used for logic supply input connections and field input/output connections on all mounting boards. Screw terminals on all mounting boards will accept two \#12 AWG wires.
Card edge patterns on mounting boards Nos. 4 A 035 and 4A036 accept standard 50-pin cable connectors for logic connections. 4A034 uses screw terminals. Eight position mounting board No. 4A035 also accopts a 26 -pin cable connector. Each monule position on these boards is served by two of the cable's conductors. Odd numbered pins are used for signals while even numbered pins are connected to logic ground. Jumper locations permit logic supply input to be introduced through cable rather than screw terminals. UL Recounted (EC1482).
\square

\square

MOUNTING ©OARD SPECIFICATIONS

No. of Module Positions	1	$\begin{gathered} \text { Dimansiens (In.) } \\ \mathbf{W} \end{gathered}$	D*	$\begin{aligned} & \text { PRB } \\ & \text { Model } \end{aligned}$	Stack No.	List	Each	Shpg.
$4 \dagger$ $8 \pm$ $16 \ddagger$	$\begin{array}{r} 4.5 \\ 8.4 \\ 14.4 \end{array}$	$\begin{aligned} & \hline 3.5 \\ & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \\ & 2.2 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 104 \mathrm{~B} \\ 2108 \\ 21016 \mathrm{~A} \end{array} \end{aligned}$	$\begin{aligned} & 44034 \\ & 4 A 0035 \\ & 4 A 036 \end{aligned}$	$\begin{array}{r} \$ 26.26 \\ 43.88 \\ 77.61 \end{array}$	$\begin{array}{r} \$ 26.00 \\ 43.50 \\ 76.85 \end{array}$	2.0 0.5 0.9

(*)Height is measured to top of mounted models
(\dagger)Designed to operate with either negative or positive true logic systems and different logic voltages.
(**)Transient noise immunity is the ability to withstand external noise without triggering the load switch or transmitting the noise. These I/O modules typically demonstrate noise immunity of $>8000 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$.
(\ddagger) Designed to operate with negative true logic systems and one logic voltage.

(**) LED in series with input. ($\dagger \dagger)$ Input will operate on AC or DC voltage

PNEUMATIC TIMERS

TIME DELAY RELAYS				$E C$	CAL
DIN MOUNT RELAYS					
Supplyvotage \quadComanatit Coniguration		Tolenceamue	stpock No.	L	Each
48.					
$24 \mathrm{VDC} \cdot \mathrm{VAC} ; 42-4 \mathrm{sVDCNAC} ; 110-240 \mathrm{VAC}$ inO +1 NC	With with with	MLIIBU	58323	\$176.00	\$156.00
	W ONDELAY				
$24 \mathrm{VDCRAC;} 110.240 \mathrm{VAC}$, $1 \mathrm{NO}+1 \mathrm{NC}$	- - -	TLIIBU	58321	115.00	101.80
	O OFF DEEAY				
24VDCNAC; 4248VDCVAC; 110-240VAC $1 \mathrm{NO}+1 \mathrm{NC}$	With with with				

(I)
UL LISTING AND CSA CERTIFICATION

When choosing products from this section, look for the UL and CSA symbols. Those approved products meet or exceed rigid standards established for per-
sonal safety and maximum product life. UL. file number and CSA Cerification are indicated in the individual listings.

FOR ORDERING INFORMATION, SEE PAGES 491 AND 492

PHASE FAILURE AND VOLTAGE SENSOR RELAYS

PHASE FAILURE RELAYS

\qquad Type		CONTACT RATINGS				-	
	Volts	2. AC Ratiags					
		Indactive		Resistive			
		$\begin{aligned} & \text { Make } \\ & \text { VA } \end{aligned}$	$\begin{gathered} \text { Break } \\ \text { VA } \end{gathered}$	Make \& Braak Amperes	Thermal Continuaus Current		
SPDT	120	1800 1800	180 180	5		5	
DPDT	240 480	3600 3600	360 -360	5 2.5		${ }_{2}^{5} 5$	

Voltage sensing relays may be connected at any point on the line, but only detect abnormal conditions ahead of the point of the connection. Three-wire control should be used for safe operation of equipment.

- For 3-phase monitoring applications
- Protects against phase loss, phase unbalance, phase reversal, and undervaltage
- Adjustable undervoltage settings of 75% to 100% of normal voltage
- Auto reset
- Nos. 5B589 and 5B590 have an LED that indicates "Relay Energized"
- Power consumpfion: MPS models 5.5 VA, MPD models 7.0 VA
- Ambient temperature: $-5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$

WE OFFER A WIDE RANGE OF ENERGY SAVING PRODUCTS
Electric motors, controls, blowers, fans and ventilators, lighting, boilers, ballasts, pumps, furnaces, water heaters, and other products.

See Index under Energy Saving Products for complete listings.

GENERAL TERMINOLOGY

Class 10 or 20 Protection: Refers to time needed for an overioad relay to trip (disconnect) the motor from the load. Class 10 takes 10 seconds at 6 times the rated trip current. Class 20 takes 20 seconds at 6 times the rated trip current.

Drop-Out Voltage (or Current): The voltage (or current) at which the device will return to its deenergized position.
Inrush VA: The inrush VA is the VA required to operate the device. The inrush VA occurs only for a short time period, 10 to 40 milliseconds. The inrush VA of an electromagnetic device will be different for all devices, depending upon the design of the particular device. The inrush VA can be supplied by the manufacturer and is normally in their catalog under "coil data."
Jogging (inching): The quickly repeated closure (and opening) of the circuit to start a motor from rest for the purpose of accomplishing small movements of the driven machine.
Locked Rotor Current: The steady-state current taken from the line with the rotor locked and with rated voltage (and rated frequency in the case of alternating current motors) applied to the motor.
Pick-Up Voltage (or current): The voltage (or current) at which a device starts to operate.

Pilot Duty: A term used to describe contacts which are used to control electromagnetic devices such as solenoids, relays, contactors or motor starters. A pilot duty rating is expressed in volt amps or VA.

Pilot Duty Rating: The contact rating of a relay designed to switch the coil of electromagnetic devices such as solenoids, relays, contactors or motor starters. The VA rating of the controlling contacts must be equal to or greater than the sealed VA, not the inrush Va of the controlled coil to prevent excessive contact wear or conact welding.

Rating: The limits of the ability of a device to operate safely and satisfactorily within its normal environmental extremes. For example, a time switch rating is its capacity to open and close electric circuits without its contacts overheating, sticking or welding.
Sealed VA: The sealed VA is the VA after the controlled device has been operated or energized. The sealed VA of an electromagnetic device will be different for all devices depending upon the design of the particular device. The sealed VA can be supplied by the manufacturer.
Volt Ampere (VA): A representation of the power in circuit in which the voltage and the current are out of phase.

NEMA VS. IEC COMPARISON

test and approval procedures. Denmark, Norway, Sweden and Switzerland require test and approval before devices may be sold there.
Design philosopy for contactors:
NEMA Contactors have a standardized rating system of sizes for motor controllers. This allows easy interchangeability from various manufacturers (a NEMA size 1 for a NEMA size 1). For each NEMA size there are corresponding HP, Voltage, Frequency and Current ratings as defined by the NEMA ICS standards. At each rating, there is built-in reserve capacity for performance over a broad band of applications. There are no specified electrical life requirements, but they have replaceable power contacts and replaceable coils.
IEC Contactors do not define standard sizes. A contactor is matched to a load expressed in rating and electrical life. The manufacturer evaluates the device based on a number of defined applications, under the title Utilization Categories. A higher level of skill is required to select contactors for an application (motor load, duty cycle, FLC, etc.). Lower HP contactors do not have replace-

TYPES OF LOADS

Inductive Load: Motors are inductive loads. The impedance of motors is very low at standstill which causes the inrush current to be 3 to 6 times the running current. The current will graduaily decrease to normal running current as the load reaches operating speed. Inductive contact ratings are specified as Amp Inductive, Amp-H, HP or FLA/LRA (full load current/locked rotor current)
Pilot Duty Lood: Electromagnetic (electromechanical) devices such as solenoids, relays, contactors or motor starters are pilot duty loads. This type of inductive load causes a high inrush current to flow at contact closing, which may cause con tact welding. When this type of load is turned "off", the magnetic field, which develops the operating force for the device, collapses. The stored energy in this magnetic field must be dissipated across the contacts and causes arcing and contact erosion.

Resistive Load: A heater is a resistive load. In a resistive load the initial current is essentially zero and gradually rises to its maximum value in step with the supply voltage. Contact ratings are resistive unless otherwise marked.
Tungsten Load: Incandescent lamps are tungsten loads. The cold resistance of a tungsten load is extremely low. This can result in inrush currents of as much as 15 times the steady state current, causing contact erosion or welding. Tungsten contact ratings are specified as Amp-T or Amp Tungsten.

NEMA (National Electrical Manufacturers Association). Founded in 1926. Made up of menber marafacrurers in the electrical fins: stry
NEMA publisnes standards for a wide variety of motor conirol equipment to make selection and application simple. They give the user a common basis for product choice and safe interchangeabili ty between different manufacturers.
IEC (International Electrotechnical Commission). Founded in 1906. Made up of over 40 countries. The U.S. is a charter member. The majority of the member nations have brought their own national standards in line with IEC recommendations.
IEC recommendations apply to electrical terms, ratings, test methods, dimensional requirements, etc.
Testing. IEC manufacturers test their own devices for compliance with IEC standards. To successfully sell IEC devices in the U.S., they need to be tested for per formance and safety by an independent agency, such as UL (Underwriters Laboratories).
Some European countries have their own
able contacts. Some do not have replace able coils. Often called "throw-away" derices.
Design philosonhy for overload reiays:
NEMA Thermal Overioad Relays have eutectue alloy thermal elemoms for heat sens ing. Bimetallic type elements are also available. The elements are indirectly heated and are not part of the current path. Available in trip class 10 (quick trip), 20 (standard), or 30 (slow blow). Have higher short circuit withstand capability than directly heated type overload elements. Interchangeable heaters allow one overload relay block to cover the entire range of a motor controller.
IEC Thermal Overload Relays have directly heated bimetallic elements for current sensing. Trip class 10 means the overload will trip within 10 seconds at 6 times FLC. Adjustable current setting dials marked in Amperes, related to the motor FLC. Maximum FLC setting is between 1.3 and 1.7 times minimum FLC setting. Each overload block will not cover a wide range of FLC's. If a different range is required, or if the unit is damaged, the entire overload relay block must be replaced.

MERCURY FILLED RELAYS AND CONTACTORS

ELECTRICAL CONTROLS

MERCURY DISPLACEMENT RELAYS

- Hermetically-sealed, liquid mercury confacts
- Used fór motor loads, compressors, power switching, heating, lighting, automation control, oven/furnace control
- Frictionless plunger eliminates metal-to-metal wear
- Normally. open contacts
- Temperature range -35° fo $+60^{\circ} \mathrm{C}$ ambient under continuous load
- Designed for vertical mounting only

Conloct Load Ratings																			
		Amps, Resistive							Amps, Tungsten							Horsapower			
Key	Stock No.	48	$\begin{aligned} & \text { Q VDC } \\ & 125 \dagger \end{aligned}$	$250 \dagger$	120			600	489	$\begin{aligned} & \text { eVDC } \\ & 125 \dagger \end{aligned}$	$250+$	120		CC_{480}	600	$\frac{120 \mathrm{VAC}}{10}$	$240 \mathrm{VAC}$	$\begin{gathered} 480 \mathrm{VAC} \\ 38 \mathrm{c} \end{gathered}$	$\begin{gathered} 600+\text { VAC } \\ 36 \end{gathered}$
A	$\begin{aligned} & 6 A 860 \\ & 6 \times 597 \end{aligned}$	35	17	10	35	35	35	35	35°	-	-	35	35	-	-	2	$5 \cdots 3$.	10	10
A	$\begin{aligned} & 6 \mathrm{~A} 863 \\ & 6 \times 599 \end{aligned}$	60	30	20	60	60	60	60	60°	30	* 20	60	60	35	28	3	$5 \quad 10$	15	15
A	6A866	100	50	30	100	100	100	100	100	50	30	100	100	25	20	7.5	10	-	-
B	$\begin{aligned} & 6 A 861 \\ & 6 \times 598 \end{aligned}$	35	17	10	35	35	35	35	35	-.	-	35	35	-	-	2	57.5	10	10
B	$\begin{aligned} & 6 A 864 \\ & 6 \times 600 \end{aligned}$	60	30	20	60	60	60	60	60	30	20	60	$\cdot 60$	${ }^{`} 3$	28	3	$5 \quad 10$ -	$\bigcirc 15$	15
C	$\begin{aligned} & \text { 6A862 } \\ & 3 \times 752 \end{aligned}$	35	17	10	35	35	35	35	35	-	-	35	35	-	-	2	$5 \quad 7.5$	- 10	10
C	$\begin{aligned} & 6 A 865 \\ & 3 \times 753 \end{aligned}$	60	30	20	60.	60	60	60	60	30	20	60	60	35	28	--3.	$5 \ldots 10$	- 15	15

(\dagger) Not rated by UL or CSA for these values.

Key	Amps	Contacts	Coil Ratings © $\underset{\text { Oolts }}{ } 50 / 60 \mathrm{~Hz}$	Coil Current Rating	$\operatorname{Dimensions~}_{\mathbf{W}}(\ln .)_{D}$			Durakool Model	Stock No. 2	List	Each	Shpg. Wt.
A	$\begin{gathered} 35 \\ 60 \\ 60 \\ \hline 10 \end{gathered}$	SPST	$\begin{aligned} & 120 \mathrm{VAC} \\ & 120 \\ & 120 \end{aligned}$	57 maA 5 mad 1!751	$\begin{aligned} & +62 \\ & 5.12 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2 \end{aligned}$	$\begin{aligned} & 2.25 \\ & 2.25 \end{aligned}$		$\begin{aligned} & 6 \times 597 \\ & 6 \times 599 \end{aligned}$ $6 A \overline{3} 66$	$\begin{gathered} \$ 43.35 \\ 69.40 \\ 17917 \end{gathered}$	$\begin{aligned} & \$ 37.50 \\ & 60.05 \\ & 149.00 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 20 \end{aligned}$
A	6	SPST	208/20	23/7mA	${ }^{4.62}$	$\stackrel{3}{2.0}$	2.25	1 M 35 A 28 ACDV 1060APS208ACDV	64860 6 A863	$\begin{aligned} & 43.35 \\ & 69.40 \\ & \hline \end{aligned}$	$\begin{aligned} & 37.55 \\ & 60.05 \end{aligned}$	3.8 1.0
B	${ }_{6}^{35}$	DPST	120	${ }_{1}^{130 \mathrm{~mA}}$	${ }^{4.62}$	4.0	2.62 2.62	$\begin{aligned} & \text { 2M35A120AC } \\ & 2060 \mathrm{APSI20AC} \end{aligned}$	$\begin{aligned} & 6 \times 598 \\ & 6 \times 600 \\ & \hline \end{aligned}$	$\begin{array}{r} 81.43 \\ -128.57 \\ \hline \end{array}$	$\begin{array}{r} 70.45 \\ -111.00 \\ \hline \end{array}$	$\begin{array}{r}1.0 \\ -1.7 \\ \hline\end{array}$
3	3.7 +4	DPS	208310	79/86nia sus7ni	$\frac{1.62}{12}$	4.0 40	$\frac{3.62}{26}$		64861	81.43 12857	170.50	1.8
c	150	3PSi	$\begin{aligned} & 120 \\ & 1 \geq 0 \end{aligned}$	$\underline{2} \mathrm{mma}$	5	4.0	3.5	MindPIC	$\begin{aligned} & 3 \times 702 \\ & 3 \times 753 \end{aligned}$	$\begin{aligned} & 12347 \\ & 186.67 \\ & \hline \end{aligned}$	$\begin{aligned} & 106.85 \\ & 161.75 \end{aligned}$	2.7
c	$\frac{25}{60}$	3PST	$\begin{aligned} & 2081240 \\ & 208240 \end{aligned}$	$108 / 121 \mathrm{mAA}$ $112 / 112 \mathrm{~mA}$	$\begin{aligned} & 462 \\ & 5.12 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 3.95 \\ & 3.75 \end{aligned}$	$\begin{aligned} & \text { MiSJ MAACDV } \\ & 3060 A P S 208 A C D V \end{aligned}$	$\begin{aligned} & 6 A 862 \\ & 6 A 865 \end{aligned}$	$\begin{aligned} & 123.47 \\ & 186.67 \end{aligned}$	$\begin{aligned} & 106.85 \\ & 161.75 \end{aligned}$	2.3 2.6

VERTICAL MOUNT MERCURY DISPLACEMENT CONTACTORS

					- Hermetically sealed, liquid mercury contacts - Applications include heating, air conditioning, and processing equipment - 3-pole, normally open design - Identical footprint to 30-amp definite purpose contactors					- Provide longer service life than definite purpose electromechanical contactors - Ul Listed for 240V, 3-phase motor applications Dimensions: 3.75L x 3.14W $\times 3.43^{\prime \prime}$ D					
Maximum Contact Load Rating								$\begin{gathered} \text { Coil Ratings } \\ @ 50 / 60 \mathrm{~Hz} \\ \hline \text { Volits } \\ \hline \end{gathered}$	Coil Current Rating	Durakool Model 3M30APS...		Stock No. 2	List	Each	ShpgWt.
120V	208 V	$\begin{aligned} & 960 \mathrm{~Hz} \mathrm{VAC} \\ & 240 \mathrm{~V} \end{aligned}$	27 N	480V	48 VDC										
					30A	14.8	89.0	24	510 ma	24	AC	6 A867	\$63.59	\$55.05	1.9
30/30A*	30/30A*	30130A*	30/20A*	30/20A ${ }^{*}$				120	100 mA	120	AC	64868	63.59	55.05	1.9
1.5 HP	1.5HP	3.0HP	3.0HP	3.0 HP				$\begin{aligned} & 240 \\ & 240 \end{aligned}$	$55 / 62 \mathrm{~mA}$	208	ACDV	64869	63.59	55.05	1.7

(*) Amps-Resistive/Inductive (.7-8 PF). (t) FLA (Fual Load Amps); LRA (Locked Rotor Amps).
2 WARNING: These products are covered by Califoma Proposition 65 . Califormia purchases or shipments, see first page of Grainger Branch Listing or call any

ELECTRICAL CONTROLS
 INDUSTRIAL CONTROL TERMINOLOGY

RELAYS

See Pages 433 and 481 For a More Detailed Description On NEMA and IEC Contactors and Motor Starters.

> SPECIAL NOTE: Motor starters, contactors, and relays, like any switching device, have a finite life. Normal failure modes incinde contact sticking and imuroter meraton tny inctallaton wnere property damage andior personal injury could result, because the switch did not open or close, requires the installation of backup systems.

Relays \{Decision Devices). Controls current flow in a circuit based on signais obtained from on information device. A change of information is utilized by relays to make-a change in the action portion of the control circuit. In other words, a relay responds to signals from the information segment of the circuit to cause the proper change in the action segment.
General Purpose Relays are usually rated up to 10 amps and they are intended for control circuit applications.
Power Relays are usually rated up to 30 amps. They are intended for use on direct switching of small motors and heating applications that do not have a high cycle rate.
Mercury Displacement Relays are used for high current (power) applications. Usually used on process heating applications where a high cycle rate and quiet operation is required.

WHAT IS THE DIFFERENCE?

Contactors. A contactor does not provide overload protection. Contactors are used to electrically turn on or off high current, nonmotor loads or in motor circuits where overload protection is separately provided.
The contactor operates by applying a control voltage to the contactor coil. When the coil is energized, the movable contarts are closed against the stationary contects, has completing the corcuit. The contachor is therefore used to supply and interrupt power to an electrical load.
NEMA Contactors. NEMA (National Electrical Manufacturers ${ }^{\text {A }}$ Association) establishes product design stamards and test speceficuadions tar these contactors. These contactors are capable of generai jogging and reversmg duty. NEAIA rontactors can be applied with limited application information.
IEC ${ }^{-}$Contactors. IEC (International Electrotechnical Commission) publishes recommendations for certain product design parameters and laboratory test procedures. In general, IEC standards allow the contactor to have a smaller creepage path and a higher temperature rise than NEMA, which results in a smaller physical size. Also, when sizing an IEC contactor, knowing an application's duty cycle and jogging and reversing characteristics becomes important.
Definite Purpose Contactor. Similar in function to a general purpose contactor. However, they are lighter duty and often considered a-throw away product when compared to an equivalent NEMA or IEC contactor. Used in HVAC, data and food processing equipment.
Interlock. A device which is actuated by the operation of some other device with which it is directly associated to govern succeeding operations of the same or allied devices. Interlocks may be either electrical or mechanical.

THREE-PHASE MONITORS, CURRENT SENSORS, AND ALTERNATING RELAYS

THREE-PHASE LINE MONITOR

PROTECTS EQUIPMENT \& MOTORS FROM DANGEROUS LINE CONDITIONS:	- Wye or Delta 3-wire hookup - 8 amp, SPDT isolated relay contacts
Incorrect Phase Sequence Loss of a Phase	LED indicator signals normal operation
Low Voltage Conditions; 88 to 92% of adjusted nominal valtage	- Automatic reset - 4\% voltage unbalance
Voltage unbalance between phases FEATURES	5 second trip delay No. 6C058 uses socket No. 5X852
Easy-to-set line voltage	(order on page 473); No. 6C059

Adjustablo Nominal Line Voltage $950 / 60 \mathrm{~Hz}$	Maximum Line Voltage	Socket Required	SSAC Model	Stock - Na.	- List	$\underset{\text { Each }}{\stackrel{~}{2}}$	Shpg. W.
200 to 400VAC	270 VAC	5X852	PLM6405	6 coss	\$62.79	\$62.25	0.5
400 to 480	530	Included	PLM9405	6 6059	73.34	72.60	0.8

UNIVERSAL AC CURRENT SENSOR

DESIGNED FOR USE IN:

- Pumping and trrigation
- Conveyers and Loaders
- Material Handling Equipment
- Fans, Blowers, Ovens, and Heaters DETECTS:
- Locked Rotor
- Loss of Current
- Open Heater or Lamp Load
- Whether an Operation has Taken Place or Ended

FEATURES

- Switch selectable overcurrent or undercurrent sensing
- Adjustable trip points from 2 to 20 amps
- Adjustable trip delays 0.5 to 50 seconds
- Complete isolation between sensed current and control circuit
- Encapsulated solid-state circuitry
- 8 amp, SPDT isölated output contacts
- Toroidal sensor has $3 / 8^{\prime \prime}$ through hole
- IED fault indicator

Input Operating Vottage © $50 / 60 \mathrm{~Hz}$	Maximum Allowable Current	Output Rating @ 240VAC	Mount	SSAC Model	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	List	Each	Sipg. Wh.
24 VAC	40 araps	8 amps	Surface	ECSS21BC	${ }^{\text {cheos }}$	\$65.85	\$55.40	0.5
120	30	8	Surface	ECS41BC	${ }_{6} 6055$	6585	85.40	n. 2
236	40	8	Suriace	Ecscisc	66057	65.55	65.40	15

ALTERNATINE REEAYS

- Alternates the operation of two loads sharing their run time				Selector switch allows alternating or electrically locked operation				
- DPDT crosswiring allows simultaneous operation of two motors, solenoids, compressors, pumps, valves, or heaters-provides dual stage load capacity								
Line Voltage e50/60 Hz	Contact Form (Crosswired)	Contact Ratian (Resistive) Q 240 VAC	Maximum Voltage	$\begin{aligned} & \text { SSAC } \\ & \text { Model } \end{aligned}$	$\begin{gathered} \text { Stock } \\ \text { Alo. } \end{gathered}$	List	Each	$\begin{aligned} & \hline \text { Shpg } \\ & \text { Wif. } \end{aligned}$
24 VAC	DPDT	10A	250VAC	ARP23S	6 6051	\$51.90	\$51.45	0.5
130	DPDT	10	250	ARP43S	.. 66052	51.90	52.45	0.5
230	DPDT	10	250	ARP63S	68053	51.90	51.45	0.5

MANY BRANDS OF TEST INSTRUMENTS AVAILABLE
 $4{ }^{2}$

却io BK Fitmcisucy
Simpson
$\frac{\text { BIDDLE }}{\text { INSTRUMENTS }}$ HEIU

AMPROBE MSTRUMENT
FLபKE

ELECTRICAL CONTROLS

TIME DELAY RELAY SELECTION GUIDE

When power is applied to input terminals, the time delay
starts. At the end of the preset time delay, the output con-
tacts transfer, either connecting or disconnecting the load.
Reset by removing input power.,

INTERVAL DELAY

When power is applied to the input terminals, the contacts transfer and the timing cycle starts. At the end of the preset time delay, the output contacts transfer back, either disconnecting or connecting the load. Reset by removing input power.

REPEAT CYCLE

When power is applied to the input terminals, OFF delay is initiatr: At the end of the OFF preset time. contacts trans-
 end of Us preset tme, comacts transfer from iN to VFF posit:on and a new cycle begins. The ON and OFF cycles will continue to alternate until power to input terminals is removed.

CYCLE ONE-SHOT

The start terminals are connected. Timing starts when power is applied. The output relay will be OFF for the set time then $O N$ for the set time. The timer is reset when power is disconnected or a reset input is applied.

SIGNAL INTERVAL/OFF DELAY

Power is applied at all times. The first timing cycle begins when the input signal is applied. The second timing cycle begins when the input signal is removed. The output relay is energized during both timing cycles.

SIGNAL ON DELAY/OFF DELAY

Power is applied at all times. The first timing cycle begins when the input signal is applied, the second when it is removed. The output relay is energized when the lapsed time from the first timing cycle equals the setpoint. It will remain energized until the lapsed time of the second timing cycle equals the setpoint.

- $\pm 1 \%$ repeat accuracy
- 2VA maximum

- 10 amp contact rating @ 120/240VAC; rated $1 / 3 \mathrm{HP}$ @ $120 \mathrm{VAC}, 1 / 2 \mathrm{HP} @ 240 \mathrm{VAC}$
- On Deláy, Interval, and Repeat Cycle models have 100 msec typical reset time; Off Delay and One Shot 40 mSec

- Order sockets on page 472
- Dimensions: $4.03 \mathrm{H} \times 2.34 \mathrm{~W} \times 1.72^{\prime \prime} \mathrm{D}$

- Five programmable timing ranges
- On Delay timers use five-position rotary switch to select timing range and three pushbutton thumbwheels to select time values

$\underset{\substack{\text { Timing } \\ \text { Mode }}}{ }$	Timing Ranges		$\begin{gathered} \text { Square D } \\ \text { gocodel... } \end{gathered}$	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	List	Each	$\stackrel{\text { Shpg }}{\text { We }}$
On Delay	0.05 to 9.99 Sec 1to 99.9 sec . 0.1 to 99.9 Min . 1 to 999 Min	$\begin{aligned} & 22 \mathrm{VAC} \\ & 1200 \\ & 240 \end{aligned}$	$\begin{aligned} & \text { JCKG6V14 } \\ & \text { JCK60V20 } \\ & \text { JCK60V24 } \end{aligned}$	$\begin{aligned} & 58386 \\ & 58385 \\ & 58384 \end{aligned}$	$\begin{gathered} \$ 93.00 \\ 93.00 \\ 93.00 \end{gathered}$	$\begin{array}{r} \$ 92.10 \\ \mathbf{9 2 . 1 0} \\ \mathbf{9 2 . 1 0} \end{array}$	$\begin{aligned} & 0.4 \\ & \begin{array}{l} 0.4 \\ 0.4 \end{array}, ~ \end{aligned}$

- Five programmable timing modes and ranges and mode; three position thumbwheels are usedito select time value

Timing Mode	Timing Nanges	- Input Voltage © 50/50 Hz	Square D Model SESO ...	Stock No.	List	Each	Shpg. Wt.
On Delay Off Delay	0.05 to 9.99 Sec . 0.1 to 99.9 Sec .	24VAC	JCK70V14	58383	\$105.00	\$103.95	0.4
Interval	1 to 999 Sec .	120	JCK70v20	5B382	105.00	103.95	0.4
One Shot	0.1 to 98.9 Min .	240	JCK70V24	58381	105.00	103.95	0.4
Repeat Cycle*	1 to 999 Min						

. SUBMINIATURE, ON DELAY OPERATION

- ideal for small spaces - LED indicator for Power-On and Time-
- Repeat accuracy $\pm 2 \%$ Up
- 8-pin models include relay socket
- Short reset time- 100 mSec
- 14-pin models require relay socket No. 2A584 on page 473
- Time setting knob
- Input voltage 120VAC, $50 / 60 \mathrm{~Hz}$ $\pm 10 \%$

DIMENSIONS FOR OMRON H3Y SERIES

All Models
8-Pin Models
14-Pin Models

- Use in automatic control circuits, machine fool programming, sequence controls, heating and cooling operations, warm-up delays, etc
- Transient protection on AC coils
- Easy-To-Read, top-mounted timing adjustment knob with graduated scale
- 25 mA coil current rating

TIME DELAY RELAY SELECTION GUIDE ON PAGE 484

ON DELAY, OFF DELAY, $A B E$
INTERVAL MODELS

- Input voltage $120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ $\pm 10 \%$.
- Contact ratings: $1 / 3 \mathrm{HP}$ at 120 VAC ; $1 / 2 \mathrm{HP} \mathrm{at} 240 \mathrm{VAC} ; 10 \mathrm{amp}$ af 120 VAC
- 125 mSec reset time
- $\pm 2 \%$ repeatability
- DPDT relay output
- $23 / 8 \mathrm{~L} \times 13 / 4 \mathrm{~W} \times 37 / 10^{n} \mathrm{D}$ (less pins)

REPEAT CYCLE MODELS

- Two top-mounted adiustment knobs allow setting On time and Off time independently
- Input voltage $120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$, $\pm 10 \%$
- Contact ratings: 10 amps resistive at $120 \mathrm{VAC} ; 1 / 3 \mathrm{HP}$ at $120 / 240 \mathrm{VAC}$
- $\pm 1 \%$ repeatability of $25^{\circ} \mathrm{C} ; 150 \mathrm{mSec}$ reset time
- DPDT relay output
- 23/8L $\times 13 / 4 \mathrm{~W} \times 43 / 16^{10} \mathrm{D}$ (less pins)

All Timers Use Socket
No. 5X852; Except OFF
DELAY Series Uses No. 6X156order on page 473

Timinn Range	Stock No.	List	Ear.h	$\begin{aligned} & \text { Shipg. } \\ & \text { Wht. } \end{aligned}$
0.1-10 Sac.	5×228	- $\$ 51.49$	\$13.80	0.3
18-180	5×829	51.49	43.80	0.3
3-300	5×330	51.49	43.80	0.3
9900	6×501	56.64	44.15	0.3
0.1-10 Sec.	6×153	- 57.88	49.25	0.3
18-180	6x154	57.88	49.25	0.3
3-300	6×155	57.88	49.25	0.3
9.900	6×602	57.88	49.25	0.3
0.1-10 Sec.	6x603	58.70	49.90	0.3
18-180	6×604	58.70	49.90	0.3
3 300	6x605	58.70	49.90	0.3
0.1-10 Sec.	1 14356	72.09	61.30	0.5
0.060	, 14367	7209	61.30	0.5
18-180	1 1368	72.09	61.30	0.5

ELECTRICAL CONTROLS

TIME DELAY RELAYS

CR RECYCLE SERIES

- Two independent control knobs for adjusting On and Off delays
gized On, activating On delay
- Relay returns to Off state (contacts

NO) if power is removed.
Knob adiustable time increments

- Coil current rating 25 mA applying power to terminals-when transfer from normally Off to ener-

*) Orier s x kets on page 473.
TIME DELAY RELAY SELECTION GUIDE
ON PAGE 484

LIBRARY OF TECHNICAL MANUALS

Helpful reference books for the tradesman, student, and homeowner. Topics cover electricity, electric motors, welding, plumbing, refrigeration, air conditioning, pneumatics, hydraulics, and much more. See Index under Books, Technical.

ON-DELAY MULTI-TIME RANGE RELAY :

- FCC Approved
- User programmable, multiple time ranges
- $\pm 0.1 \%$ Repeatability
- 120VAC $\pm 10 \% 50 / 60 \mathrm{~Hz}$ input voltage
- DPDT relay output rated 10 amps resistive at 120 VAC
- Coil Current Rating 16 mA
- 8-pin design; uses socket No. 5X852-order on page 473
- Timing light indicates when unit is operating
- Digital time set
- Transient voltage protection

No. 6A854. Shpg. wt. 0.4 lbs. List.... $\$ 55.00$.
Each ... $\$ 53.80$

MULTI-TIME RANGE/MULTI-FUNCTION RELAY

No. 6A855. Shpg. wt. 0.3 lbs. List.... $\$ 66.00$.

Each .. $\$ 59.60$

- FCC Approved

User programmable, multiple time ranges and functions

- $\pm 0.1 \%$ repeatability
- 120 VAC $\pm 10 \% 50 / 60 \mathrm{~Hz}$ input voliage
- DPDT relay output rated 10 amps resistive of 120 VAC
- Coil Current Rating 16 mA
- 11 -pin design; use socket No. 6X156-order on page 473
- Timing light indicates unit operation
- Digital time set
- Transient voltage protection

SOLD-STATE, CUBE TIME DELAY RELAYS

- Solid-state SPST circuit provides long life and quick response time
- Input voltage of 120 V AC/DC $\pm 10 \%$
- Flame retardant and solvent resistant filled polyester thermoplastic housing
- Fast-on terminals for easy insfallation

Truing Rango	Stock No.	List	Each	$\begin{aligned} & \text { Shpg } \\ & \text { Wt. } \end{aligned}$
0.05 to 1.00 Sec.	24559	\$22.00	\$ 18.01	
0.25 to 5.00	2 A 560	2200	18.01	
0.50 to 10.00	24561	22.00	18.01	
3.00 to 60.00	24562	22.00	18.01	0.5

SPECIFICATIONS

Leakage Current: 2 mA max.
Voltage Drop: 3.3VAC @ 1A
Surge Current: 20A peak, 1 cycle nonrepetitive
Power Consumption: 3W maximum Control Output: 1A max. AC or DC resistive or inductive: minimum 10 mA AC/DC
Dielectric Strength: $3000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ RMS, terminals to mounting

NOTE: Unfiltered DC power must be full wave rectified to allow proper operation of the digital timing circuit.

- Ambient temperature of -40° to $150^{\circ} \mathrm{F}$
- Reset by removing input power (on delay only); off delay models use momentary contact with power applied at all times
- Compáct cube size
- Dimensions: 2L $\times 2 W \times 7 / 8^{\prime \prime} \mathrm{D}$

CNS MULTIFUNCTION SERIES

- Up to 8 programmable timing func- z tions
- Universal input 24-240V AC or DC
- Rated for 50 or 60 Hz
- Dip switch selection of timing function and range
- Contral knob and dial scale set actual delay time
- 1/16 DIN style case
- Coil current rating 42mA

8 or 11 Pin Models				11 Pin Models Only				
- Delay On Operate				- Delay On Release				
- Interval On (input controlled)				- Inverted Delay On Releas				
- Recycle (initially off)				- Interval On (switch controlled)				
- Recycle (initially on)				- Interval Off		.		
326 SK W G GNSRELAY SPECIFIGAIONS								
	Contact Load Rating Amps, Resistive	- .-		Repastability		Recycte Time		ting rature
DPDT	$\begin{aligned} & 10 @ 277 \mathrm{VAC} \\ & \text { or } 30 \mathrm{VDC} \end{aligned}$		VAC	$\pm 2 \%$		ec., Typic c., Max.	-10	$5^{\circ} \mathrm{C}$
			REA					
$\begin{aligned} & \text { No. of } \\ & \text { Pins } \end{aligned}$	Time	Voltage	Ise with Socket Na.	$\begin{aligned} & \text { PaB } \\ & \text { Modiel } \end{aligned}$	Stock No.	List	Each	$\overline{\text { Shupg. }}$
11	$0.1 \mathrm{Sec}-100 \mathrm{Min}$	$\begin{gathered} 24240 \\ \mathrm{AC} \text { or } \mathrm{DC} \end{gathered}$	$\begin{aligned} & 5 \mathrm{X} 852 \\ & 6 \times 156 \end{aligned}$	CNS $35-92$ CNS $35-96$	$\begin{aligned} & 2 \times 662 \\ & 2 \times c 63 \end{aligned}$	$\begin{aligned} & \$ 57.94 \\ & 63.55 \end{aligned}$	$\begin{aligned} & \$ 57.40 \\ & 62.95 \end{aligned}$	0.4 0.4

${ }^{*}$) Order socket on page 473

CNT MULTIFUNCTION SERIES

- 10 programmable fiming functions and 2 counting functions

Thumbwheel switches for programming

- 1/16 DIN style cáse
- LCD digital display
- Rated for 50 or 60 Hz

(*) Order socket on page 473.

Let Us Supply Your In-Plant Safety Equipment
First aid kits, fire extinguishers, eye and face protectors, flammable fluid containers, work gloves, and visual and audible warning devices are available from this catalog. Refer to Index.

HYDRAULICS

THREADED CARTRIDGE VALVES

Farkar

- Self-contained, portless valves designed for straight thread installation to eliminate leakage
- Reduce weight and space required compared to a conventionally plumbed system.
- Reduce cost of fittings and hose, simplifies troubleshooting and reduces downtime
- Quick and easy removal. Simply unscrew, no fittings to disconnect
- Allow hydraulic system controls to be integrated into a single block or individual valve bases
- Cartridge style valves include: check, relief, pressure reducing, sequence, needle, and solenoid valves

© CHECK VALVES
Nos. 4ZC96 and 4ZC97 check valves allow free flow in one direction while preventing flow in the reverse direction. They can be used to isolate portions of a hydraulic circuit or to provide a free flow path around a restrictive vaive.

圆 RELIEF VALVES

No. 4ZF02 relief volve is suited for continuous duty applications and is primarily used to limit main system pressure.
No. 4 ZFO3 relief valve is best suited for intermittent duty applications as overload protection and shock protection relief.

© PRESSURE REDUCING/ RELIEF VALVE
No. 4ZF01 pressure reducing/relieving valve can be used in any appliention where a regulated pressure low pressure is requared. The rave also acts as a relief valve, relieving any shocks or surges that occur between its regulated surges that occur between its regulated
pressure port and the actuator. When the valve is in the relieving mode, the inlet port is blocked. 200-3500 PSI ranze.

© SEQUENCE VALVE
No. 4ZF04 sequence valve is used to control the sequence of operation of two or more hydraulic actuators by assuring priority hydraulic pressure to one actuator before another.

No. 4ZF00 needle valve provides speed control and shutoff where a reverse flow check is not required.

SOLENOID VALVES

Nos. 4ZC98 and 4ZC99 solenoid vaives are used in circuits requiring On/Off valves and low leakage. Single acting cylinder applications typically utilize valves of this type. Valves can be used for bleed down flow and/or raising and lowering a vertical cylinder. No 4ZC98 (DC) is normally closed and No. 4ZC99 (DC) is normally open.

CONTINUED ON NEXT PAGE

HYDRAULICS

SOLENOID VALVES AND SUBPLATES

AC SOLENOID VALVES

D03 (ISO-03) Size

- 5000 PSI pressure capability
- NFPA fatigue-life tested to 20 million cycles
- Nylon junction box is NEMA 4 rated for resistance to water and commonly used industrial fluids
- Standard viton O-rings provide multi-fluid capability without changing seals
D05́ (iSO-05) Size
- 3600 PSI pressure capability
- High solenoid and spring forces provide increased reliability in extreme conditions
- Coil armature design maximizes solenoid force and minimizes electrical energy consumption
- Valve bodỳ and spool designed to minimize pressure drop and increase system efficiency

AC/DC SOLENOID VALVE SUBPLATES

For use with above-Dayton solenoid valves as well as any make
minum with working pressure rating of 3000 PSI. No. 1A324 is of valve conforming to NFPA standards listed in chart below. steel with working pressure of 4500 PSI. Dayton brand. Bolt kit included. Side ported design. No. 1A323 is made of alu-

12 VDC POWER UNITS

12VDC POWER UNII SPECIFICATIONSAND ORDERIVG DATA

Key	$\begin{aligned} & \text { Dimensions (In.) } \\ & \mathbf{W} \end{aligned}$			$\begin{aligned} & \text { Fenner } \\ & \text { Model } \end{aligned}$	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	List	Each	Shpg.
A	6.3	6.8	20.3	DC30	42629	\$316.20	\$279.00	34.0
B	7.1	9.7	16.8	DC-1	42185	326.40	286.75	36.0
C	6.3	7.6	20.3	DC-20	47186	397.80	349.00	36.0
D	7.2	6.8	20.3	DC50	42338	467.20	416.25	43.0
E	7.2	8.0	20.3	DC-60	42339	548.80	488.25	43.0

12 Volt DC, horizontal mount hydraulic power units offer a range of valving options to suit many mobile applications: truck tail gates, cranes,-wheel chair lifts, concrete saws, dump bodies, and aerial lifts.
All power units include a 3 quart (140 cu . in. usable capacity) reservoir. For applications requiring additional oil capacity, $2^{1 / 2}$ and 4 gallon reservoirs are also available. See page 2625.

PERFORMANCE-ALL MODELS

Maximum Pressure: 3000 PSI
Relief Valve: Adjustable 1500-4000 PSI, preset 2500 PSI
Flow: 2.4 GPM @ 500 PSI, 120A @ 12V; 1.4 GPM @ 2000 PSI, 220A @ 12V
Ports: $3 / 8^{n}$ NPT pressure and return ports, $1 / 4^{n}$ NPT on 4 -way valve units
Maximum Duty Cycle:为覅
1 Minute in 5 maximum running at 500 PSI
$1 / 2$ Minute in 5 maximum running at 2000 PSI

A BASIC POWER UNIT

- For use in custom applications using remote mounted directional control valves
- Includes relief valve and check valve
[B] MANUAL CONTROL POWER UNIT
- For single acting cylinders only for tail gates, dump bodies, and material handling
- Includes relief valve, check valve, and manually actuated release valve
Spring-centered handle controls function; one direction starts motor to raise load, other direction provides Imgertip control of lowering speed.
[C] REMOTE CONTROL POWER UNIT
- For single acting cylinders only, for remotely operated wheel chair/personal lifts, material handling, dump bodies, aerial ladders, and cherry pickers
- Hztiuges relief valve, check vaive, and solenoid actuated reiease valve
Includes wearherproof control box with 10 ft cord. One button starts motor to raise load, other button releases pressure to lower load.
[D MANUAL 4-WAY POWER UNIT
- Used for 4-way manual control of double acting cylinders or reversing fluid motors
- Inciudes relief valve and manually actuated directional control valve
Spring-centered handle moves in either direction from center to start the motor and direct flow to one of two work ports. At one port, a pilot operated check valve hoids system pressure until handle is moved to opposite position.

[G] REMOTE 4-WAY POWER UNIT

- Used for 4 -way remote control of double acting cylinders or reversing fluid motors
- Includes relief valve and 4-way solenoid-actuated directional control valve
Has weatherproof control box and 10 ft . cord. One button starts motor and sends flow to one work port motor and sends flow to unchecked work port.

C 5 B $-1 / 2$ TO 2 HP AC POWER UNITS
dotns B Barnet Corporation

HYDRAULIC SCHEMATIC

For lift tables, hose crimpers, conveyors, dock levelers, car hoists, presses, robotics, packaging machines, -richine fools
Cömpact, lightweight design

- Comes completely assembled as pump, mofor, reservoir with check valve and řelief valve presef at maximum aperating pressure as noted below 童童
- Pretested
- Standard $11 / 2$ gallon oil reservoir; 21/2 gallon reservoir available, see below
- Heavy-duly cast iron pump with quiet 11 -footh hardened steel gears. Aluminum center adapter serves as a port manifold "ond valve housing with foad holding check and adjustable relief valve +-5
-9/16-18 oütlef and return ports
- J.S. Barnes brand

$\begin{aligned} & \text { Nominai } \\ & \text { GPM } \end{aligned}$	Maximum Operating PSI	$\because-\cdots$ - HP	Vaits 60 Hz .	- RPW		$\begin{gathered} \text { Dimensial } \\ 8 \end{gathered}$		C		Barnes Model	$=-\begin{aligned} & \text { Stock } \\ & = \end{aligned}$	List	Each	Shpg.
1/2	1500	1/2	1151230	1800	21.01	8.17		8.79		1280546	$4 F 678$	\$553.75	\$453.50	40.0
$1 / 2$	3000	$\therefore 1 ; \cdots 1$	115239	1800	23.04	- - 10.20		-8.79		1280547	$4 \mathrm{F679}$	622.05	509.50	48.0
1	1500	11	115/230	1800	23.04	10.20		8.79		1280548	45680	622.05	509.50	48.0
	1000	$-1 \sim 1$	-115/230	1800	23.04	10.20		8.79		1280549	45681	622.05	509.50	48.0
2	750	1.... 1	1152380	1880	23.04	10.20		8.79		1280550	45682	- $\quad 6622.05$	509.00	50.0
1	1500	\cdots 1, ${ }^{\text {a }}$: 3	$=2230 / 460$	1800	21.23	8.39		N/A		1280551	45683	- 582.40	477.50	43.0
2	750	-1. ${ }^{1} 3$. $230 / 460$	1800	21.23	8.39		NAA		1280552	47684	- 588.65	481.25	43.0
2	1500	2.3	230/460	3600	21.70	8.86		N/A		1280553	45685	$\therefore 5988.00$	-489.00	48.0
4	\cdots - 750	2. ${ }^{-1}$ 3.	2301460	:3600	21.70	8.86		N/A		1280554	47686	$\cdots 59880$	489.00	48.0

Kis
 orporation

RESERVCIR AND MANIFOLD ADAPTER KIT

2 $1 / 2$ GALLON RESERVOIR

$21 / 2$ gallon oil reservoir expands capabilities of $A C$ power units listed above. For applications requiring longer run times and more useable gil: or wien on temperature exceecs or whi romunuonsiy ran at $160-165^{\circ} \mathrm{F}$. J.S. Barnes brand (2230916).
No. 4 F688. $2^{1 / 2}$ Gallon Reservoir. Shpg. wt. 4.5 lbs. List $\$ 57.00$. Each $\$ 46.50$

MANIFOLD ADAPTER KIT

Adapts above power units to NFPA DO3 (DO1) valve. Ports are 9/16-18. NOTE: It is recommonded an woen or taniom rantered valve be used with tate above unts. J.S. Barnes brand (2620290).

No. 4F687. Manfold Adapter Kit. Shpg. wt. 2.3 lbs. List $\$ 127.00$. Each $\$ 104.00$

AC HYDRAULIC POWER UNIT FOR AUTO HOISTS

$\begin{gathered} C_{\text {Rus. }}^{\text {Rev. }} / \end{gathered}$	GPM Displ. Q RPN 3600	Factory Preset PSI	Operating Pressure	Overall Dimensions (in.)			Stock No.	. List	Each	Shpg. Wt.
0.129	2	$2250 / 2450$	1900	3433/64	61/2	95/32	47676	\$634.40	\$518.50	55.0
2624						II	S	U	SS	

- Supplies power to raise, hold, and lower
- 7000-9000 lb. capacity
- Adiustable poppet type relief valve
- Hardened steel valve parts may be serviced in the field
- 100 mesh pump inlet screen and breather filler reduce contamination risk
- High torque 2 HP motor offers low voltage capability
- 230 valt, single phase, 11.0 Amps
- 9/16-18 ports
- 3 gallon reservoir
- Includes \#12 AWG 3 wire 18" long cord
- Interchangeable with most OEM lifts using standard NEMA mountings
J.S. Barnes brand (1280555)

1 TO 10 HP AC POWER UNITS AND DC MATERIAL HANDLING POWER UNITS

For powering hydraulic equipment in applications such as pressing, clamping, chucking, transferring, actuating, lifting, and indexing.
Comes assembled and includes:

- Vickers models V10 or V20 vane pump (depending on HP)
- Heavy-gauge-steel tank
- 3-phase, 230/460V, $60 \mathrm{~Hz}, 1800$ RPM TEFC motor with C-face mounting
- Motor/pump adapter
- Adjustable relief valve
- Filler/Breather
- Pressure gauge Oil level gauge
- Return-line spin-on filter
- Clean-out port in tank

DC PALLET TRUCK POWER UNITS

- 12 and 24 Volt DC units for powering rase. icid. and lavere tencrions on waik-benina pailet trucks
- Fitted with relief, check, and solenoid actuated release valves and pressure compensated return flow control
- Ser wertical reanning only
- Esesmever provices jécu. in. of usadia oll capacity
- Size: $5.73 \mathrm{H} \times 6.93 \mathrm{~W} \times 16.3^{\prime \prime} \mathrm{L}$

PERFORMANCE

Maximum Pressure: 3000 PSI
Relief Valve: Adjustable, preset 2500 PSI
Port: 9/16 SAE delivery/return port
9/16 SAE alternate delivery/return port (plugged)
7/16 SAE auxiliary return port
Flow (12V): 2.0 GPM @ 500 PSI; 1.2 GPM @
2000 PSI
Amps (12V): 100A @ 500 PSI; 200A @ 2000
PSI
Flow (24V): 1.6 GPM @ 500 PSI; 1.1 GPM @
2000 PSI
Amps (24V): 40A @ 500 PSI; 95A @ 2000 PSI Intermittent Duty Motors:
10 Seconds in any minute at 500 PSI
5 Seconds in any minute at 2000 PSI
12V DC PALLET TRUCK UNIT
No. 4F690. Shpg. wt. 33.0 lbs. List $\$ 376.05$
Each...\$327.25
24V DC PALLET TRUCK UNIT
No. 4F691. Shpg. wt. 33.0 lbs. List $\$ 376.05$.
Each.. $\$ 327.25$

DC AUXILIARY

POWER UNIT

- 12 Volt $D C$ unit for moite auxitary power applications inciuding back-up hydraulic power for truck mounted equipment, emergency power steering for off-road vehicles, elevated work platforms, and material handling auxiliory functrons
- Inciudies check valve and relief valve
- Requires remotely mounted reservoir, and accepts remotely mounted auxiliary valving
- Size: $7.14 \mathrm{H}^{-1} \times 4.50 \mathrm{~W} \times 10.44^{\mathrm{n}} \mathrm{L}$ PERFORMANCE
Maximum Pressure: 4000 PSI.
Relief Volve: Adjustable, preset 2500 PSI:。
Flow: 1.8 GPM @ 1000 PSI; 1.3 GPM @ 2000 PSI
Amps:130A@1000 PSI, 190A @ 2000 PSI (12VDC)
Ports: \qquad ..9/16 SAE pressure 3/4 SAE inlet side ports Intermittent Duty Motors:
1 Minute in 5 maximum running at 500 PSI $1 / 2$ Minute in 5 maximum running at 2000 PSI
No. 4F689. Shpg. wt. 27.0 lbs. List $\$ 274.64$. Each .. $\mathbf{\$ 2 3 9 . 5 0}$

1 TO 5 HP AC POWER UNITS

- Provides dependable source of hydraulic power for industrial machinery in actuating, pressing, stamping, molding, punching, clamping, and lifting applications
- Nos. 6W642 and 6W643 two-stage hi-low pumps are ideal for compactors, presses, log.splitters, and clamping circuits
- Flow, pressure, horsepower valve/reservoir size, and electrical
._characteristics are selectively matched for optimum performance
- Manifold block included for mounting single D03 or D05 valve. Can also accommodate optional 2- or 3-station manifold (see page 2647). Manifold is removable for direct pressure and tank (P\&T) plumbing. Block includes both NPT and SAE ports
- All units include high torquive motors so that relief valves can be adjusted up to 50% above factory setting for intermittent applications. 3000 PSI maximum
- Heavy-duty pumps include hardened and ground alloy-steel gears and shafts, with high strength, fine grain cast-iron housings
- All units come completely assembled with: filler/breather, fluid level gauge with thermometer, pressure gauge, and flexible coupling
- Nos. 6W642 and 6W643 two-stage pumps, first stage pump unloads fully at 450 PSI, second stage operates up to high pressure relief setting
- John S. Barnes brand

GPM	Pump PSI	Manifold Block	HP	RPM	Motor Volts	PH	Hz		W		Barnes Moded	Stock No.	List	Each	Shpg. W
1.0	1500	D03	1	1800	115/230	1	60	12	12	24	1400010	6W644	\$1189.25	\$909.50	95.0
1.5	2000	D03	2	1800	115/230	1	60	12	12	26	1400011	$6 W 645$	1332.15	986.50	106.0
2.0	1500	DO3	2	1800	230/460	3	60	12	12	25	1400012	6W646	1312.50	998.50	102.0
2.5	3000	D03	5	. 1800	230/460	3	60	25	14	28	1400013	6W632	1483.05	1139.00	171.0
3.5	2000	D03	5	1800	230/460	3	60	25	14	28	1400014	$6 W 633$	1502.80	1155.00	171.0
4.5	1500	D03	5	- 1800	230/460	3	60	25	14	28	- 1400015	6×634	1516.35	1164.00	171.0
5.0	1250	D03	5	- 1800	$230 / 460$	3	60	25	14	28	- 1400016	67635	1507.00	1157.00	171.0
7.0	600	D05	3	3600	230/460	3	60	25	14	29	1400017	6W636	1443.55	1106.00	171.0
7.0	1000	D05	5	3600	230/460	3	60	25	14	25	1400018	GW637	1590.20	1223.00	140.0
9.0	500	D05	3	3600	2304460	3	60	25	14	25	S40001a	6W638	1462.25	1115.80	- \%
9.0	70	DOS	5	3600	230/460	3	60	25	14	29	${ }^{4} 400000$	6V1639	1609.95	1231.00	, ${ }^{\circ}$
11.0	100	FOG	3	3800	29)/459	3	60	25	14	25	146021	6\#640	1463.30	1114.00	1710
12.0	600	D05	5	3600	$230 / 400$	3	60	25	14	29	1400022	$6 W 641$	1611.00	1236.00	1710
11.0	250	D05	3	3600	230/460	3 -	60	28	17	36	1400023	$6 W 642$	1664.65	1279.00	145.0
2.8	1500														
$\begin{array}{r} 1.0 .0 \\ 3.8 \end{array}$	$\begin{array}{r} 30 \\ 3004 \end{array}$	DO5	5	3800	230/460	3	60	28	17	36	1400024	$6 W 643$	163190	1251.00	1760

HIGH CAPACITY RESERVOIRS FOR 12VDC POWER UNITS

For use with Fenner and Dayton 12VDC power units. Can be interchanged with standard 3-quart reservoir to provide additional fluid capacity. Heavy-duty stee construction. Black finish.

Nominal Capacity	Useable Capacity	For Use With Power Units	L* Dimensions ($\mathbf{H a}_{\text {H.) }}$			Dia.	$\begin{gathered} \text { Pilot } \\ \text { Dia. (ln.) } \end{gathered}$	Fenner Model	Stock No.	List	Each	Stpg. W
$4^{1 / 2 \mathrm{gal} .}$	720 cls in.		${ }_{26}^{17}$	-	-	$\begin{aligned} & 63 / 4 \\ & 6^{3 / 4} \end{aligned}$	$\begin{aligned} & 43 / 4 \\ & 43 / 4 \end{aligned}$	R-46	$\begin{aligned} & \text { 6W873 } \\ & 6 W 874 \end{aligned}$	$\begin{aligned} & \mathbf{\$ 6 8 . 6 0} \\ & 84.75 \end{aligned}$	$\begin{aligned} & \$ 59.70 \\ & 73.80 \end{aligned}$	8.5 12.0
$4^{21 / 2}$	410	$\left\{\begin{array}{l}\text { 47185A-D, 47186AC, } \\ \text { 47338A-C, } \\ 47233939 \mathrm{~A} \text {, }\end{array}\right.$	$\begin{aligned} & 121 / 2 \\ & 191 / 2 \end{aligned}$	8	$\begin{aligned} & \hline 61 / 4 \\ & 64 / 4 \end{aligned}$	-	$\begin{aligned} & 51 / 2 \\ & 51 / 2 \end{aligned}$	$\begin{aligned} & \mathrm{T}-35 \\ & \mathrm{~T}-38 \end{aligned}$	$\begin{aligned} & 47187 \\ & 42188 \end{aligned}$	$\begin{aligned} & 68.60 \\ & 84.75 \end{aligned}$	$\begin{aligned} & 59.70 \\ & 73.80 \end{aligned}$	8.5 12.0

AG/MOBILE WELDED CYLINDERS AND DIRECTIONAL CONTROL VALVES

HYDRAULICS

AG/MOBILE WELDED CYLINDERS

Universal end mountings allow double acting cylinder to fit a variety of construction, industrial, and agricultural applications

- Maximum working pressure: 2500 PSI
- Available in $21 / 2^{\prime \prime}$ to $4^{\prime \prime}$ bores and in $16,20,24,30$, and 36" strokes

Bore Dia.	Stroke Length	Retract	Rod Dia.	A	B*	, ${ }^{*}$	D	Dimens		H	1	N	0	$\begin{aligned} & \text { Priaca } \\ & \text { Model } \end{aligned}$	Stack No.	List	Each	Shpg. W.
$2^{1 / 2^{14}}$	16^{*}	24^{4}	$1^{3 / 8^{*}}$	3/16	$3 / 8$	$3 / 8$	0760	$9 / 16$	$3 / 4$	29\%15	3	$11 / 4$	$21 / 2$	PMC-5416	52366	\$18000	\$155.50	23.0
$2^{1 / 2}$	24	32	$1 \%^{1}$	3/6	3/8	38	9.760	$9 / 16$	34	24/6	3	$1{ }^{1 / 2}$	2%	PMC-5424	52367	197.09	172.00	30.0
3	20	28	1:2	3132	12	12	1013	i/16	1	2\%10	$31 / 2$	$11 / 4$	25/\%	PMO-8329	52368	222.00	193.50	34.0
3	30	38	11/2	$5 / 32$	$1 / 2$	1/2	1.015	1/16	1	25/16	$3^{1 / 2}$	$11 / 4$	25/8	PMC8330	57369	261.00	229.00	45.0
31/2	30	38	$11 / 2$	$3 / 16$	$1 / 2$	$1 / 2$	1.015	11/16	1	11/16	4	11/2	25/8	PMC-5530	57370	279.00	244.50	51.0
$3^{1 / 2}$	36	44	11/2	3/16	$1 / 2$	12	1.015	11/16	1	111/16	4	$1^{1 / 2}$	25/8	PMC-5636	57371	302.00	266.25	580
4	s0	d)	3	8532	12	1/2	1265	78	1%	2	$41 / 2$	$1 / 16$	$2 / 8$	PMCF\%	52372	.321.00	28\%.60	270

(*) Ports. ATTF

TWO POSITION SELECTOR VALVES

- Available in single and double models
- Heat treated and hard chrome-plated spools for maximum load handling capacity
- Cast-iron body
- 2500 PSI maximum pressure rating
- No. 6W567 is a 2-position, 3-way valve that enables the operator to direct flow to either of two separate hydraulic circuits
- No. 6W568 is a double selector valve

Note: a single selector valve is typically used to operate either of two single acting cylinders or two motors that only run in one direction. A double selector valve is typically used to control two separate double acting cylinders or motors or to control four single acting cylinders or motors.

	C.apacity		Length	Dimatasin	Height	Prince	$\substack{\text { Socke } \\ \text { Ho. }}$	List	Each	Stapt
	${ }_{40}^{16}$	${ }_{2500}^{2500}$		3\%/4	$2{ }_{2 / 2}^{21 / 2}$		${ }_{6}^{6 W 568}$	${ }_{88 \text { 87.50 }}$	\$42.75	${ }_{12.2}^{4.2}$

HYDRAULICS

 INDUSTRIAL CYLINDERS

- Industrial grade hydraulic cylinders

Meet NFPA and JIC standards
Pressures up to 2500 PSI

- Temperature range: $-\mathbf{2 0 ^ { \circ }}$ to $\mathbf{1 6 0 ^ { \circ }} \mathrm{F}$
- All steel construction with black finish
- Modular mounting design

Available in $1^{1 / 22^{\prime \prime}}$ to 4^{n} bores with $1^{\prime \prime}$ to 12^{n} strokes. $6,8,10$, and 12^{n} stroke cylinders
have adjustable cushions on both ends with ball checks for faster out-of-cushion . starts. Piloted bushing assures concentricity
Piston rods case hardened and hard chrome plated to resist mechanical damage.
High strength fie rods protect against shock and fatigue.
Patented Tefion SHEF tube end seals prövide positive sealing action even under shock conditions.

Pre-loaded rod seal provides positive seal at high or low pressures.
Single, bidirectional dynamic piston seal prótects against high-pressure spikes.
One-piece piloted piston design provides maximum strength and protection against shock loads:
Durable, non-metallic wear baind on piston prevents metal-to-metal contact and reduces possibility of scoring of tube. Urethane piston and rod seals compatible with standard hydraulic fluids.

 or puth.

Bore	A	B	C	E	EE	F	G	J	KK	LG	MN	P	$\because V$	W	Y	28
$11 / 2$	$3 / 4$	$11 / 8$	$3 / 8$	$21 / 2$	$1 / 2$	$3 / 8$	13/4	$11 / 2$	7/16-20	5	$5 / 8$	278	1/4	$5 / 8$	2	56/8
2	$11 / 8$	$11 / 2$	$1 / 2$	3	$1 / 2$	58	- 13/4-	$11 / 2$	3/4-16	$51 / 4$	1	27/8	$1 / 4$	$3 / 4$	23/8	6
$21 / 2$	11/8	$11 / 2$	1/2	$31 / 2$	1/2	578	+ $-13 / 4$	11/2	3/4-16	$5^{8 / 8}$	1	$3 \quad$:	$1 / 4$	$3 / 4$	23/8	61/8
$31 / 4$	$15 / 8$	2	5/8	$41 / 2$	$3 / 4$	$3 / 4$	$\therefore-2$	13/4	1-14	61/4	$13 / 8$	$31 / 2$	$1 / 4$.	718	$23 / 4$	$71 / 8$
4	2	$23 / 8$	$3 / 4$	$=5$	$3 / 4$	$7 / 8$	2	13/4	11/4-12	$6^{6} / 8$	$13 / 4$	$33 / 4$	1/4	1	3	78/8

Bore Biameter	Stroke	Stock No.	List	Each	$\begin{gathered} \text { Shpg } \\ \text { Wt } \end{gathered}$	Bore Biameter	- Stroke	Stack	- List	Each	Shpg. WL
11/2 ${ }^{11}$	1^{*}	. 42630	\$233.00	\$210.00	8.0	21/2"	$6^{* *}$	47645	\$429.00	\$386.00	23.0
11/2	2.	42631	235.25	211.75	8.5	21/2	8*	42646	438.00	394.00	24.0
11/2	3	42632	239.00	215.00	8.6	21/2	10^{*}	47647	446.50	402.00	27.0
11/2	4	42633	240.00	216.00	9.1						
11/2	6^{*}	42634	348.00	313.50	11.0	31/4	2	47648	428.00	385.50	36.0
11/2	$8 *$	42635	352.75	317.50	11.0	31/4	4_{6}	42649	. 419.00	377.00	41.0
2	1	47636	274.00	246.75	13.0	$31 / 4$	8*	42651	549.50	-494.50	46.0
2	2	47637	277.00	249.50	13.0	31/4	10^{*}	42652	562.00	506.00	51.0
2	-4^{-}	47638	285.00	256.25	15.0	31/4	12*	42653	575.00	517.50	53.0
2	6^{*}	42639	381.00	343.00	17.0						
2	8^{*}	42640	388.00	349.25	19.0	4	- 2.	42654	536.00	482.25	46.0
2	10*	42641	395.00	355.50	-20.0	4	- 4	$\therefore 42655$	550.00	495.00	54.0
21/2	1	47642	309.00	278.00	17.0	4	8^{*}	42657	685.50 700.50	617.00 630.50	61.0 65.0
21/2	2	47643	313.00	282.00	19.0	4	10^{*}	42658	716.00	644.50	70.0
21/2	4	42644	322.00	290.00	20.0	4	12*	42659	-731.00	658.00	72.0

(*) $^{*} 6,8,10$, and 12* stroke cylinders have cushion seals on both ends to absort shocks.

STEEL FRONT OR REAR FLANGE

- Mounts to cylinder rear with 4 bolts provided
- Front mounting requires bolt removal of retaining plate - NFPA "MF1" mounting

Bore	F	R	TF	UF	W	FE	Stock No.	Liat	'Each	Shipg. Wh
$11 / 2^{m}$	$3 / 8{ }^{\prime \prime}$	$1.63^{\prime \prime}$	37/16 ${ }^{\text {" }}$	41/4"	$5.8{ }^{\text {² }}$	$7 / 16^{\prime \prime}$	14329	\$22.00	\$20.00	1.1
2	$5 / 8$	2.05	41/8	51/8	$3 / 4$	$9 / 16$	14332	- 24.50	22.00	2.7
21/2	$5 / 8$	2.55	$45 / 8$	$58 / 8$	$3 / 4$	9/16	14335	34.50	31.00	3.5
31/4	3/4	3.25	$57 / 8$	$71 / 8$	718	11/16	14338	61.00	55.00	6.4
4	718	3.82	$63 / 8$	73/8	1	11/16	14341	155.50	140.00	8.2

STEEL SIDE LUG MOUNT

- Mounts to cylinder side with 4 bolts provided - NFPA "MS2" mounting

Bore	A	8	c	S8	ST	su	SW	Ts	US	Ks	\$s	Stock No.	Hist	Each	Shag. Wh
11/2"	17/6 ${ }^{10}$	$11 / 8^{\text {/ }}$	$11 /{ }^{n}$	$7 / 16^{\prime \prime}$	781	$16 / 16^{\prime \prime}$	3/8'	$3^{1 / 4}{ }^{4}$	$4^{\text {" }}$	$1^{3 / 8^{4}}$	$37 / k^{\prime \prime}$	14330	\$100.00	\$90.00	24
	21/8	$11 / 2$	$11 / 2$	$9 / 16$	1	11/4	$1 / 2$	4	${ }_{5}$	11/8	30/6	14333	122.25	110.00	5.0
$2^{1 / 2}$	26/6	14/15	$13 / 4$	13/16	,	19/18	11/16	47/8	$64 / 4$	21/16	$3^{3 / 8}$	1 A336	133.00	120.00	7.0
$3^{1 / 4}$	$214 / 1{ }^{15}$	115/10	21/4	13/16	11/4	19/16	11116	57/\%	$7 / 4$	$28 / 10$	41/8	14339	167.00	150.00	11.0
4	3	$21 / 8$	$21 / 2$	1/18	11/4	2	78	$63 / 4$	$81 / 2$	$23 / 4$	4	14342	183.25	165.00	17.0

STEEL CLEVIS MOUNT

- Includes clevis pin and 4 mounting bolts - NFPA "MP2" mounting

Bore	C8	CD	CW	FL	1	M	Srack No.	List	Each	Shipg. Wh
41/24	$3 \cdot 4$	$12^{\prime \prime}$	$7 / 16^{*}$	$11 / 8^{\prime \prime}$	$3144^{\prime \prime}$	1/2"	14331	\$70.00	\$ $\$ 3.00$	1.0
2	10.1	34	916	1%	11/4	314	14334	75.50	68.00	3.1
21/2	$11 / 1$	14	$1 / 1 / 19$	$17 /{ }^{1 / 2}$	11/4	344	1AJ37	50.09	72.89	4.0
$31 / 4$	$11 / 2$	1	1116	$2^{1 / 4}$	$11 / 2$	1	1.4340	190.00	96.50	7.3
4	2	$11 / 8$	15/16	$2^{7 / 8}$	2	11/16	14343	122.00	110.00	12.0

CAST-IRON ROD CLEVIS MOUNT

- Includes clevis pin

Bara	A	CB	CD	CE	cw	ER	KK	Stock No.	List	Ench	Stupy. Wh.
11/211	314^{*}	$3 / 4{ }^{\prime \prime}$	$1 / 2$	$11 / 2^{4}$	12	$1 / 2^{\prime}$	$7716^{7}-20$	1434	\$27.75	\$25.00	
2.21/2	11/8	11/4	$3 / 4$	21/8	58	$3 / 4$	3/4-16	14347	42.00	+38.00	1.8
$3^{31 / 4}$	$2_{2}^{1 / 8}$	* $2^{1 / 2}$	$11 / 6$	${ }_{3}^{215 / 4}$	${ }_{1}^{3 / 4}$	${ }_{15 / 16}^{1}$	${ }_{1}^{1-14}$	14349 14351.	61.00 102.00	55.00 92.00	8.3

STEEL EYE BRACKET

- Provides swivel mounting with rod or clevis mount

Bare	cs	co	D0	E	F	FL	LR	M	MR	n	Stock No.	List	Each	Shipg. Wh
121/21/	$3 / 4^{\prime \prime}$	12^{*}	${ }^{13 / 32}$	${ }^{21 / x^{*}}$	$38^{\prime \prime}$	$11 / /^{\prime \prime}$	$3 / 4{ }^{\prime \prime}$	$1 / 2^{\prime \prime}$	$9 / 16^{n}$	1.63"	14344	\$37.75	\$34.00	1.0
$3^{21 / 4}$	11/4	$3 / 4$	17732	$31 / 2$	5/8	${ }^{1 / 1 / 8}$	11/4	3/4	718	2.55	14346	50.00	45.00	3.1
$4^{31 / 4}$	${ }_{2}^{1 / 2}$	$11 / 8$	${ }_{21 / 32}^{2132}$	$4^{41 / 2}$	7/4	${ }_{3}^{21 / 4}$	21/8	${ }_{13 / 3}$	11/4	3.25 3.82	$1 A 348$ 14350	69.00 132.00	62.00 129.00	12.0

RELIEF AND CONTROL VALVES

3/4" ADJUSTABLE FLOW CONTROL VALVE

- Starts and stops hydraulic cylinders or motors
- Varies speed smoothly over the full range
- Flow range capacity: 0 to 30 GPM
- Pressure range: 500 to 3000 PSI
- Pressure compensated adjustable flow control
- Prince brand (RDRS-175-30)

Once speed is set with the lever, it remains constant regardless of load variations. Comes with built-in ball and spring relief valve with cast iron seat
Dimensions: $4.6 \mathrm{~L} \times 4.1 \mathrm{H} \times \mathbf{2 . 9} \mathbf{9}^{\prime \prime} \mathrm{D}$
No. 6×842. Shpg. Wt. 8.0 lbs . List $\$ 101.0$. Each \qquad . $\$ 78.00$
Limited 3-year warranty. Tex1 of warranty available an request. Sne "Manufacturers" Warranties on page opposite inside back cover.

FLOW CONTROL VALVES

Current OSHA standards require that the lowering speed of hydraulically supported loads be controlled in event of pump circuit failure. In-lime valve regulates lowering of speed by control ling flow rate of hydraulic fluid between cylinder and reservoir in return cycle. Maintains flow rate within 1% for every 100 PSI change in pressure. Only 70 PSI pressure drop across orifice. Can be installed directly into cylinder outlet port. $3 / 8^{\prime \prime}$ (M)NPT inlet and $3 / 8^{n \prime}$ (F)NPT outlet. $31 / \mathrm{s}^{n \mathrm{~L}} \times \mathrm{I}^{n}$ dia. Max flow: 16 GPM.

$\begin{aligned} & \text { Flow } \\ & \text { Rata } \end{aligned}$	Fanmer Model	Stock Na.	Lis	Each	Shpg.
$\frac{1}{2} \mathrm{GPM}$	$\begin{aligned} & \mathrm{A} 8-2142-00 \\ & \mathrm{~A}-2142-00 \end{aligned}$	$\begin{aligned} & 5 \times 487 \\ & 5 \times 488 \end{aligned}$	$\begin{aligned} & \$ 24.30 \\ & 24.30 \end{aligned}$	$\begin{array}{r} \$ 23.49 \\ 23.49 \end{array}$	0.4

1/2" ADJUSTABLE RELIEF VALVE

- Comoact 1/2" NPT, high pressure relief valve designed for full flow with low pressure drop
- Pressure adjustable from 1000 to 2500 PSI
- For heavy-duty hydraulic applications
- High strength steel bar stock body with replaceable heat freated seat © 16 GPM maximum
- Prince brand (RDTE50H)

Dimensions: $4^{5 / 3 L} \times 11 / 2 W \times 11 / 2^{n D}$
No. 6×843. Shpg. Wt. 2.2 Ibs. List $\$ 39.00$. Each \qquad
Limited 3 -year warranty. Text of warranty available on request. See "Manufacturers" Warranties" on page apposite inside theck cover.

ADJUSTABLE RELIEF VALVES

- Adjustable relief valve controls maximum pressure within a hydraulic circuit
- Two stage, balanced piston design provides fast response and minimizes pressure override
- Vent connection allows low pressure venting of system to tank
- Remote pressure control capability is achieved by directing flow from vent connection to a separate pressure relief valve
- Standard "F3" seals provide multi-fluid capability

Inlet and outlet pressure connections may be used interchangeably when the valve is mounted in the pressure line, or the valve may be teed off the pressure line with one of the inlet pressure connections plugged $7 / 8^{\prime \prime}-14$ UNF-2B thread inlet and outlet connections.

Pressure setting selected should be approximately 150 to 200 PSI above the actual system working pressure.
Pressure is adjusted by loosening the jam nut and turning the control knob. Maximum pressure 3000 PSI. Dimensions: $5.6 \mathrm{~L} \times 6.6 \mathrm{~W} \times 2.1^{1} \mathrm{H}$. Vickers brand.

Adjustable Pressure Range (PSI)	$\underset{\substack{\text { Maximum } \\ \text { Hlow }}}{\text { and }}$	-	Vickers Model		Stock No.	List	Each	$\begin{aligned} & \text { Shlpg. } \\ & \mathbf{W H t} \end{aligned}$
$125-1000$ $500-2000$	${ }_{45}^{45} \mathrm{GPM}$		Cs-03-1850		62628 62629	$\$ 253.00$ 253.00	\$153.00 $\mathbf{1 5 3 . 0 0}$	9.0 9.0
1500-3000	45		CS-03-F50		62630	238.00	153.00	9.0

K

HEAVY-DUTY, HIGH TORQUE, LOW SPEED MOTOR'S AND FLOW DÍVIDERS

(*) Internittent operation which is defined as less than 10% each minute.										
Displ. Cu. In./Rev.	Lengtin*	$\begin{aligned} & \text { Dimensionss (In.) } \\ & \text { Width } \end{aligned}$	Height	Parker Model		Stock No.	List		Each	Sheg. Wt
3.6 5.4	4.41 4.60	- $\begin{aligned} & 4.50 \\ & 4.50\end{aligned}$	4.56 4.56	110A-036-AS-0	--	42770	$\$ 334.00$ 34200		\$254.75	14.0 14.0
7.1	4.78	4.50	4.56	110A-971-AS-0		42771	348.00		300.75	16.0
8.8	4.98	4.50	4.56	110A-088-AS-0		$4 \mathrm{CC57}$	- 359.00		310.25	15.0
10.0	5.17	4.50	4.56	110A-106-AS-0		47772	372.00		321.50	17.0
12.9	5.42	4.50	4.56	110A-129-AS-0		$42 \mathrm{C58}$	383.00		330.25	' 17.0
16.9	5.80	4.50	4.56	110A-164-AS-0	.	42773	400.00	3**	346.25	18.0

FLOW DIVIDERS

- Up to 3000 PSI inlet pressure
- Up to 4500 PSI outer pressure
- Maximum speed up to 4500 RPM
- 11-tooth hardened steel gears
- Permanent mold cast-iron bodies machined to close tolerances
- Differential pressure relief valves

Gear Type Rotary Flow Dividers synchronize two parallel motions hydraulically rather than mechanically. Hydraulic flow dividers split the flow from a single pump source to a pair of matched cylinders or fluid motors.
Applications include agricultural equip-ment-planters, cotton strippers and cultivators, equalizing jacks on cargo containers and semi-trailers, self-propelled manlifts, booms, trim mowers, and car wash machines.

Both drive gears in 2 -section dividers are driven by common shaft, allowing flow equalization to occur in a wide speed range. Speeds in the range of 2000 to 4500 RPM will improve overall efficiency.
Integral differential relief valves for each circuit limit pressure intensification and permit cylinders to re-phase at the end of each stroke.
Accuracy is $3.4 \mathrm{in} .3 / \mathrm{min}$. per 100 PSI differential in operating pressure.

How Rate	Cu. ln. /Rev.	Operating Pressure	$\underset{\text { Salet }}{\text { SA }}$	Sizes Outiet	Length	Dimensions (ln.) Width	Height	Barnes Model	Stock No.	List	Each	Shing. Wt.
5 GPM	0.129	3000 PSI	3/4"	3/4*-16	7.55.	2.99	3.26	1020075	45660	\$226.75	\$209.00	9.0
10	0.258	2300	$78^{\prime \prime}$	3/4-16	7.55	2.99	3.26	1020076	47661	226.75	208.75	9.0
20	0.581	2750	16/16	7/8-14	9.85	4.25	4.00	1100042	47662	383.80	353.25	27.0

HYDRAULICS
 AG/MOBILE TIE-ROD CYLIŃNERS

- Double acting tie-rod design allows cylinders to be used in heavy-duty agricultural, transportation, construction, and industrial equipment applications
- Maximum working pressure: 2500 PSI. Cylinders will operate at full pressure through 16" strake
- Available in $21 / 2$ to $5^{\prime \prime}$ bores and in 8, 16 , and 24^{n} length strokes
$8^{\prime \prime}$ stroke cylinders are built to rigid standards of the American Socterv of Agncuitaral Engmeers (ASAE). 24" stroke cylinders are suted for ase in log splitiers.

Precision honed tubes and ground and polished chromed piston rods. Cast iron piston with O-ring seal between piston rod and piston. 70 Durometer O-ring seal and leather back-up washers on piston. 70 Durometer O-ring seal between tube-and ductile iron butt and gland casting.
Other features include polyurethane rod wiper, cast malleable rod clevis, automotive type lock nuts to retain piston on piston rod and SAE J514 O-ring ports to eliminate leakage (NPTF adapter fittings included with cylinder. NPTF ports are $1 / 2^{n}$ except No. $4 Z 193$ is " ${ }^{\prime \prime}$). Suppheq with zanc plated pins and clips. Red finish. Prince brand.

HEAVY-DUTY, HIGH TORQUE;: LOW SPEED MOTORS

- Heavy-duty hydraulic motors provide the most compact yet powerful, high forque, low speed package available
- Used in demanding applications including wheel, winch, digger, auger, and conveyor drives
- Cast iron construction
- Maximum oil temperature: $180^{\circ} \mathrm{F}$
- Maximúm pressure: $\mathbf{3 5 0 0}$ PSI
- Direct drive only
- Minimum oil viscosity: $\mathbf{5 0}$ sus (Saybolt Universal Seconds)

Mounting and shaft dimensions are to industry standards, enabling motors to be used as replacements for other major makes of hydraulic motors with similar performance ratings including Char-Lynn 2000, TRW Ross MB, White RE, and Danfoss OMS Series.
Self-sealing, wear compensating IGR power element produces high volumetric efficiencies at all operating pressures throughout the life of the motor. Utilizes the outer rotor as the orbiting member while the inner rotor directly drives the fully supported outer shaft. Typically results in 85% mechanical efficiency at rated pressure and 95% volumetric efficiency at rated flow. Single piece fixed axis shafting and nonorbiting valving provide 20% overall length reduction and fewer moving parts compared to competitive motors.
SAE "A" type two-boft mounting flange. 7/8" -14 UNF SAE 0-ring ports. Keyed shaft $1^{\prime \prime}$ dia., 1.5^{n} length. Parker brand.

(*) Displacement differs by greater than 10% from Nichols.
See Cross Reference Information on page opposite inside back cover.

Features：
Heavy－duty cast－iron contruction．Quiet 11－ tooth hardened gears．Suitable for inter－ mittent pressures y 10 to 3500 PSI with output torque up to 180 in ．－1bs．；see per－ formance data below．Fourisbolt 4F17 mount， 0.500 dia．－$x-1 / 2^{2}$ shaft extension and square key drive．
400 PSI Viton lip seal and reversing check valves included to avoid a case drain port． This feature also allows motors to be used as bi－directional pumps，see page 2629 ．
Side ports with SAE＇straight threads are stan－ dard in sizes shown below．
Maximum；shaft speed is 5000 RPM ；mini－ mum speed for most applications is 750 RPM．
Maximum input is 12 GPM：
Made in USA．
Note：Motors may be used to replace elec－ tric motors or gas engines int hazardous locations．

\qquad 5

$\begin{gathered} \text { Displ. } \\ \text { Cu. } \\ \text { In. Rev. } \end{gathered}$	Stack No．	$\begin{gathered} \text { How } \\ -\quad \text { Range } \\ - \text { GPM } \end{gathered}$	500 PSI		1000 PSI		INLETPRESSURE											
					2500 PSI	－ 3000 PSI												
			Torque In．－Lbs．	Speed RPM			Torque la．thes．	$\begin{gathered} \text { Speedd } \\ \text { RPM } \end{gathered}$	Torque Ia．－lbs．		\because Torque - Rar－Hbs．			$\begin{aligned} & \text { Speod } \\ & \text { RPM } \end{aligned}$.1 Terque La．－Lhs．	$\begin{aligned} & \overline{\text { Speed }} \\ & \text { RPMM } \end{aligned}$		
0.194	． 4 F 652	$\begin{aligned} & 1 \\ & \frac{1}{2} \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{ll} & 12 \\ . & 12 \\ . & 12 \\ & 12\end{array}$	$\begin{array}{r} 1102 \\ .2293 \\ 3483 \\ 4674 \end{array}$	$\begin{array}{r} 26 \\ -26 \\ -26 \\ 26 \end{array}$	1013 -2204 3995 4586					$\begin{array}{r} 7 \\ \hline-40 \\ 40 \\ 40 \\ 40 \end{array}$	$\begin{array}{r} 7925 \\ -\quad 2116 \\ 3306 \\ 4497 \end{array}$	54 -54 54 54	$\begin{array}{r} 837 \\ -.8027 \\ \because \quad 3418 \\ -\quad 4409 \end{array}$	$\begin{array}{r}\text {（ } \\ \hline \quad 68 \\ \therefore \quad 68 \\ \hline \quad 68\end{array}$	$\begin{array}{r} 748 \\ -\quad 1939 \\ \hline 3130 \\ 4320 \end{array}$	$\begin{array}{\|r\|} \hline 81 \\ -\quad 81 \\ -\quad 81 \\ \hline 81 \\ \hline \end{array}$	$\begin{array}{r} 660 \\ -2040 \\ -2041 \\ 4230 \end{array}$
0.258	4F653	$\begin{array}{r} 2 \\ 3 \\ 4 \\ 4 \\ \hline \end{array}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 1702 \\ & 2557 \\ & 349.3 \\ & 4900^{2} \\ & \hline 40 \end{aligned}$	$\begin{aligned} & 34 \\ & 34 \\ & 34 \\ & 34 \\ & \hline \end{aligned}$	1618 2509 3494 4299	$\begin{aligned} & 53 \\ & 53 \\ & 53 \\ & 53 \\ & \hline 3 \end{aligned}$	$\begin{aligned} & 1525 \\ & 2490 \\ & 2 \% 1 \\ & 2.11 \\ & \hline 20 \end{aligned}$	$\begin{aligned} & 72 \\ & 72 \\ & 72 \\ & 72 \end{aligned}$	$\begin{aligned} & 1437 \\ & 2332 \\ & 6227 \\ & 4123 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \\ & 90 \\ & 90 \\ & \hline \end{aligned}$	1248 2041 31. $403!$	$\begin{aligned} & 198 \\ & 118 \\ & 1188 \\ & 108 \end{aligned}$	$\begin{aligned} & 12 \rho_{2} \\ & 25 \\ & 26 \\ & 34+2 \\ & \hline \end{aligned}$				
0.323	4F654	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 1341 \\ & 2722 \\ & 4202 \\ & 4917 \end{aligned}$	$\begin{aligned} & 43 \\ & 43 \\ & 43 \\ & 43 \end{aligned}$	$\begin{aligned} & 1253 \\ & 2683 \\ & 4114 \\ & 4829 \end{aligned}$	$\begin{aligned} & 66 \\ & 66 \\ & 66 \\ & 66 \end{aligned}$	$\begin{aligned} & 1165 \\ & 2595 \\ & 4025 \\ & 4741 \end{aligned}$	$\begin{aligned} & -90 \\ & \hline 90 \\ & 90 \\ & 90 \end{aligned}$	$\begin{array}{r} 1076 \\ -\quad 2507 \\ -\quad 3937 \\ \hline 4652 \end{array}$	$\begin{aligned} & 113 \\ & 113 \\ & 113 \\ & 113 \end{aligned}$	$\begin{array}{r} 988 \\ -\quad 2418 \\ \therefore \quad 3849 \\ \hline 4564 \end{array}$	$\begin{aligned} & 136 \\ & 136 \\ & 136 \\ & 136 \end{aligned}$	$\begin{aligned} & 900 \\ & 2330 \\ & 3760 \\ & 4475 \end{aligned}$				
0.388	4 F	$\begin{aligned} & 3 \\ & \frac{3}{1} \\ & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 21 \\ & 24 \\ & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 169 \% \\ & 2899 \\ & 4079 \\ & 4674 \end{aligned}$	$\begin{aligned} & 52 \\ & 52 \\ & 52 \\ & 52 \end{aligned}$	$\begin{aligned} & 1609 \\ & 20909 \\ & 3489 \\ & 4586 \end{aligned}$	$\begin{aligned} & 80 \\ & 90 \\ & 80 \\ & 80 \\ & 80 \end{aligned}$	$\begin{array}{r} 153! \\ 2711 \\ 3 \times 12 \\ -\quad 4497 \end{array}$	$\begin{gathered} 108 \\ 108 \\ 108 \\ 108 \end{gathered}$	$\begin{aligned} & 1432 \\ & 2623 \\ & 3813 \\ & 4409 \end{aligned}$	$\begin{aligned} & 976 \\ & \vdots 35 \\ & 136 \\ & 136 \end{aligned}$	$\begin{aligned} & 1344 \\ & 2534 \\ & 3725 \\ & 4320 \end{aligned}$	$\begin{aligned} & 163 \\ & 163 \\ & 163 \\ & 163 \end{aligned}$	1235 2446 3141 $42 \% 2$				
$\begin{array}{r} 0.453 \\ \because 6 \\ \hline 6 \end{array}$	4F656	$\begin{array}{r} 4 \\ 6 \\ 8 \\ 8 \\ \hline \end{array}$	$\begin{aligned} & 28 \\ & 28 \\ & 28 \\ & 28 \end{aligned}$	1051 2971 3991 5000	$\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 60 \end{aligned}$	1862 2882 3902 4922	$\begin{aligned} & 93 \\ & 93 \\ & 93 \\ & 93 \end{aligned}$	$\begin{aligned} & 1774 \\ & 2794 \\ & 3814 \\ & 4834 \end{aligned}$	$\begin{aligned} & 126 \\ & 126 \\ & 126 \\ & 126 \end{aligned}$	$\begin{aligned} & 1686 \\ & 2706 \\ & 3725 \\ & 4745 \end{aligned}$	$\begin{array}{r} 159 \\ \therefore \quad 159 \\ -\quad 159 \\ -\quad 159 \end{array}$	$\begin{array}{r} 1597 \\ \because 2617 \\ 3637 \\ 4657 \end{array}$	－二	二				
0.517	4 F657	$\begin{array}{r} 5 \\ 7 \\ 9 \\ 11 \end{array}$	$\begin{aligned} & 32 \\ & 32 \\ & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 2145 \\ & 3039 \\ & 3932 \\ & 4826 \end{aligned}$	$\begin{aligned} & 69 \\ & 69 \\ & 69 \\ & 69 \end{aligned}$	$\begin{array}{r} 2057 \\ -\quad 2950 \\ -\quad 3844 \\ \hline 4738 \end{array}$	$\begin{gathered} 106 \\ -106 \\ 106 \\ 106 \end{gathered}$	$\begin{gathered} 1968 \\ -2862 \\ -\begin{array}{c} 3766 \\ 4649 \end{array}, ~ \end{gathered}$	$\begin{aligned} & 144 \\ & 144 \\ & 144 \\ & 144 \end{aligned}$	1880 2744 3667 4561	$\begin{array}{r}181 \\ \hline 181 \\ \hline 181 \\ \\ \hline 181\end{array}$	$\begin{array}{r} 1792 \\ -\quad 2665 \\ .3599 \\ .4472 \end{array}$	二	＝				
0.647	4F658	$\begin{array}{r} 6 \\ 9 \\ 9 \end{array}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 2053 \\ & 3124 \\ & 3838 \end{aligned}$	$\begin{aligned} & 86 \\ & 86 \\ & 86 \end{aligned}$	$\begin{aligned} & 1965 \\ & 3036 \\ & 3750 \end{aligned}$	$\begin{aligned} & 1133 \\ & 1333 \\ & 133 \end{aligned}$	$\begin{aligned} & 1877 \\ & 2948 \\ & 3662 \end{aligned}$	$\begin{aligned} & 180 \\ & 180 \\ & 180 \end{aligned}$	$\begin{aligned} & 1788 \\ & 2859 \\ & 3573 \\ & \hline \end{aligned}$	\therefore 二	\therefore 二						
0.711	4F659	$\begin{aligned} & 7 \\ & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 44 \\ & 44 \\ & 44 \end{aligned}$	$\begin{aligned} & 2185 \\ & 3160 \\ & 3810 \end{aligned}$	$\begin{aligned} & 95 \\ & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 2097 \\ & 3072 \\ & 3721 \end{aligned}$	146 146 146	$\begin{array}{r}2009 \\ -\quad 2983 \\ \hline\end{array}$	二	二	二	二	二	三				

SEE WARRANTY INFORMATION ON PAGE OPPOSITE INSIDE BACK COVER

MEDIUM-DUTY, HIGH TORQUE, LOW SPEED MOTORS

- Medium-duty, high torque, low speed hydraulic motors
- Used in demanding applications including car wash brush drives, salt spreader drives, machine tool turntables, and farm implement drives
- Cast-iron construction - Maximum oil temperature: $\mathbf{1 8 0}^{\mathbf{}} \mathbf{F}$
- Minimum oil viscosity: $\mathbf{5 0}$ SÜS (Saybolt Universal Seconds)
- Direct drive only
- Bi-rotational

Mounting and shaft dimensions are interchangeable with hydraulic motors of similar performance ratings, making these motors highly suitable replacements for other major brands, including the CharLynn "H" Series.
Self-sealing, wear compensating IGR pōwer element produces high volumetric efficiencies at all operating pressures throughout the life of the motor.
Four-bolt mounting flange with $31 / 4^{\prime \prime}$ bolt circle. $1 / 2^{\prime \prime}$ NPT ports. $1^{\prime \prime}$ straight keyed

(t) Intermittent operation is assumed to be less than one minute in 10 minutes. shaft. Parker brand.

(*) Intermattent ratings.

VANE AND PTO PUMPS

- Heary-duty pumps for high-flow, high performance, continuous duty applications
- Low vane tip/ring loading allows high pressure operation
- Excellent hydraulic balance
- Used in industrial power units and - mobile equipment such as trenchers, tractors, and backhoes
- Direct drive only
- Clockwise rotation

Internal inlet and outlet ports are diametrically opposed, for balanced pressure-induced radial loads.
Maximum pressure is 2500 PSI. All units have SAE two-bolt " $\mathrm{A}^{\text {" }}$ flange mounting.

$\begin{aligned} & \text { Vickers } \\ & \text { Series } \end{aligned}$	Stack No.	A	B	c	0	E	F*	6	-	H	1	J
v10		${ }_{4.80}^{4.50}$	${ }_{3.87}^{3.62^{\prime \prime}}$	${ }_{2}^{2.960}$	${ }^{1.755^{\circ}}$	${ }^{0.25500}$	${ }_{1.00}^{1.00^{\circ}}$	${ }_{0}^{0.97}$		${ }_{2}^{2.477^{\prime \prime}}$	${ }_{2.38}^{2.38}$	${ }_{1.50} 1.50$
v20	${ }_{62626,62627}^{625}$	${ }^{4.93}$	4.02	${ }^{2.80}$	${ }_{266}^{266}$	0.156 0.156	1.62	${ }_{1.22}$		2.60	${ }_{2}^{244}$	2.19 2.19

(*) 0.187 square key
TH W What

Nom.	Displ. Cu. In./ Rev.	1725	${ }^{m} 450$	$\underset{\text { Rew }}{\text { Max }}$	tn	$\pi_{\text {Out }}$	Vickers Model	Stock No.	-	List	Each	Skpg.
1.5	0.20	1.5	3.0	4800	$1.00{ }^{\prime}$	$0.50{ }^{\text {" }}$	V10-1P1P1A20	67620		\$373.00	\$237.00	12.0
3.0	0.40	3.0	6.0	4500	1.00	0.50	V10-1P2P1A20	62621		373.00	237.00	11.0
4.5	0.60	4.5	9.0	4000	1.00	0.50	V10-1P3P1A20	62622		373.00	237.00	11.0
6.0	0.80	6.0	12.0	3400	1.00	0.50	V10-1P4P1A20	62623		373.00	237.00	10.0
7.5	1.00	7.5	*	3200	1.00	0.50	V10-1P5P1A20	62624		373.00	237.00	120
9.0	1.19	9.0	18.0	3400	1.25	0.75	v20-1P6p1all	62625		459.00	292.00	160
10.5	1.39	10.5	*	3000	1.25	0.75	V20-1P91411	62626		45900	292.00	
12.0	1.62	12.0	*	2860	1.25	0.75	vedherinil	62527		46900	292.06	

PTO PUMPS

- Used as original equipment or additional hydraulic power supply on farm tractors of all sizes
- No additional gearing needed
- Provides working pressures up to 2500 PSI

Power take-off (PTO) hydraulic gear pumps have two self-adjusting wear plates to seal off leakage around the two unequal size gears. These plates, activated by internal fluid pressure, offset any wear or expansion that may occur during life of the pump. Each pump is assembled with zero clearance between housing and tips of gear teeth and is test run until teeth establish a prop-
er wear path in the housing.
Pumps have high tensile, cast-iron end-plates, aluminum housing, and an internal splined 6 -tooth shaft supported on both sides by roller bearings. Tapped holes are provided for torque arm mounting. No. $4 \mathrm{Z171}$ includes $\# 16$ SAE to 1.25^{n} hose barb adapter for iniet port, \#12 SAE to $0.75^{\prime \prime}$ (F) NPTF adapter for outlet port, \#12 SAE plug for unused pressure port. No. $4 \mathrm{Z172}$ includes \#16 SAE to $1^{\prime \prime}$ hose barb adapter for inlet port, \#12 SAE to $0.75^{\prime \prime}$ (F) NPTF adapter for outlet port, \#12 SAE plug for unused pressure port. CW rotation only. Hydraulic Components Inc., subsidiary of Prince Mfg. Corp.

MPM	Stock No.	A	B	c	D	E	Inlot Port	Ourdet Port	Sh	
${ }_{540}^{540}$	${ }_{47172}$	${ }_{1.63}^{2.38}$	${ }_{1.72}^{209^{\prime \prime}}$	${ }_{1.81}{ }^{219}$	${ }_{2}^{3.97}$	${ }_{5.60}{ }^{6.350^{\prime \prime}}$				(tooth
${ }^{(*)} 0$-Ring Boss.										
RPM	$\underset{\substack{\text { GPM } \\ \text { PPI }}}{ }$	${ }_{1500 \mathrm{PSI}}^{\text {GPM }}$	${ }_{2000}^{\text {GPMAS }}$	Displacement Cu. In. / Rev.	$\operatorname{Min}_{\text {HP }}$	$\begin{array}{\|c\|c\|} \hline \begin{array}{c} \text { Pringe } \\ \text { Modod } \end{array} \end{array}$	Stock	List	Esch	${ }_{\text {Stipt }}^{\text {Weg }}$
540	24.7 12.6	${ }_{11.1}{ }^{1.3}$	19.0 10.7	${ }_{6} 9.7$	${ }_{20}^{30}$		${ }_{4217171}$	\$503.00 483.00	\$3881.00	${ }_{35.0}^{38.0}$

HIGH PRESSURE GEAR PUMPS

3-9 GPM SAE "A" 2-BOLT MOUNTING PUMPS

APPLICATIONS

- Material handling
- Construction and paving
- Aerial lifts Winches
- Turf care Agricultural
- Direct drive only

Continuous pressures to 4000 PSI . Speeds 500 to 4000 RPM. 90% overall efficiency and low noise.
Rough bore bushing type design constructed of high strength aluminum housings and cast-iron end covers.

Whentry

$11 / 14$ GPM SAE "A" 2-BOLT MOUNTING PUMPS 20/26 GFM SAE "B" 2-BOLT MOUNIING PUMPS

2630
BUSINESS TO BUSINESS SALES

PISTON PEIMES

- SAE "A" 2-bolt mounting
- CW rotation only viewed from shaft end
- Inline variable displacement units provide efficient performance and high operating reliability
- Rugged construction and minimum number of parts for pump reliability and easy servicing without disturbing pump mounting
- Operate on variety of hydraulic fluids including oil, invert emulsions, water glycols, and high water based fluids

Pumps demonstrote approximately 0 . $\%$ volumetric efficiency and 85% overall eificiency at rated speeds and pressures.
Pressure compensator control automatically adjusts pump delivery to maintain volume requirements of the system at a preselected pressure. Minimizes need for cooling equipment and reduces size of reservoir required. Pressure compensator adjustable range: 250-3000 PSI (Nos. 5W565 and 5W567); 250-2000 PSI (Nos. 5W566 and 5W568).
SAE straight threads are standard on all units. Two-bolt flange mounting. 7/8 x $2.31^{\text {" }}$ keyed shaft.

$\begin{aligned} & \text { Delivery } \\ & \text { GPM } \\ & 1800 \text { RPM } \end{aligned}$	$\begin{aligned} & \text { Max. } \\ & \text { Press. } \\ & \text { PSSIF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Sound } \\ & \text { Level } \\ & \text { (dibA) } \end{aligned}$	$\stackrel{A}{\text { Length (In.) }}$	$\begin{gathered} 8^{\text {Over }} \\ \text { Width (In.) } \end{gathered}$		$\begin{aligned} & \text { Inlet / Outlet } \\ & \text { Ports } \end{aligned}$	Vickers Model	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	-- list	Each	Shpg. W.L.
5	3000	71	8.72	7.13	5.18	11/16 ${ }^{\text {d }}$-12UN2B	PVB5-RSY-21-C11	5W565	\$1155.00	\$792.00	16.0
6	2000	69	8.72	7.13	5.18	1/16-12 UN2B	PVB6-RSY-21-C11	5W566	1063.00	727.00	20.0
15	3000	76	10.50	7.36	5.81	${ }_{15}^{158-12 ~ U N 2 B ~}$	PVB10-RSX-31-C-11	5W567	1386.00	952.00	25.0
15	2000	76	10.50	7.36	5.81	168-12 UN2B	PVB15-RSY31-C-11	5W568	1478.00	1015.00	31.0

(*) Unt service life is individual to each application Applications which require continuous operatoon at maximum pressure will likely result in shortened service life. (\dagger) Sound levels recorded per NFPA standards at 3 ft . Full flow, 1800 RPM, and maximuma pressure.
RESERVOIRS AND ACCESSORIES
HYDRAULICS
5 AND 10 GALLON CAPACITY RESERVOIRS
变教
 age tanks for hydraulic oil. Allow contaminants to settle out of oil and entrained air to be vented before being
 Applications include log splitters, mobile and industrial hydraulic systems.

FILLER BREATHER *

3 in diameter, 40 micron plated steel allows rapid filling and is compatible with breather cap handles up to 30 cfm airflow most hydraulic fluids. Includes mounting at less than $1^{\prime \prime} \mathrm{Hg}$ differential pressure. Twist-to-lock cap includes safety chain. 30 Twist-to-tock cap includes safety chain. 30
mesh, stainless steel strainer basket. screws and gasket. Lube Devices (FB103).
No. 6W387. Shpg. Wt. 0.5 lbs. List .. $\$ 11.05$.
Each..
$\$ 9.02$

RESERVOIR FLUID LEVEL/TEMPERATURE GAUGES

Fluid level gauges have low profile bodies No. 6 W389. 3 in. Mounting Center Level with wide sight openng for maximum visi- (ange (G1615-03-A-1). Shus. wh. 04 lhs . bility. Machined from extruded alummum List $\$ 19.45$. Each $\$ 11.87$ bar stock. Crystal clear borosilicate sights compatible with all hydraulic flunds. Will not discolor with age or temperature. Buna-N seals. 20 -PSI maximum working pressure. $250^{\circ} \mathrm{F}$ maximum temperature. Lube Devices brand. No. 6W388. 5 in. Mounting Center Level Gauge (G1615-05-A-1). Shpg. wt. 0.51 bs List \$19.70. Each.- .7 $\$ 12.12$
No. 6W390. 10 in . Mounting Center Level Gauge (G1615-10-A-1). Shpg. wt. 0.7 lbs. List $\$ 39.90$. Each. \$23.76

HYDRAULIC SUCTION STRAINERS
Used to filter oil at end of pick-up tube in steel. 100 mesh screen can be easily
oil reservoir. Zinc-plated steel end plates. cleaned. Lube Devicesbrand. oil reservoir. Zinc-plated steel end plates. Rigid, one piece inner frame. Stainless

Port Size	Mominal Flow, GPM	$\begin{aligned} & \text { Dimensions (In.) } \\ & \text { Length } \\ & \text { Dianeter } \end{aligned}$			Luby Devices Model	$\begin{aligned} & \text { Stock } \\ & \cdots \text { No. } \end{aligned}$	List	Ench	$\begin{aligned} & \text { Shpg } \\ & \text { St } \end{aligned}$
1/24	5	3.10	${ }^{2} .63$		SS104	382	\$10.20	\$9.20	0.3
$3 / 4$	8	3.50	2.63		SS105	W383	10.40	9.83	0.7
1	10	6.40	2.63:		\%'SS106	$\cdots 6 W 384$	15.25	12.31	0.4
$11 / 4$	20	6.85	3.39		SS107		21.85	18.33	0.4
11/2	30	7.90	3.39		SS108	$6 W 386$	26.25	21.27	0.7

HYDRAULIC OIL AND LUBRICANTS AVAILABLE

Mobir
SEE PAGE 2690

HYDRAULICS

C-FACE PUMP/MOTOR ADAPTERS AND TWO-STAGE "HI-LO" GEAR PUMPS

C-FACE PUMP/MOTOR ADAPTERS

- Aluminum alloy encloses shaft and coupling for quiet, safe operation
- For mounting 4F174 bolt, SAE "AA" 2 bolt, SAE "A" 2 and 4 bolt, SAE "B" 2 and 4 bolt, see Specifications and Ordering Data below for motor frame combinations
- All models can be horizontally mounted; Nos. 6Z069, 6Z070, and 4F322 can also be vertically mounted
- Slotted for eaisy coupling adjustment
- Maximum coupling diameter: $31 / 2^{n}$ for Nos. 6Z069 and 6Z070; 41/2" for No. 62071

(*) $413 / 80$ ON $E^{7} / 8 \mathrm{BCC}(7) 4.17 / 80$ ON 71/4B.C.

TWO-STAGE "HILO" GEAR PUMPS

APPLICATIONS

- Presses Log splitiers
* Autometic two-speed iransmission
- Clamping unit Compactors
* Heavy-duty cast-iron pumps with optimum output per unit size
- Hardened steel 11 -footh gears with large bearings and shaft size
- Clockwise rotation for electric motor or gas engine
- 1/2 in. drive shaft with \#404 Woodruff drive key
- Direct drive only
- Motor, coupling, and adapter not included - J.S. Barnes brand

B4twith															
$\begin{gathered} \text { Nominal } \\ \text { GPM } \end{gathered}$	${ }_{R P W}$	$250^{\text {GPM © Prossure }} 1000$			$\underset{\substack{\text { Gear Displ. } \\ \text { Pressure } \\ \text { Low } \\ \text { Prassura }}}{ }$		Dia. Shaft Length		Ports Outlet		Barnez	$\begin{array}{r} \text { - Stock } \\ \text { No. } \end{array}$	List	Each	$\begin{aligned} & \text { Shpg. } \\ & \text { Wt } \end{aligned}$
11.0	1880 3600	10	28	1.	0.194 in 2	$0.517 \mathrm{in}^{3}$		11/2"	1" Tube	2^{*}	100250	$4{ }^{4} 663$	\$166.45	\$152.00	
8.0 16.0	1800 18600	16.94 76.91	1.9 1.8	1.81 1.62	0.258	0.776		11/2			1002509		0	192.50	

Library of Technical Manuals
Helpful reference books for the worker, student, and homeown- refrigeration and air conditioning, hydraulics, and much more. er. Topics cover electricity, electric motors, welding, plumbing, See Index under Books.

PNEUMATICS

LARGE PORT SOLENOID AND RIGHT ANGLE FLOW CONTROL VALVES

1/2" \& 3/4" PORT SOLENOID VALVES

For applications where extra flow is needed. 4way, 2-position valves feature rugged construction aluminum sand cast bodies. Solenoid override provides easy means of setting up and troubleshooting circuits without power to the solenoids. Operating pressure range: solenoid/spring $50-150$ PSI, solenoid/solenoid 20-150 PSI.
Prelubed, can be operated without air line lubrication. Solenoid can be rotated in any direction. Class F , rated for 100% duty cycle applications at $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$ ambient. Total coil rating is $311^{\circ} \mathrm{F}$ which includes heat rise.
One connector required for each coil. Each connector is its own junction box with molded connectors and gaskets to protect electrical connections. Design meets NEMA 4 classifications. See connector options below. ARO brand.

章

$\begin{gathered} \text { Porsize } \\ \text { Hey } \\ \text { Ker Inches } \end{gathered}$	Actuator/ Return	Temp. Range	Pressure	CFM	1	bimension	ches)		$\begin{aligned} & \text { ARO } \\ & \text { Model } \end{aligned}$	$\begin{gathered} \text { Stock } \\ \text { No. } \end{gathered}$	List	Each	Shps.
$A=1 / 2$	SolenoidSpring	$-10-180^{\circ} \mathrm{F}$	150 PSI	90	${ }^{67 / 8}$	$3{ }^{1 / 2}$	$2{ }^{1 / 2}$		K214SS-120-A	$2 \mathrm{C553}$	\$181.00	\$172.00	1.3
A $-3 / 4$	Solenoid/Spring	$-10-180^{\circ}$	150	270	105/8	4/2/2	- $31 / 2$		K216SS-120-A	2G557	299.00	284.00	1.3
	SolenoidSolenoid	$-10-180^{\circ}$	150	90.	$83 / 4$	$31 / 2$	$2^{1 / 2}$		K214SD-120-A	2G555	250.00	237.50	1.3
B 3/4	SolenoidSolenoid	$-10-180^{\circ}$	150	270	125/8	41/2	$31 / 2$		K216SD-120-A	2G559	368.00	349.75	1.3
+3,	Dascription $\quad \because$.			CONNECTORS FOR ARO COILS					- :	:			
Key						$\begin{gathered} \text { ARO } \\ \text { Model } \end{gathered}$		$\begin{aligned} & \text { Stock } \\ & \text { Nock } \end{aligned}$		List	Each		$\begin{aligned} & \text { Shg. } \\ & \text { nutg. } \end{aligned}$
$\begin{aligned} & \hline \mathbf{C} \text { Solenoid Connecor Without Lead Wiress } \\ & \mathbf{D} \text { Solenoid Connector With } 13^{4} \text { Lead Wire } \\ & \text { E Solenoid Connector With } 36^{\circ} \text { Molded Wire } \end{aligned}$			Any Aro Coil Any Aro Coil Any Aro Coil		$\begin{aligned} & \mathrm{CSN} \\ & \mathrm{CDW} \\ & \mathrm{CHW} \end{aligned}$		$\begin{aligned} & \text { 2G505 } \\ & 2 G 501 \\ & 2 G 503 \end{aligned}$			$\begin{gathered} \$ 5.40 \\ 7.10 \\ 9.20 \end{gathered}$	$\begin{array}{r} \$ 5.13 \\ 6.75 \\ 8.74 \end{array}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$

FLOW CONTROL VALVES

Rightingle flow control valves for mounting directly onto cylinder for precise control of cylinder speed. Adjust with screwdriver to increase or decrease speed. Rugged, all metal design includes nickel-plated brass body, anodized aluminum swivel and stainless steel spring for optimúm corrosion resistance. Available in female threads (NPT) and convenient push-toconnect tube fittings.
Features dry thread sealant on male threads to eliminate need for piping tape. Full 360° rotation for tubing alignment. 0 to 150 PSI operating pressure range. 15 to $160^{\circ} \mathrm{F}$ temperature range. ARO brand.

FLOW CONTROL YAIVE SPECIFICATIONS AND ORDERING DATA													\qquad Shpg. Wt.
Key	Male Port NPT	$\therefore \text { Fomale }$	Max. Temp. Range	Maximum Operating Pressure	Cv*	1	- Dimensions W	H	ARO Model	Stock No.	List	Each	
A	10-32	10-32 NPT	$0-180^{\circ} \mathrm{F}$	150 PSI	0.06	25/32*	$33 / \mathrm{fv}^{+}$	$35 t_{64}{ }^{4}$			\$9.20	\$8.74	0.1
A	1/8	1/8 NPT	0-180	150	0.34	$1^{13 / 32}$	$5 / 8$	\%/4	119307-125	$2 F 849$	10.75	10.21	0.1
A	1/4	U4 NPT	0-180	150	0.67	129/64	25/52	$1^{19 / 619}$	119307-250	2F851	14.00	13.30	0.1
A	3/8	$3 / 8 \mathrm{NPT}$	0-180	150	1.87	23/16	12/16	11\%	$119307-375$	$2 F 853$	17.25	16.39	0.2
A	1/2	1/2 NPT	0-180	150	2.84	321/32	$17 / 4$	$14 / 40$	119307-300	2F855	25.50	24.23	0.4
B	10-32	5132 Push to Connect	0.180	150	0.06			57/6-	119309-103	$2 F 857$	10.25	9.74	0.1
8	$1 / 8$	$1 / 4$ Push to Connect	0-180	150	0.34	$118 / 5$	2/8	1	119309-125	-2F859	12.00	11.40	0.1
B	$1 / 4$	1/4 Push to Connect	0.180	150	0.67	109/6is	$\cdots 3 / 12$	$110 / 4$	119309-250	$2 F 861$	15.25	14.49	0.1
8	$3 / 8$	3/8 Push to Connect	0-180	150	1.87	23/16	$13 / 18$	11/2	119309-375	$2 F 863$	19.00	18.05	0.3

[^35]
HEAVY-DUTY LIMIT AND SHUTTLE VALVES

HEAVY-DUTY LIMIT VALVES

ARO 2-position, 3-way valves for position sensing in demanding applications. Valves can be plumbed as normally passing or normally non-passing, selector, or any 2way function. Available with clockwise actuation, counterclockwise actuation or both. Operating head can be rotated to any of four positions for various applications. Prelubed, can be operated without air line lubrication. Composite body for tough environments like car washes and washdown applications. 30 to 150 PSI operating pressure. $\mathrm{Cv}^{*}=0.195$. ARO brand.

(*) Coefficient of Volume: The amount of water, in GPM, at standard conditions, which will pass through the valve at full open whth 1 PSI pressure drop. (**) 90 PSI supply, 15 PSI drop.

	Description	Actuator Force Req'd. (Lbs)	L	Dimensions (faches) W	H	ARO Model	Stock No.	List	Each	Shpg. Wt.
\%	Nylon Roller	2.5	${ }^{1 / 8}$	$1 / 2$	${ }^{23 / 16}$	447	$2 \mathrm{F925}$	\$15.50	\$14.73	0.1
\%	Rod Lever	0.7	11/8	7/8	$5{ }^{5 / 8}$	449	$2 F 927$	20.75	19.71	0.1
* D	Adjustable Roller Lever	1.3	1/8	$3 / 4$	$37 / 8$	450	$2 F 929$	22.50	21.38	0.1

Abstract

5 SHUTTLE VALVES ARO shuttle valves act as special check valves, connecting two thputs so only one is "ON" at a time. Valves features two inlet ports and one outlet port. Check ball moves away from inlet port with the greatest pressure and against the port with the least pressure (minimum pressure differential of 10 PSIG necessary to effect shuttle change). ARO brand.

SHIII E YAYE SPECIFCATIONS AND ORDERMGDATA

$\begin{aligned} & \text { Port Size } \\ & \text { NPT } \\ & \text { (thehes) } \end{aligned}$	Max. Operting Prossure	Bimensions (Inches) 1 W H			ARO Model	Stack No.	List	Each	Skpg.
1/8	${ }_{200}^{200}$ PSI	11/4	$\begin{aligned} & 5 / 8 \\ & 7 / 8 \end{aligned}$	$\begin{aligned} & 31 / 38 \\ & 15 / 16 \end{aligned}$	$\begin{array}{\|l} \text { SV10-B } \\ \text { SV20-B } \end{array}$	$\begin{aligned} & \text { 2G635 } \\ & 2 G 637 \end{aligned}$	$\begin{array}{r} \$ 23.25 \\ 31.50 \end{array}$	$\begin{array}{r} \$ 22.09 \\ 29.95 \end{array}$	0.1 0.3

SEE INDEX FOR A COMPLETE LINE OF AIR COMPRESSORS AND ACCESSORIES

Dayton
COVPRESSORS
\& VACUUM PUMPS

PNEUMATICS

 MINIATURE DIRECT-ACTING SOLENOID VALVES

 MINIATURE DIRECT-ACTING SOLENOID VALVES}

MINIATURE DIRECT-ACTING SOLENOID VALVES

3-Way, 2-Position electric-to-air interface valves are solenoid-actuated with spring return and have sufficient flow for cylinders $1^{\prime \prime}$ diameter and below. Compact design allows valves to be pipe nippled directly to cylinder port. Suitable for air or inert gas. Can be assembled in stacks up to 6 valves. Coil can be rotated to meet application requirements. Rated for 100% duty cycle. Quick change design for easy replacement. Durable, lightweight aluminum extrusion body for good corrosion resistance. Cv^{*} for normally non-passing body ported valves is 0.062 , for normally passing, body ported valves is 0.056 , and for normally non-passing, stackable is 0.046 . ARO brand. Can be used with vacuum.

COILS AND CONNECTORS

For pneumatic valves when coil voltage other than 120 VAC or 12 VDC is required (see chart below). All coils are Class F, rated for 100% duty cycle applications at $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right.$) ambient. Total coil rating is 31 HF , which includes heat rise. AC or DC coits can be interchanged on same solenofa stem. One connector required for each coil. Each connector is its own junction box with molded connectors and gaskets to protect electrical connections. Dësign meets NEMA 4 classifications. ARO brand.

STACKING KITS

Kifs for miniature solenoid valves contain all necesssary tie-rods, nuts, O-rings, plug and instructions for assembling miniature solehoid valves into valve stacks. Specify kit according to number of valves to be stacked. Valves sold separately. ARO
 brakid.

ACCESSORIES FOR MINIATURE VALVES

PNEUMATICS

ACCESSORIES FOR SIERRA SUBBASE AND MANIFOLD MOUNT VALVES

［A］Single Station Subbase for use where convenience of a subbase is desired for fast maintenance on a one valve station．
［B］Manifold for use in applications where valve manifolding is needed for 2－8 valves．
［C Gasketed Metallic Blanking Plate caps unused manifold ports．Quick installation． One plate per unused valve station required．
［D］Raceway Manifold Conversion Kit turns manifold into 4 －， 6 －，or 8 －station raceway manifold with installation of raceway ter－ minal circuit board．
［E］39＂Raceway Ribbon Connector facilitates wiring．Can be used for 4 －， 6 －，or 8 －station raceways．
［F］Raceway Ribbon Connector Break－Out Box is a 26 －station junction box that allows raceway manifold valves to be interfaced with a personal computer or other elec－ tronic command device by means of race－ ways ribbon listed above．Current rating： 3ADC．UL Voltage rating： 30 VDC ．
（G）Plug－In Valve Wire Harness is an $18^{\prime \prime}$ two－ wire harness prestripped tat one end with a pintype locking connector at other end． One harness per coil required when used onistandard manifold or subbase．
$[\mathrm{H}, \square$ Plug－In Valve Raceway Wire Harness has pin－type locking plug connector at one end and raceway plug at the other． Avainable for single solenoid valves（ $41 / 2^{\prime \prime}$ length harness）or double solenoid valves （ $4 \%_{2^{n}}$ and 12^{n} length harnesses）．

		SPECIFCATONS AND ORDERAGBATA			2		
$\begin{aligned} & 28 \\ & K e y \end{aligned}$	Description	Use With：	$\begin{aligned} & \text { ARO } \\ & \text { Model } \end{aligned}$	Stock No．		Each	Stipg． Wt．
而	Single station subbase for $1 / 8^{\prime \prime}$ port valves	1 base－mounted valve	$119368{ }^{-}$	27889	\＄8．00	\＄7．60	0.2
豈	2 －station manifold for $1 / 8^{\prime \prime}$ port valves	2 base－mounted valves	119365－2	$2 F 881$	17.00	16.15	0.5
\％	4－station manifold for 1／8＂port valves	3 or 4 base－mounted valves	119365－4	2 F 883	28.00	26.60	0.8
，	6 －station manifold for $1 / 8^{\text {H }}$ port valves	5 or 6 base－mounted valves	119365－6	$2 F 885$	42.00	39.90	1.1
8	3－station manifold for 1／8 ${ }^{\text {n }}$ port valves	7 or 8 base－mounted valves	119365－8	$2 F 887$	58.00	55.10	1.4
C	Gasketed metallic blanking plate	Valve manifold，as needed	119351	$2 F 865$	3.50	3.33	0.1
D	Raceway manifold conversion kit	4－station manifold	119352－4	27867	30.00	28.50	0.1
D	Raceway manifold conversion kit	6 －station manifold	119352－6	2F869	40.00	38.00	0.1
D	Raceway manifold conversion kit	8 －station manifold	119352－8	$2 F 871$	50.00	47.50	0.1
E	Raceway ribbon connector	Raceway manufold conversion kit	119353－1	$2 F 873$	12.50	11.88	0.1
F	Raceway ribbon connector break－out box	Raceway manifold and ribbon	119395	$2 F 891$	47.00	44.65	0.1
G	Plug－in valve wire hamess	Solenoid	119356	$2 \mathrm{F879}$	1.60	1.52	0.1
H	Plug－in valve raceway wire harness	Single solenoid valve，raceway	119354	$2 F 875$	2.10	2.00	0.1
1	Plug－in valve raceway wre harness	Double solenoid valve，raceway	119355	$2 F 877$	4.50	4.28	0.1

MANY BRANDS OF HYDRAULICS／PNEUMATICS AVAILABLE

\square
Parkar

MINIATURE SOLENOID VALVES

Sierra Valves are 15 mm wide directional valves for operating small bore pneumatic cylinders. 4 -way, 5 -ported, 2 position valves are available in single and double solenoid styles. Body ported and manifold mounted valves have $0.25 \mathrm{Cv}^{*}$ flow and fastignal response time of 14 milliseconds.

Features standard one-touch override which can be operated for non-locking action, or push-and-twist to lock with screwdriver. Lead wire and plug-in styles in 120 VAC or 24 VDC. Plug-in integrated circuitry guards against miswiring damage and provides surge protection. Maximum cycle rate of 120 cycles per minute, 22 PSI shift
pressure. Current ratings: $120 \mathrm{VAC}=16 \mathrm{~mA}$ (in-rush), 11 mA (holding); $24 \mathrm{VDC}=67 \mathrm{~mA}$. Power consumption is $2.1 / 1.8 \mathrm{VA} 1.6 \mathrm{~W}$. ARO brand.

VAIVE SPECIFICAIONS AND ORDERING DATA															
Key	$\begin{aligned} & \text { Port Size } \\ & \text { NPT } \\ & \text { (Inches) } \end{aligned}$	Actuator/ Retura	Coil	Max. Temp. Range	Max. Operating Pressure	CFM**	Cv^{*}	$\begin{aligned} & \text { Din } \\ & \mathbf{L} \end{aligned}$	sions W	:hes]	ARO Model	Stock No.	List	Each	Shpg. Wt.
$\begin{aligned} & \mathbf{A} \\ & \mathbf{A} \\ & \mathbf{B} \\ & \mathbf{B} \end{aligned}$	$10 / 32$ $10 / 32$	Solenoid/Sprng Solenoid/Spring Solenoid/Spring Solenoid/Sprng	Lead Wire, 120 VAC Lead Wire, 24 VD Plug-in 24 VDC	$\begin{aligned} & \hline 0-122^{\circ} \mathrm{F} \\ & 0-122 \\ & 0-122 \\ & 0-122 \\ & \hline \end{aligned}$	$\begin{aligned} & 115 \text { PSI } \\ & 115 \\ & 115 \\ & 115 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \\ & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.25 \\ & 0.25 \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 33^{3515 / 64} \\ & 35156 \\ & 31 / 2 \\ & 3^{1 / 2} \\ & \hline \end{aligned}$	$\begin{array}{r} 19 / 20 \\ -19 / 32 \\ 19 / 32 \\ : 9 / 32 \\ \hline \end{array}$	$\begin{aligned} & 11 / 32 \\ & 1^{1 / 32} \\ & 1^{11 / 2} \\ & 1^{1 / 2} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 2G627 } \\ & 2 G 629 \\ & 2 G 631 \\ & 2 G 633 \end{aligned}$	$\begin{array}{r} 537.00 \\ 37.00 \\ +2.00 \\ 42.00 \end{array}$	$\$ 35.15$35.1539.90$\mathbf{3 9 . 9 0}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$
	10/32														
	10/32														
	$10 / 32$	Double Solenoid Double Solenoid Double Solenoid Double Solenoid	Lead Wire, 120 VAC Lead Wire, 24 VDC Plug-in, 120 VACPlug-m, 24 VDC	$\begin{aligned} & 0-122 \\ & 0-122 \\ & 0-122 \\ & 0-122 \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \\ & 115 \\ & 115 \\ & \hline \end{aligned}$	9999	$\begin{aligned} & 0.25 \\ & 0.25 \\ & 0.25 \\ & 0.25 \\ & \hline \end{aligned}$		$\begin{aligned} & 9 / 9 / 32 \\ & 19 / 32 \\ & : 9 . x 2 \\ & : 9 / x \\ & \hline \end{aligned}$	$11 / 12$$11 / x^{2}$$11 / 2$$1^{1 / 2}$		$\begin{aligned} & 2 G 611 \\ & 2 G 613 \\ & 2 G 615 \\ & 2 G 617 \end{aligned}$	$\begin{aligned} & 57.00 \\ & 3.00 \\ & 62.00 \\ & 62.00 \\ & \hline \end{aligned}$	54.15 54.15 58.90 58.90	$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$
	10132														
	$10 / 32$														
	1082														
MANIFOLD MOUNTED 4-WAY MINIATURE SOLENOID YALVES														\%	
	$1 / 8$	Solenoid/Spring Solenoid/Spring Solenoid/Spring Solenoid/Spring	Lead Wire, 120 VAC Lead Wire, 24 VDC Plug-n, $120 \mathrm{VAC}^{+}$ Plug-in, 24 VDC+	$\begin{aligned} & 0-122 \\ & 0-122 \\ & 0-122 \\ & 0-122 \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \\ & 115 \\ & 115 \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \\ & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.25 \\ & 0.26 \\ & 0.25 \end{aligned}$	333.64$33 / 64$$31 / 2$$31 / 2$	$\begin{aligned} & 19 / 2 \\ & 19 / 2 \\ & 19 / 3 z \\ & 19 / x z \end{aligned}$	$\begin{aligned} & 11 / 10 \\ & 11 / 16 \\ & 11 / 2 \\ & 1^{1 / 2} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { S5SS9A } \\ & \text { S5SS9B } \\ & \text { S5SSSC } \\ & \text { S5SS9D } \end{aligned}$	2G6192G6212G623$2 G 625$	380038.0043.0043.00	$\begin{aligned} & 36.10 \\ & 36.10 \\ & 40.85 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$
	1/8														
	$1 / 8$														
$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{H} \\ & \mathbf{H} \\ & \hline \end{aligned}$	$1 / 8$	Double Solenoid Double Solenoid Double Solenord Double Solenoid	Lead Wire, 120 VAC Lead Wire, 24 VDC Plug-tn, 120 VAC ${ }^{\text {c }}$ Plug-in, 24 VDC \dagger	$\begin{aligned} & 0-122 \\ & 0-122 \\ & 0-129 \\ & 0.122 \\ & \hline \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \\ & 115 \\ & 115 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \\ & 9 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.55 \\ & 0.25 \\ & 0.25 \end{aligned}$			$\begin{aligned} & 11 / 16 \\ & 1 / 10 \\ & 11 / 2 \\ & 11 / 2 \end{aligned}$	S5DS9A S5DS9C S5DS9D		$\begin{aligned} & 58.00 \\ & 58.00 \\ & 63.00 \\ & 63.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 55.10 \\ & 55.10 \\ & 59.85 \\ & 59.85 \end{aligned}$	$\begin{aligned} & \hline 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \end{aligned}$
	$1 / 8$														
	18														
	$1 / 8$														

(${ }^{*}$) Coefficient of Volume: The amount of water, in GPM, at standard conditions, which whil pass through the valve at full open with a 1 PSI pressure drop. (**) 90 PSI supply, 15 PSI pressure drop. (\dagger) Order raceway ribbon, plug-in valve wre harness or plug-in valve raceway wre hamess separately.

ACCESSORIES FOR "PLUG-IN" VALVES

PNEUMATICS

(A) Pluy-In Style Manifold features a 5 -pin plug that eliminates all external solenoid wiring Body is powder coated for chip and scratch resistance.
[B] End Plate Kit features large raceway

ACCESSORIES FOR GENESIS VALVES

wiring channel for easy wiring. One kit required per stack.
(C) Sandwich Speed Control (optional) has low profile and offers quick installation, precise speed control, and a flush
non-rising adjustment screw.
[D] 0 to 120 PSI Sandwich Style Regulator (optional) fits on valve and features front and rear gauge ports to match application requirements.

(*) Dimensions are for two end plates (one set). (**) 90 PSI supply, 15 PSI pressure drop.

GRAINGER HAS OVER 330 BRANCHES NATIONWIDE

We're well stocked with items you use everyday and our salespeople are knowledgeable, courteous professionals who care about your business. To find the branch nearest you, check the white pages in your local telephone directory under "Grainger."

PNEUMATICS

SOLENOID VALVES FOR "PLUG-IN" MANIFOLD

HIGH FLOW SOLENOID VALVES FOR

 PLUG-IN MANIFOLDGenesis $1 / 4^{n}$ or $3 / 3^{n}$ valves feature plug-in electrical connections between valve and manifold to make valve easy to install. Plug-in design keeps all electrical wiring inside of unit and features "make firstbreak last" grounding contact pin. Complies with ISO 5599-S for replacement of foreign-made valves that meet specification. Large one-piece bonded spool design for energy saving efficient air flow and positive shifting with lower system pressure.
Mechanical valve override makes machine setup and troubleshooting easy. Mounting/assembly hardware features stainless steels stacking pins that eliminate the need for tie rods or separate bolts.
NOTE: Valves must be used with either $1 / 4^{n}$ or $3 / \mathrm{s}^{11}$ port manifold. Order manifol and accessories below.
Indicators are standard equipment on valves. Valves are prelubed, can be operated without air line lubrication. $\mathrm{Cv}^{*}=1.0$ thropigh side ports and 1.2 through bottom ports. 30 to 150 PSI operating pressure

NEW Product Offering

 range: ARO brand.

Kepmsen Actuatort Return	Coil	Max. Temp. Range	$\xrightarrow{\text { Max }}$ Pressure	Cv*		${ }_{W}^{15 \dagger}{ }^{\text {(Inches) }}{ }_{H}$	ARO Model	Stock No.	List	Each	w
A : Solenoid/Spring	120 VAC	$0^{-180}{ }^{\circ} \mathrm{F}$	150 PSI	1.2	6	$1^{11 / 16} \quad 25 / 15$	GP12SS-120-H	2G585	\$62.00	\$58.90	
A Solenoid/Spring	12 VDC	0-180	150	1.2	6	111/16 25/16	GP12SS-012J	$2 \mathrm{C581}$	62.00	58	20
A ${ }^{\text {a }}$ S Solenoid/Spring	24 VDC	$0-180$	150	1.2	6	${ }^{111 / 18} \quad 25 / 16$	GP12SS-024J	2G583	62.00	58.90	20
B SolenoidSolenoi	120 VAC	$0-180$	150	1.2	71/4	111/16 ${ }^{25 / 16}$	GP12SD-120-H	2G579	94.00	89.30	22
B SolenoidSolenoi	12 VDC	0-180	150	1.2	71/4	$1^{11 / 16} \quad 25 / 16$	GP12SD-012J	2G575	94.00	89.30	,
B E/w Solenoid/Solenoid	24 VDC	0-180	150	1.2	71/4	$1^{11 / 16} \quad 25 / 16$	GP12SD-024J	2G577	94.00		
B Solenoid/Solenoi	120	a	150	1.2	$71 / 4$	111/16 ${ }^{25}$	GP13SD-120	2G591	117.50	111.6	2.2
SolenoidSolenoid	12 VDC	0-180	150	1.2	71/4		GP13SD-012J	2G587	117.50	111.65	
Stalenoid/Solenoid	24 VDC	0-180	150	1.2	71/4	111/16 26/16	GP13SD-024J	26589	117.50	111.65	
B Solenoid/Solenoid Bonenoid/Solenoid Solenoid/Solenoid	120 VAC	0-180	150	1.2	71/4	$1^{11 / 16} \quad 25 / 16$	GP17SD-120-H	26597	117.50	111.65	2.2
	12 VDC	0-180	150	1.2	71/4	${ }^{111 / 16}{ }^{11 / 16}$	GP17SD-012J	$2 \mathrm{G593}$	117.50	111.65	2.2
	24 VDC	O-180	150	1.2	71/4	111/16 25/16	GP17SD-024J	2G595	117.50	111.65	2.2

(*) Coefficient of Volume: The armount of water, in GPM, at standard conditions, which will pass through the valve at full open with a 1 PSI pressure drop. Figures shown are for
$1 / 4^{4}$ port. (f) Dimensions are for a single valve and do not include manifold, end plate, regulator, or speed control.

Plug-in Style Manifold features a 5 -pin slug that eliminates all external solenoid viring. Body is powder coated for chip ind scratch resistance.
ind Plate Kit features large raceway

ACCESSORIES FOR GENESIS VALVES

wiring channel for easy wiring. One kit required per stack.
Sandwich Speed Control (optional) has low profile and offers quick installation, precise speed control, and a flush non-ris-
ing adjustment screw.
0 to 120 PSI Sandwich Style Regulator (optional) fits on valve and features front and rear gauge ports to match application requirements.

ACCESSORY SPECIFICATIONS AND ORDERING DATA

$\begin{aligned} & \text { Port Size } \\ & \text { NPTi } \\ & \text { (Inches) } \end{aligned}$	CFM	Cv**	Description	1	$\begin{gathered} \text { limonsions** } \\ \text { (Inches) } \\ \text { W } \end{gathered}$	H	ARO Model	Stack No.	List	Each	Shpg. Wh.
MANIEIDS FOR PLUGIN STYE SCXINOD VALVES ${ }_{\text {t }}$											
1/4	36 38	1.2	Manfold ${ }^{\text {Manifold }}$	6 6	${ }^{111 / 16}$	L1/16 $31 / 16$	GMP121	26547 26561	$\$ 28.00$ 28.00	$\$ 26.60$ $\mathbf{2 6 . 6 0}$	1.3
The END PLATES, SPEED CONTROL AND REGULATOR ${ }^{\text {a }}$											
$3 / 8$	二	1.2	End plate kit (set of 2) Speed control	${ }_{\substack{6 * \\ 41 / 18}}$	11/1/* ${ }^{11 / 16}$	$3_{1}^{1 / 16^{*}}$	$118803-\mathrm{B}$ $118565-\mathrm{P}$	2F845	$\frac{23.00}{27.50}$	21.85 26.15	1.8
-	-	1.2	Regulator	$7^{1 / 3}$	111/16	2	$118573-\mathrm{P} 4$	$2 \mathrm{F819}$	50.00	47.50	1.2

[^36]

KNOW THE STOCK NUMBER, BUT STILL CAN'T FIND WHAT PAGE IT'S ON?

Use the "Stock Number/Page Number Cross Reference Guide" at the back of the Catalog. Stock numbers are listed alphabetically with the current page numbers.

Φ

ACCESSORIES FOR ARO VALVES

PNEUMATICS

ACCESSORIES FOR STACKING AND PILOT VALVES

［A］End Plate Kit includes two end plates， two cap screws and one gasket．Kit adds $11 / 2^{\prime \prime}$ to length of valve stack．One end plate kit required per stack．ARO brand．
［B］Isolator Plate allows valve or section of valves within a stack to be isolated and operate on different pressure than the rest of stack．Gasket included．ARO brand．
［C］＂L＂Mounting Bracket．Tall＂L＂mounting bracket raises valve stack $7^{\prime \prime}$ above base． Short＂L＂mounting bracket raises valve stack $3^{3 / 4^{n}}$ above base．Each mounting bracket kit includes all hardware to mount valve stack to bracket．ARO brand．
（D］＂Z＂Mounting Bracket．Tall＂Z＂mounting bracket raises valve stack 6^{n} aböve base Short＂Z＂mounting bracket raises valve stack $3^{\prime \prime}$ above base．Each mounting bracket kit contains all hardware to mount valve stack to bracket．ARO－brand．
［E］Junction Box required for each coil in stack when solenoid corinectors are not usêd．Includes box，jumper wires，gasket， screw and roll pin．ARO brand．
［F］Zlank Junction Box provides entrance for conduit fitting for a row of coils．Includes box dust plug and roll pin．ARO brand．

COFLS AND CONNECTORS FOR ALPHA VALVES

 other than 120 VAC or 12 VDC is required （see chart below）．All coils are Class F， raté for 100% duty cycle applications at $122^{\circ}\left(50^{\circ} \mathrm{C}\right)$ ambient．Total coil rating is 311 F ，including heat rise．AC or DC coils canbe interchanged on same solenoid stem．One connector required for each coils．Each connector is its own junction box with molded connectors and gaskets to protect electrical connections．Design mejeis NEMA 4 classifications．ARO brand．

Key	Description	$\begin{gathered} \text { ARO } \\ \text { Model } \end{gathered}$	Slock No．	List		Each	$\stackrel{\text { Shpg．}}{\text { Wht }}$
${ }_{\text {A }}$	Stacking End Plate Kit Isolator Plate	$\mathrm{MKP}_{\text {PTN }}$	${ }_{2}^{265999}$	\＄23．25		\＄22．09	0.5
${ }_{C}$	Tall＂L＇Mounting Bracket Short＂L＂Mounting Bracket	116807 116808	$2{ }^{2 F 805}$	16.00		15.20	0.7 0.6
D		${ }^{116809}$	25809 $\mathbf{2 F 8 1 5}$	${ }_{12.25} 8.25$		21.14	0.7
E	Junction Box ${ }_{\text {Blan }}$	${ }_{117607}^{11751}$	2F811	18.50		17.58 11.16	0.2
3等	去要	COILS FOR ARO VALVES					
Key	Descriptian	Vottage	ARO	$\begin{aligned} & \text { Stock } \\ & \text { Nock } \end{aligned}$	List	Each	Shat．
$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	Coil for Solenoid Coil for Sol Solenoid	$\begin{aligned} & 240 \mathrm{VAC} \\ & 5 \mathrm{VDC} \\ & 24 \mathrm{VDC} \end{aligned}$		$\begin{aligned} & 2 F 789 \\ & 27991 \\ & 2 F 793 \end{aligned}$	$\begin{array}{r} \$ 10.00 \\ 10.00 \\ 1000 \end{array}$	\＄9．50 $\mathbf{9 . 5 0}$ $\mathbf{9 . 5 0}$	0.1 0.1 0.1
${ }^{5}$		CONNECTORS FOR ARO COILS					－
${ }_{3}$	Solenoid Connector Without Lead Wires Solenoid Connector With 18^{4} Lead Wire Solenoid Connector With 36^{*} Molded Wire	Any ARO Col Any ARO Coil Any ARO Coil	CSV CHW CHW	$\begin{aligned} & \begin{array}{l} 2 G 550 \\ 2 G 501 \\ 2 G 503 \end{array} \end{aligned}$	5.10 1.10 9.0	5.13 6.75 8.74	0.1 0.1 0.1

MANIFOLD STYLE SOLENOID AND PILOT VALVES

MANIFOLD STYLE SOLENOID AND PILOT VALVES

ALPHA Thin manifold valves are compact 4 way, 2- and 3 -position valves for applications where the convenience of a manifold is desired. Manifold valves offer easy valve clustering and valve removal for replacement. Valves allow for controlling multiple machine functions with individual valves from one location. High flow capacity for packaging machines, indexing tables and industrial machines with air cylinders, motors, pumps and spray heads. Can be used with vacuum with external pilot supply.
One piece balanced spool offers quick response of 600 cycles per minute and high flow. Bonded and precision ground urethane-to-aluminum spool for excellent wear resistance. Optional speed controls are easily installed and offer improved machine precision. Manifold base is speed control ready for fast on-site installation.
Valves are prelubed, can be operated without air line lubrication. For use with air or inert gas. Solenoid may be rotated in any direction. Coil connectors available, order separately. ARO brand.

(*) Dimensions are for a single valve and do not include mamfold. (+) Coils available separately. See following page.
MANIFOLD SPECIFICATIONS AND ORDERING DATA*

Description	Ponsize NPT (Inches)	Cu*	Dimensions (Inches)			ARO Madel	Stock No.	List	Each	Shpg. Wt.
2 -station valve manufold	$1 / 8$	12	$35 / 8$	\pm		118604-2	2 F 823	\$38.00	\$36.10	2.4
4 -station valve manifold	118	1.2	5\%\%	4	2	118604-4	$2 \mathrm{F825}$	65.00	61.75	3.8
6 -station valve manifold	$1 / 8$	12	$75 / 5$	4	3	119604-6	$2 F 827$	91.50	86.95	5.2
8-station valve manifold	$1 / 8$	19	95/8	\pm	3	18604-8	$2 \mathrm{F8829}$	122.00	115.90	6.4
10 -station valve manifold	L/8	1.2	1198	4	$\stackrel{\rightharpoonup}{2}$	118604-10	2F821	146.50	139.20	7.7
2 -station valve manifold	$1 / 4$					118605-2	2 F 833	38.00		2.4
4 -station valve manifold	$1 / 4$	1.2	55/8	4	2	118605-4	27835	65.00	61.75	3.7
6 -station valve manifold	$1 / 4$	12	75/8	4	$\stackrel{3}{2}$	$118605-6$	$2 \mathrm{~F}^{2} 37$	91.50		5.1
8-station valve manifold	$1 / 4$	1.3		4	$\frac{3}{2}$	$118605-8$	27839	122.00	115.90	6.4
10-station valve manifold	1/4	1.2	115/4	4	2	118605-10	$2 F 831$	151.50	143.95	7.6
Station blanking kat Dual speed control kit	-	12	二	二	-	${ }_{118618}$	$2 \mathrm{2F841}$	11.00 17.75	10.45 16.86	0.1

[^37]
COMPACT BODY-PORTED SOLENOID AND PILOT VALVES

PNEUMATICS

COMPACT BODY-PORTED SOLENOID AND PILOT VALVES

Body-Ported Alpha Valves are compact 4way, 2- and 3 -position valves for applications where only one valve is required. High flow capacity for use in packaging machines, indexing tables and industrial machines with power cylinders, motors, pumps and spray heads. For use with air or inert gas and vacuum with external pilot supply.
One piece balanced spool provides quick response of 600 cycles per minute and high flow. Bonded and precision ground urethane-to-aluminum spool for excellent wear resistance. 5 -ported, 4 -way valve enables use of speed controls at valve exhaust ports. Valves are prelubed, can be operated without air. line lubrication. 50 TO. 150 PSI-operating pressure range. Solenoid may be rotated in any direction. Coil connectors available, order separately below. ARO brand.

											,			
$\begin{gathered} \text { Port Size } \\ \text { NPT (InPTes) } \\ \text { Key } \end{gathered}$	Actuator Reture	Coil	$\begin{aligned} & \hline \text { Max. } \\ & \text { Temp. } \\ & \text { Range } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Max } \\ & \text { Operating } \\ & \text { Pressuire } \end{aligned}$	${ }^{+7 *}$	Cr^{*}		$\begin{aligned} & \text { iens } \\ & w \end{aligned}$		$\begin{aligned} & \text { ARO } \\ & \text { Model } \end{aligned}$	$\begin{aligned} & \text { Stock } \\ & \text { Ne. } \end{aligned}$	List	Each	Wt.
		$\begin{aligned} & \text { N/A } \\ & \text { N/A } \end{aligned}$		$\begin{aligned} & 150 \mathrm{PSI} \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \\ & 54 \end{aligned}$	0.9 0.9 1.5	215/16 $2^{51 / 6}$ $2^{5 / 16}$	$115 / 16$ $16 / 6$ $15 / 16$	$\begin{aligned} & 13 / 16 \\ & \begin{array}{l} 113 / 6 \\ 13 / 2 / 26 \end{array} \end{aligned}$	A211PS A211PD A212PS A2PD	2F957 2F955 2F973 2F971	$\$ 33.25$ 31.75 33.25 33 3175	$\$ 31.60$ 30.20 31.60 30	0.6 0.6 0.6 0.6
A:8 $1 / 4$	PilotPilot	N/A	$0-180^{\circ}$	100	54	1.5	$2^{15 / 16}$	115/6	113/188	A212PD	$2 \mathrm{F971}$	31.75	30.20	. 6
$\begin{array}{ll} \frac{18}{8} \\ 8 & 18 \\ 8 & 18 \end{array}$	Solenoid/Spring Solenoid/Spring Solenoid/Spring	120 VAC 12 VDC 120 VAC 12 VDC	$0-180^{\circ}$ 0.180° 0.180° 0.180°	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	32 32 54 54	0.9 0.9 1.5 1.5	$\begin{aligned} & 31 / 2 \\ & 31 / 2 \\ & 31 / 2 \\ & 31 / 2 \end{aligned}$		$\begin{aligned} & 31 / 4 \\ & 31 / 4 \\ & 31 / 4 \\ & 31 / 4 \end{aligned}$	A $2115 S$-120-A A21ISS 012 D A212SS-120-A	2F969 2F967 2F985 2F983	47.75 4775 47.75 4775	45.40 45.40 45.40	0.8 0.8 0.8 0.8
B 1/4	Solenoid/Spring	12 VDC	0-180 ${ }^{\circ}$	150	54	1.5	$3^{1 / 2}$	13\%\%	$31 / 4$	A212SS-012-D	$2 \mathrm{F983}$	47.75	45.40	8
$C^{\text {C. }} 1 / 8$	Solenoid/Spring Solenoid/Spring	\dagger	${ }^{0.180^{\circ}} 0$	${ }_{150}^{150}$	32	0.9		1\%/4\%	$3{ }^{31 / 4}$	Silless-000	2F9685	${ }^{37} 77.75$	35.90 35.90	0.7
	Solenoid/Solenoid Solenoid/Solenoid Solenoid/Solenoid	120 VAC 12 VDC 120 VAC 120 VAC	$\begin{aligned} & 0-180^{\circ} \\ & 0.180^{\circ} \\ & 0-180^{\circ} \\ & 0.1800^{\circ} \end{aligned}$	$\begin{aligned} & 1150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \\ & 54 \\ & 54 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.9 \\ & 1.5 \end{aligned}$			$\begin{aligned} & 31 / 41 / 4 \\ & 31 / 4 \\ & 31 / 4 \end{aligned}$		2F963 2F961 28979 $\mathbf{2 F 9 7 7}$	75.50 75.50 75.50 75.50	71.75 71.75 71.75 71.75	1.0
E ${ }^{\text {E }}$	Solenoid/Solenoid Solenoid/Solenoid	\dagger	${ }^{0.180} 0^{\circ}$	150	54	0.9	${ }_{2}^{215 / 16}$	${ }_{\substack{\text { a }}}^{115 / 16} 1$	31314	${ }^{\text {A }}$ A $212 \mathrm{SD}-000 \mathrm{~N}$	2F959	55.50 55.50	52.75	0.7
$\begin{array}{ll} \hline \vec{F} & 3 / 8 \\ \mathbf{G} & 3 / 8 \\ \hline \end{array}$	Solenoid/Spring	120 VAC 120 VAC	$\begin{aligned} & 0-180^{\circ} \\ & 0-180^{\circ} \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 63 \\ & 63 \end{aligned}$	1.7	$4_{4}^{31 / 2}$	$\frac{21 / 2}{21 / 2}$	${ }^{3 / 3 / 8}$	${ }_{\text {A }}{ }^{\text {A } 2335 S}$-120-A	26549	67.00 94.00	63.65 89.30	${ }_{1}^{1.3}$
$\begin{array}{ll} \hline \mathbf{D} & 1 / 4 \\ \mathbf{D} & 114 \\ \mathbf{E} & 1 / 4 \\ \hline \end{array}$	Solenoid/Solenoid Solenoid/Solenoid Sotenoid/Solenoid	120 VAC 12 VDC 12 VDC	$\begin{aligned} & 0-180^{\circ} \\ & 0.180^{\circ} \\ & 0-180^{\circ} \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.4 \\ & 1.4 \end{aligned}$		$\begin{aligned} & 1115 / 16 \\ & \substack{15 / 16 \\ 15 / 76} \\ & 150 \end{aligned}$	$\begin{aligned} & 31 / 4 \\ & \begin{array}{l} 31 / 4 \\ 31 / 4 \end{array} \end{aligned}$	A312SD-120-A A312SD-012-D A312SD-000-N	$\begin{aligned} & 2 G 451 \\ & 2 G 449 \\ & 2 G 447 \end{aligned}$	$\begin{aligned} & 92.50 \\ & 92.50 \\ & 72.50 \end{aligned}$	87.90 88.90	0.8 0.8 0.7
管	A-WAY, 3-POSTIION VALVES (Spring Centered, Inlet Port Blocked, Cylinder Ports Open in Neutral)													
$\begin{array}{ll} \hline \mathbf{D} & 1 / 4 \\ \mathbf{D} & 1 / 4 \\ \mathbf{E} & 1 / 4 \end{array}$	Solenoid/Solenoid Solenoid Solenoid olenoid/Solenoid	$120 \mathrm{VAC}$	$\begin{aligned} & 0-180^{\circ} \\ & 0.180^{\circ} \\ & 0-180^{\circ} \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.4 \\ & 1.4 \end{aligned}$			$\begin{aligned} & 31 / 4 \\ & 31 / 4 \\ & 31 / 4 \end{aligned}$	AT12SD-120-A $\mathrm{A}^{4} 12 \mathrm{SD}-012-\mathrm{D}$ - 12 SD-000-	$\begin{aligned} & 2 G 469 \\ & 264467 \\ & 2 G 4655 \end{aligned}$	$\begin{aligned} & 92.50 \\ & 92.50 \\ & 72.50 \end{aligned}$	$\begin{aligned} & 87.90 \\ & 87.90 \\ & 68.90 \end{aligned}$	${ }_{1}^{1.0}$

(*) Coefficient of volume: The amount of water, in GPM, at standard conditons, which will pass through the valve at full open with a 1 PSI pressure drop.
 (**) 90 PSI supply. L5. PSI pressure drop. ${ }^{\dagger} \dagger$) Colls avalable separately. See below.

COILS AND CONNECTORS FOR ALPHA VALVES

For use when coil voltage other than 120 VAC or 12 VDC is required (see chart below). All coils are Class F, rated for 100% duty cycle applications at $122^{\circ} \mathrm{F}$
$\left(50^{\circ} \mathrm{C}\right)$ ambient. Total coil rating is $311^{\circ} \mathrm{F}$, connector is its own junction box. with including heat rise. AC or DC colls can be molded connectors and gaskets to protect interchanged on same solenoid stem. One electrical connections. Design meets connector required for sach coil. Each NEMA 4 classifications. ARO brand.

Key	Description	Voitage	Model	Stock No.	List	Each	Slipg.
	3 为	COILS FOR AROVALVES					
$\begin{aligned} & \mathbf{H} \\ & \mathbf{H} \end{aligned}$	Coil for Solenoid Coil for Solenoid Coil for Solenoid	$\begin{aligned} & \begin{array}{l} 40 \mathrm{VAC} \\ 3 \vee \mathrm{VCC} \\ 34 \mathrm{VDC} \end{array} \end{aligned}$	$\begin{aligned} & 116218-36 \\ & 1162183 \\ & 11621839 \end{aligned}$	$\begin{aligned} & 2 F 789 \\ & 2 F 791 \\ & 2 F 793 \end{aligned}$	$\begin{array}{r} \$ 10.00 \\ 10.00 \\ 10.00 \end{array}$	$\begin{array}{r} \$ 9.50 \\ 9.50 \\ 9.50 \end{array}$	0.1 0.1 0.1
		CONNECTORS FOR ARO COILS		.			
$\underline{1}$	Solenoid Connector Without Lead Wires Solenoid Connector with 18^{1} Lead Wire Solenoid Connector with $36^{\prime \prime}$ Molded Wire	Any ARO coil Any ARO coil Any ARO coil	$\begin{aligned} & \mathrm{CSN} \\ & \mathrm{CDW} \\ & \mathrm{CHW} \end{aligned}$	2 Cs 05 $2 \mathrm{CSO1}$ $\mathbf{2 G 5 0 3}$	5.40 7.10 9.20	5.13 6.75 8.74	0.1 0.1 0.1

COMPACT, STACKING SOLENOID AND PILOT VALVES

COMPACT STACKING SOLENOID AND PILOT VALVES

ALPHA stacking valves are 4 -way, 2 - and 3 position valves for applications requiring multiple valve banks without additional height of valve manifold: Control machine functions with individual valves from one location. High flow capacity for use with packaging machines, indexing tables and industrial machines with air cylinders, motors, pumps and spray heads can be used with vacuum with external pilot supply.
One piece balanced spool for quick response of 600 cycles per minute and high flow. Bonded and precision ground urethane-toaluminum spool for wear resistance. Valves are prelubed, can be operated without air line lubrication. For use with air or inert gas. Solenoid can be rotated in any direction. Coil connectors available, order separately below. ARO brand.
\%

(*) Coefficient of Volume: The amount of water, in GPM, at standard conditions, which will pass through the valve at full open with I PSI pressure drop. (**) 90 PSI supply, 15 PSI pressure drop. (\dagger) Coils available separately. See below.

[^38]
\because
 m

STAINLESS STEEL BODY AIR CYLINDERS
 PNEUMATICS

Speedaire stainless steel body air cylinders for pneumatic applications that do not require heavier duty, square head-tie rod cylinders. Available in four popular bore sizes, $7 / 1^{\prime \prime}, 3 / 4^{\prime \prime}, 1^{1 / 16^{\prime \prime}}$ and $11 / 2^{\prime \prime}$. Single and double acting units available in a variety of stroke lengths and mounting styles. Cylinder is dimensionally interchangeable with leading manufacturers, allowing for model and mounting retrofit (see Interchange Guide).
All units feature high-strength, double rolled Type 304 stainless steel barrels and aluminum alloy end caps. Piston rods are chrome-plated Type 303 stainless steel with rolled threads that
are spin-riveted into aluminum alloy pistons for extended service life in high cycle applications. Sintered bronze bearing (except on Nos. 6W074-75, 6W087-88, 6W116-117 and 6W134-135) provides resistance to side load. Nitrile " U " cup piston and rod seals ensure low breakaway friction and leak free operation. Recommended for operating temperatures of -20° to $200^{\circ} \mathrm{F}$.
Note: Nose mount units include mounting nut. Pivot mount units include stationary pivot pin. Double end mount units include two mounting nuts. Pivot brackets, foot brackets and rod clevis ordered separately, see next page for ordering information.

Bors	Stroke	Stock No.	List	Each	Shpg. Wt.
	x+6es	SINGEACTNG (NOSE MOUNT		\cdots	\square
7/16"	$1 / 2^{\prime \prime}$	$6 W 074$	\$9.80	\$9.70	0.1
7116	1	$6 W 075$	10.70	10.58	0.1
$7 / 16$	${ }^{11 / 2}$	6W116	11.60	11.47	0.1
7116	2	6W135	12.50	12.34	0.1
3/4	1	$6 W 070$	13.15	12.97	0.2
3/4	2	6W097	14.90	14.76	0.3
3/4	3	$6 W 111$	16.70	16.54	0.4
11/26	I	6W071	14.85	14.70	0.3
$11 / 18$	2	6 6101	17.05	16.93	0.5
11/16	3	6W124	19.30	19.12	0.6
11/2	1	6W084	27.15	26.95	0.9
11/2	2	$6 W 110$	3050	30.30	1.0
$11 / 2$	3	$6 W 137$	33.85	33.65	1.1

Bore	Stroke	Stock No.	List	Each	Shpg. WI.
$7 / 16^{11}$	$1 / 2{ }^{\prime \prime}$	$6 W 087$	\$12.75	\$12.59	0.1
7116	1	$6 W 088$	13.65	13.48	0.1
7/16	11/2	$6 W 117$	14.55	14.37	0.1
$7 / 16$	2	$6 W 134$	15.45	15.23	0.1
3 C	1	6w078	15.95	15.79	0.3
5V4	2	6 W098	17.75	17.54	0.3
3/4	3	$6 W 133$	19.55	19.35	0.5
11/16	1	67079	17.70	17.54	0.5
11/16	2	$6 W 104$	19.90	19.73	0.6
11/16	3	$6 W 108$	22.10	21.98	0.9
11/2	1	67092	30.90	30.65	1.0
11/2	2	6×139	34.25	33.95	1.0
11/2	3	$6 W 138$	37.60	37.40	1.5

PNEIMATICS

STAINLESS STEEL BODY AIR CYLINDERS

Bro Srobe No. Lis Eeach Wit					
	$\begin{aligned} & 12^{1 / 2} \\ & 12^{1 / 2} \end{aligned}$			512.85 13.48 14.09 14.72	0.1 0.1 0.1 0.1
$\begin{aligned} & \text { 3i4 } \\ & \begin{array}{l} 34 \\ 3 / 4 \\ 34 \\ 3 / 4 \end{array} \\ & \hline \end{aligned}$					0.3 0.3 0.5 0.5 0.5 0
					0.3 0.6 0.6 0.8 0.9 0.8
				$\begin{aligned} & \text { 30.45 } \\ & \hline 34.45 \\ & 34.45 \\ & 36.15 \\ & \hline 20.35 \end{aligned}$	1.0 1.0 1.3 1.1 0.5 1.5
	$\begin{aligned} & 1 / 2 \\ & c_{1}^{1 / 2} \\ & 2^{1 / 2} \end{aligned}$			$\begin{aligned} & 15.75 \\ & \hline 16.75 \\ & \text { 16.75 } \\ & \text { 17.62 } \end{aligned}$	0.1 0.1 0.1 0.1
	$\begin{aligned} & \frac{1}{2} \\ & \frac{3}{3} \\ & \frac{4}{5} \end{aligned}$				0.2 0.3 0.5 0.6 0.6 0.6
	$\frac{1}{3} \frac{3}{3} \frac{5}{5}$				0.5 0.6 0.9 0.9 0.9 0.9
	$\begin{aligned} & \frac{1}{2} \\ & \frac{3}{3} \\ & \frac{4}{5} \\ & 6 \end{aligned}$		32855 and and and 4485 4485		1.0 1.2 1.1 1.5 1.5 1.5

Bare	Stroke	Stock No.	List	Each	Shes.
7/16 ${ }^{\prime \prime}$	$1 / 2^{\prime \prime}$	$6 W 080$	\$15.70	\$15.49	0.1
$7 / 16$	1	$6 W 081$	16.35	16.16	- 0.3
7/16	$11 / 2$	6W118	16.95	16.73	0.1
7/16	2	$6 W 094$	17.60	17.36	- 0.1
$3 / 4$	1	$6 W 082$	18.30	18.07	0.3
$3 / 4$	2	$6 W 100$	19.55	19.33	3 0.4
$3 / 4$	3	$6 W 102$	20.80	20.58	- 0.4
$3 / 4$	4	6W126	22.05	21.82	- 0.4
$3 / 4$	5	6W156	23.30	23.10	- 0.6
$3 / 4$	6	$6 W 129$	24.60	24.32	0.5
11/16	1	$6 W 083$	20.80	20.60	0.5
11/16	2	$6 W 106$	22.05	21.86	- 0.6
11/26	3	$6 W 107$	23.30	23.16	- 0.9
11/16	4	$6 W 125$	24.60	24.32	- 0.5
11/16	5	$6 W 157$	25.85	25.65	- 0.8
11/16	6	$6 W 130$	27.10	26.90	- 0.8
11/2		6W086	34.55	34.25	1.0
11/2	2	$6 W 113$	36.55	36.25	1.0
11/2	3	$6 W 114$	38.55	38.00	1.1
11/2	4	$6 W 147$	40.55	40.30	1.6
11/2	5	$6 W 158$	42.55	42.25	1.5
11/2	6	6W148	44.50	44.20	1.5
Bore	Stock			Exch	Shpy. Mt
$7116^{4 \prime}$	$6 \pm$			2.25	0.1
3/4, 11/16	6W1			2.25	0.1
11/2	6W			3.90	0.1
$7 / 16$	6W			2.25	0.1
$3 / 4$	6W			2.60	0.1
11/16	6W			2.60	0.1
11/2	$6 W 1$			4.32	0.2
"hew, wisk					
7/16				1.39	0.1
3/4				1.55	0.1
11/16	61			1.89	0.1
11/2	6W			2.63	0.2
$7 / 16$	6W1			1.39	0.1
3/4, 11/16				1.89	0.1
11/2	6W			2.63	0.2

Bore	Stroke	Cyliader Type	MountingStyle	Stock No.	Model No.				
					Bimba		American		Parker
7/16"	12"	Single Acting	Nose Pivot	$\begin{aligned} & 6 W 074 \\ & 6 W 087 \end{aligned}$	${ }_{010.5}^{010.5}$	\square	$\begin{aligned} & 437 S N S 1 / 2 \\ & 437 S V S 1 / 2 \end{aligned}$		$\begin{gathered} .44 \mathrm{NSR} 0.5 \\ .44 \mathrm{PSR} 0.5 \end{gathered}$
		Double Acting	Nose Pivot Double End	$\begin{aligned} & 6 W 077 \\ & 6 W 080 \\ & 6 W 119 \end{aligned}$	$\begin{aligned} & 010.5-\mathrm{D} \\ & 010.5-\mathrm{DP} \\ & 010.5-\mathrm{DX} \end{aligned}$	N/A $\mathbf{N} / \mathbf{A}^{*}$ $\mathbf{N} / \mathbf{A}^{*}$	437DNS1/2 437DVS1/2 437 DVS 122	$\begin{aligned} & \mathrm{N} / A^{*} \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{I} \end{aligned}$	$\begin{aligned} & .44 \mathrm{DSR} 0.5 \\ & .44 \mathrm{DPSR} 0.5 \\ & .44 \mathrm{DXPSR} 0.5 \end{aligned}$
	1	Single Acting	Nose Pivot	$\begin{aligned} & 6 W 075 \\ & 6 W 088 \end{aligned}$	$\begin{aligned} & 011 \\ & 011-\mathrm{P} \end{aligned}$	$\underset{\mathbf{N} / \mathbf{A}^{*}}{\mathbf{N} \cdot \mathbf{A}^{*}}$	$\begin{aligned} & \text { 437SNS1 } \\ & \text { 437SVS1 } \end{aligned}$	$\begin{array}{r} N A^{*} \\ N / A^{*} \\ \hline \end{array}$	$\begin{aligned} & \text { 44NSR1 } \\ & .44 \mathrm{PSR1} \end{aligned}$
		Double Acting	Nose Pivot Double End	$\begin{aligned} & \text { 6WO76 } \\ & \text { 6W081 } \\ & \text { 6W095 } \end{aligned}$	$\begin{aligned} & 011-\mathrm{D} \\ & 011-\mathrm{DP} \\ & 011-\mathrm{DX} \end{aligned}$		$\begin{aligned} & \text { 437DNS1 } \\ & \text { 437DVS1 } \\ & \text { 437DVS1 } 2 \end{aligned}$		$\begin{aligned} & .44 D S R 1 \\ & .44 D P S R 1 \\ & .44 D X P S R 1 \end{aligned}$
	11/2	Single Acting	Nose Pivot	$\begin{aligned} & 6 w 116 \\ & 6 w 117 \end{aligned}$	$011 . \overline{\mathrm{O}}$	$\begin{gathered} N / A^{*} \\ N / A^{*} \end{gathered}$	$\begin{aligned} & \text { 437SNS1 1/2 } \\ & \text { 437SVSI 1/2 } \end{aligned}$.44NSR1.5 .44PSR1. 5
		Double Acting	Nose Pivot Double End	$\begin{aligned} & 6 W 096 \\ & 6 W 118 \\ & 6 W 121 \\ & \hline \end{aligned}$	$\begin{aligned} & 011.5-\mathrm{D} \\ & 011.5-\mathrm{DP} \\ & 011.5-\mathrm{DX} \end{aligned}$	$\begin{gathered} \mathbf{N A}^{*} \\ \mathbf{N W A}^{*} \\ { }_{2} \mathbf{N} \mathbf{N} / \mathbf{A}^{*} \end{gathered}$	$\begin{aligned} & \text { 437DNS1 } 1 / 2 \\ & \text { 437DVSI } 1 / 2 \\ & 437 \mathrm{DVS1} 1 / 22 \end{aligned}$		$\begin{aligned} & .4 \mathrm{DSR} 1.5 \\ & .44 \mathrm{DPSR} 1.5 \\ & .44 \mathrm{DXPSR1.5} \end{aligned}$
	2	Single Acting	Nose Pivot	$\begin{aligned} & 6 W 135 \\ & 6 W 134 \end{aligned}$	$\begin{aligned} & \text { 3"9 } \\ & 012-P \end{aligned}$	$\begin{gathered} N / A^{*} \\ N / A \end{gathered}$	$\begin{aligned} & 437 \mathrm{SNS} 2 \\ & 437 \mathrm{SVS} 2 \end{aligned}$		$\begin{aligned} & .4 \mathrm{NSR} 2 \\ & .4 \mathrm{PSR2} 2 \end{aligned}$
		Double Acting	Nose Pivot Double End	$\begin{aligned} & 6 W 093 \\ & 6 W 094 \\ & 6 W 136 \end{aligned}$	$\begin{aligned} & 012-\mathrm{D} \\ & 012-\mathrm{DP} \\ & 012-\mathrm{DX} \end{aligned}$	$\begin{aligned} & \text { gN/ } \mathbf{A}^{*} \\ & \mathbf{N / A} \mathbf{A}^{*} \\ & \mathbf{N / \mathbf { A } ^ { * }} \end{aligned}$	$\begin{aligned} & \text { 437DNS2 } \\ & \text { 437DVS2 } \\ & \text { 437DVS2 } 2 \end{aligned}$.48DSR2 44DPSR2 .44DXPSR2

(*) Not available.

SMALL BORE TIE-ROD AND COMPACT AIR CYLINDERS

SMALL BORE AIR CYLINDERS

Designed for small bore applications, these Speedaire double-acting pneumatic cylinders are made of durable aluminum and outperform the round, "throw-away" type cylinders. Unique design provides for easy repairability, bolt-thru mounting and the flexibility of attaching any one of six mounts (listed on opposite page) without removing bolts or need for retorquing. Available in $3 / 4^{\prime \prime}$ bore with $1 / 2$ to $2^{\prime \prime}$ strokes and in $11 / 8^{\prime \prime}$ bore with $1 / 2$ to $3^{\prime \prime}$ strokes.
Polished chrome plated steel piston rods have 100,000 PSI minimum yield. End caps are made of 40,000 PSI minimum yield 6061-T6 aluminum. Rod bushing is 30,000 PSI cast iron for maximum strength and Teflon coated for permanent lubrication and low fritiction.
Tube is made of $35,000 \mathrm{PSI}$ minimum yield aluminum alloy and the ID is hard anodic coated for file hard (60RC) resistance to scoring ant wear. Tube end seals are made of heat resistant fiber with nitrate base elastomer as a binder. Lightweight piston is made of 40,000 PSI minimum yield 6061-T6 aluminum and designed to work with hard coated ID of the tube.
Bana N lip type rod and piston seals provide low friction charac-
teristics, positive sealing, and long life. Tie rods are made of stressproof steel to maintain compression on tube end seals. Silver and black finish. Speedaire brand.

Bore	Rod	50			200		50				Piston Area
14	5	22	44	149	88.2 199.0	. 995		$\begin{aligned} & 36 . \\ & 88 . \end{aligned}$	$\begin{array}{r} 54.7 \\ 132.4 \end{array}$	$\begin{array}{r} 73.0 \\ 176.6 \end{array}$	53
Bore A C C		cc	EE E			J	LB	M P	RM SD		
$11 / 8 \quad 581 / 4318-245 / 1613 / 64111 / 21 / 87 / 85 / 8 \quad 5 / 83 / 821 / 43 / 8 \quad 5 / 160.75013 / 4121 / 641 / 825 / 8$	 										
	Stroke	No	st	Each	Wt.	Bore Dia.	Strak	Stock No.	List	Each	$\underset{\substack{\text { Shpg. } \\ W \\ \hline 1 \\ \hline}}{ }$
34	$1 / 2^{\prime \prime}$	1 A	A.	Sti.			12		49.80	4. 50	.
$3 / 4$		14425	45.60	41.00	0.5	1-1/8	1	14429	49.80	44.90	1.0
$3 / 4$	$11 / 2$	1A426	46.50	41.85	0.5	1-1/8	2	14430	51.30	46.25	1.1
3/4	2	1A427	46.	41.85	0.5	1-1/8	3	14431	52.90	47.70	1.1

(*) Diameters are deducted from piston area and force table under "Pull Forces."

Speedaire compact, high-performance pneumatic cylinders are designed for use intclamping devices, parts ejection and infection molding machines, as well as many robotic circuits. 150 PSI maximum operating pressure. Attachable mounts are listed on opposite page.
Cörrosion resistant aluminum alloy heads and caps.
Pre-stressed tie rods to insure compression ortube end seals.
Aluminum tube is hard anodic coated on inside diameter for file hard (60 RC) resistance to scoring and wear.

Hard, chrome-plated piston rod is ground and polished steel of 100,000 PSI minimum yield.
Strong, lightweight aluminum alloy piston has excellent wear characteristics against the hard coated ID tube.
Quad ring seal on piston and bushing combines positive sealing with minimal friction and long life
Cast-iron, Teflon coated rod bushing for maximum wear, permanent lubrication, and low friction.
Piston is threaded to the rod and retained with lock nut. Rod is then staked over the lock nut to ensure maximum cycle life.

Bore	C	D	DB	E	EE	G	KK	LB	MM	NT	P	RE	Y
$3 / 4$	$1 / 8$	$1 / 4$	$\# 6$	$11 / 2$	$10-32$.312	$\# 10-32$	$13 / 16$	$5 / 16$	$\# 8-32$	$9 / 16$	$17 / 32$	$1 / 8$
$11 / 8$	$1 / 8$	$7 / 16$	$\# 6$	2	$1 / 8$	500	$3 / 8-24$	$11 / 8$	$1 / 2$	$\# 10-32$	$5 / 8$	$11 / 16$	$1 / 4$
$1 / 2$	$1 / 8$	$1 / 2$	$\# 10$	$25 / 8$	$1 / 8$.515	$7 / 16-20$	$11 / 64$	$5 / 8$	$1 / 4-20$	$45 / 64$	$23 / 16$	$1 / 4$
2	$1 / 8$	$1 / 2$	$\# 10$	$3 / 8$	$1 / 8$.515	$7 / 16-20$	$13 / 64$	$5 / 8$	$1 / 4-20$	$45 / 64$	$21 / 46$	$1 / 4$

END MOUNTS FOR SMALL BORE TIE-ROD AND COMPACT AIR CYLINDERS

SPEEDA/PF END MOUNTS FOR SMALL BORE CYLINDERS

END MOUNTS FOR COMPACT AIR CYLINDERS

Heary-duty double acting Speedaire cylinders meet all Joint Industry Conference (JIC) and National Fluid Power Association (NFPA) standards. Unique design provides for'easy addition of mounts without removing tie bolts or need for re-torquing. $8,10,12^{n}$ stroke cylinders have adjustable cushion seals on both ends to absorb shocks, minimize noise and increase cylin-
der life. Seals arre self-centering and pressure loaded for positive cushioning action. When pressure is reversed, the seal allows pressure to bypass and act on full piston area for fast breakaway.
Constructed of lightweight, high tensile strength aluminum. Polished chrome plated steel piston rods have 100,000 PSI mini-
mum yield. Tie rods are of stress proof steel and torqued to maintain compression on end seals. Buna N piston lip seals and urethane rod lip seals provide low friction characteristics and long life.
Cylinders can be easily mounted with optional brackets listed on opposite page. Silver and black finish. Speedaire brand.

(*) Rodidiameters are deducted from piston area and force table on retum or pull.

SPEEDAIRE SELF-ALIGNING COUPLERS

	Designed to prevent binding of cylinder caused by misaiignment - Permits greafer tolerance between center-line of cylinder and mating part Speedaire brand							
	Thread Sizes	Overal Lengt	$n_{0}\left(\mathrm{ln}_{\mathrm{n}}\right)$	Max. Operating Force (Lbs)	Stock No.			Stapg.
		Lon	Dia.	rce (Lbs.)	No.	List	Eac	
			11/4	3500	14313	\$31.10	\$28.25	.
\% * - 小 w w	1-14	4/16	13/4	16,000	14314 14315	41.75 64.15	38.05 60.65	3.0

END MOUNTS FOR TIE-ROD AIR CYLINDERS

STEEL FRONT/REAR FLANGE MOUNT

Bore	Stock No.	Rod. Dia.	FB	FH	R	TF	UF	W
$1^{1 / 2}{ }^{\text {n }}$	6X470	$5 / 8^{\prime \prime}$	$5 / 16^{n}$	3/8' ${ }^{\prime \prime}$	$1.43^{\prime \prime}$	${ }^{23 / 4}{ }^{4}$	$3^{33 / 8}$	$58^{\prime \prime}$
2	6×472	$5 / 8$	$3 / 8$	3/8	1.84	$33 / 8$	41/8	$5 / 8$
$21 / 2$	6x474	58	$3 / 8$	$3 / 8$	2.19	$37 / 8$	45/8	5/8
$31 / 4$	6×478	1	$7 / 16$	518	2.76	$4^{11 / 16}$	$5{ }^{1 / 2}$	3/4
4	$6 \mathrm{X480}$	1	7/16	5/8	3.32	57/6	61/4	$3 / 4$
6	1 A 016	13/8	$9 / 16$	3/4	4.88	75/8	85/8	$7 / 8$

Bore	Stock No.	List	Each	Shpg. Wt.
$11 / 2^{11}$	6×470	$\$ 8.25$	$\$ 7.86$	0.6
2	6×472	8.0	8.35	1.0
$21 / 2$	6×474	10.90	10.42	1.4
$31 / 4$	6×478	15.40	14.57	3.7
4	6×480	14.50	13.78	5.1
6	14016	33.00	31.50	12.0

ANODIZED ALUMINUM SIDE LUG MOUNT

CAST IRON CIEVIS MOUNT

CAST IRON ROD CLEVIS MOUNT

Bore	Stock No.	CB	CD	CE	CH	CW	ER	KK	1
$11 / 2.21 / 2^{\prime \prime}$	6×476	$3 / 4^{\text {n }}$	$1 / 2^{\prime \prime}$	$11 / 2^{4}$	${ }^{14}$	1/24	$12^{\prime \prime}$	12.20	$3 / 4^{\prime \prime}$
31/4-4	6X482	$11 / 4$	$3 / 4$	$2^{1 / 3}$	11/4	$5 / 8$	$3 / 4$	3/4-16	$11 / 4$
6	1 A 018	$11 / 2$	1	31/8	11/2	$3 / 4$	1	1-14	$11 / 2$

Boré	Stock No.	List
$\begin{aligned} & 11 / 2-2^{1 / 2^{14}} \\ & 3^{1 / 4-4} \end{aligned}$	$\begin{aligned} & 6 \times 476 \\ & 6 \times 482 \\ & 1 A 018 \end{aligned}$	$\begin{array}{r} \$ 17.20 \\ 25.95 \\ 42.50 \end{array}$

CAST IRON EYE BRACKET

Bore	Stock No.	CB	CD	E	FL	1	m	RE	DD
11/2- $2^{1 / 2} 2^{7}$	6×477	$3 / 4^{*}$	1.2*	21/2"	11/s"	$9 / 16^{\prime \prime}$	5/8'	$1.84{ }^{\prime \prime}$	1132"
$3^{1 / 4-4}$	6X483	1%	$3 \cdot 4$	33/1	$11 / 4$	$11 / 4$	78	2.94	15132
6	1 A 019	1.1	1	$41 / 2$	$21 / 4$	$11 / 2$	1	3.25	21/32

Bore	Stock No.	List	Each	Shpg. Wt
$11 / 2-2^{1 / 2^{14}}$	6×477	$\$ 14.65$	$\$ 13.74$	0.9
$3^{1 / 4-4}$	6×483	20.30	19.23	3.2
6	14019	37.85	35.95	6.0

SPEEDAMFP PNEUMATIC EXHAUST MUFFLERS

Speedaire muffler-filters diffuse air and noise from exhaust ports of valves, cylinders, and air tools. Constructed of a 40 micron porous sintered bronze element directly bonded to copper plated steel pipe thread fitting, reducing exhaust noise levels to acceptable OSHA requirements.

NON-ROTATING ROD AIR CYLINDERS

Heavy-duty, double acting air cylinders for applfcations requiring guided movement when it is critical that piston rod not rotate. Constructed with two piston rods instead of one, design prevents rods from twisting and turning off axis, providing user with reliable, repeatable linear motion without need for external guides. Cylinder bearing wear is also minimized by the non-rotating twin-rod design.
Avaitable in four bore sizes: $1^{1 / 8^{n}}, 1^{1 / 22^{2}}, 2^{n}$, and $2^{1 / 2^{\prime \prime}}$. Standard stroke lengths are $1^{n \prime}$,
2^{n}, and $3^{\prime \prime}$ for the $1^{1 / 8^{\prime \prime}}$ bore, and $2^{n}, 3^{n \prime}, 4^{n}$, and 6^{4} for all other bore sizes. All bore sizes, except $1^{1 / 8^{\prime \prime}}$, are equipped with adjustable cushions on both ends.
Unique design offers simple field re-orientation of rod oxis. Removal of four bearing retainer screws permits rotation of rod axis and tooling plate in 90 degree increments. This can be achieved without disassembling cylinder or disturbing fluid port or mounting hole locations. Tooling plate incorporates two mounting surfaces, each
simplifies precise attachment of tooling.
Constructed of lightweight, high tensile strength aluminum. Meets NFPA mounting standards. Piston rods are chrome plated, ground and polished stèel rated for 100,000 PSI minimum yield. Tie rods are stress proof steel and torqued to maintain compression on tube end seals. Rod bearing is heavy-duty, high load cast iron for durability and is easily removed. T-type piston seals provide low friction characteristics and long service life.

NON-ROTATING ROD AIR CYLINDERS

	TOOLIGPLATEDIVENSIONS					$\text { 2 } 3 x$	
Bore (la.)	A	CC	D	FF	GG	H	KK
11/8	0.75	1/4-20	1.260	0.375	0.75	0.500	6.32
$11 / 2$	1.00	5/16-18	1.575	0.375	0.86	0.625	10.32
2	1.00	5/16-18	1.969	0.375	1.18	0.750	1/4-28
21/2	1.25	3/8-16	2.480	0.625	1.50	0.875	5/16-24

Bore (lı.)	TS	Tr	V	Clamping Scraw Tarque in Ft.Lbs.
11/8	1.250	0.75	0.16	21/2
$11 / 2$	1.500	1.12	0.16	10
2	2.000	1.43	0.20	20
21/2	2.500	1.84	0.20	30

Bore (lay) Stock No.		0. 58	SH	SS	ST	SU	SW	TS	US	XS
$11 / 8$$11 / 2$2$21 / 2$	6zC60	0.203	1.00	1.75	0.25	0.625	0.25	1.875	2.375	1.75
	14254	40.437	1.25	2.875	0.25	1.125	0.375	2.75	3.5	2.25
	14255	50.437	1.5	2.875	0.25	1.125	0.375	3.25	4.0	2.25
	14256	60.437	1.875	3.0	0.375	1.125	0.375	3.75	4.5	2.5
Bore (lin) ${ }^{\text {a }}$	Stock No.		List			Each			Shipg. Wt.	
11/8	6ZC60			\$8.25			\$6.16		0.2	
11/2, 交	14254			13.30			12.50		0.2	
2 \%				10.70			10.10		0.3	
21/2		14256			11.90			. 25		

Bava (ln.)	Stock No.	FB	FH	R	TF	UF	ZF
$11 / 8$	14443	0.219	0.25	1.0	2.0	2.5	4.0
11/2	6×470	0.312	0.375	1.437	2.75	3.375	5.875
2	$62 C 61$	0.375	0.375	1.843	3.375	4.125	5.875
$21 / 2$	62C62	0.375	0.375	2.187	3.875	4.625.	6.250
Bore (lin.)	Stock No.		List		Each	Shipg. Wit	
11/8	14443$6 \times 470$		\$6.20		\$5.62	$\therefore 0.3$	
$11 / 2$					7.86		0.6
2	62061		9.60		7.60	1.4	
$2^{1 / 2}$	62C62		10.35		8.44		

Transverse Rod Deflection may ba calculated by using the formula below	
$D=\frac{P \times S^{3}}{K}$	$\text { Where: } \begin{aligned} \mathrm{D} & =\text { Deflection in inches } \\ K & =\text { Constant } \\ \mathrm{S} & =\text { Stroke in inches } \\ \mathrm{P} & =\text { Load in pounds } . \end{aligned}$

Transverse or torsional loads placed on the cylinder will cause some deflection of the piston rods. Excessive deflection will adversely affect cylinder life and should be considered at the time of initial application design.

Torsional Rod Deflections may be calculated by using the formula below		
Tangent of angle in degrees	$=\frac{\text { Tonque } \times 5^{3}}{K_{1} \times 4}$	$\begin{aligned} \text { Where } K & =\text { Constant } \\ S & =\text { Stroke in } \\ \text { Torque } & =\text { L. } \times \text { W. of load } \end{aligned}$

Theoretical deflection of the piston rods in their extended position may be calculated by using the preceding formulas tor either a transverse or torsional load.

AIR MOTORS \& GEARMOTORS

WGAST

ROTARY VANE AIR MOTORS

Gast air motors and gearmotors are a compact, lightweight, dependable source of smooth, vibrationless power.
Models will stop, start, and reverse (except No. 6ZC93 which is counter clockwise only) almost instantaneously with use of a 4 -way valve. Can continuously operate in extreme temperatures up to $250^{\circ} \mathrm{F}$, as well as in wet and corrosive environments. With no heat build-up or electric sparking, air motors are an excellent alternative in applications that would normally require expensive explosion-proof motors. Stalling or overloading will not damage air motors.

All units come with discharge muffler to reduce noiset Gray metallic finish. Gast brand.
Output speed and torque can: be adjusted throutgh the use of an air regulator valve placed between air source and air motor
Requires little maintenance, as vanes are self-siealing and self-adjusting.
Can be used in hundreds of continuous duty applications including construction machinery, $=$ conveyors, hoisting, mixing, packag ing, paint/finishing equipment; and to operate mechanical pumps in all industries.

AIR POWERED E. GEARMOTORS

Parattel shaft, air-powered gearmotors provides same features and advantages of an air meetor but at a higher torque and lower outpyz speed range.
Provide high torque with smooth start-up. Torque increases and speed decreases in proportion to the ratio of the gear reducer selected. Geared speed reduction permits motor to operate at more efficient speeds, while providing better speed control ander changing load and torque.

Compact and lightweight in-line design is ideal for applications where installation space is limited or where weight is a factor.
Roted for continuous duty and feature cast iron housing, high strength steel output shaft with key and plastic cover; tapered roller bearing; and hardened polished steel worm mating with forged, heat treated high manganese bronze worm gear. Supplied with AGMA \#8 lubricant in gear chamber.

(\dagger) $\mathrm{HP}=$ Torque in-lbs. $\times \mathrm{RPM}+63025$. Torque $\mathrm{in}-\mathrm{lbs} .=\mathrm{HP} \times 63025 \div \mathrm{RPM} . \mathrm{RPM}=\mathrm{HP} \times 63025 \div$ Torque in-lbs.
${ }^{*}$) Not recommended.

Description	Cast	Stock	List	Each	${ }_{\text {Shp }}^{\text {Wf }}$
1/2 HP Air Motor w/Hub Mount	1 UP Series*	${ }_{6} 67411$	\$125.00	\$110.70	${ }^{4.0}$
${ }_{13 / 4} \mathrm{HP}$ Air Motor w/Hub Mount	4AM Series*	42231	155.00	136.75	88.7
4 HP Air Motor w/NEMA 56C Mount	6AM-NRV-11A	6 C 96	258.00	247.50	17.0
4 HP Air Motor w/Foot Mount	$6 \mathrm{AM}-\mathrm{FRV}-5 \mathrm{~A}$	$6 \mathrm{6c98}$	${ }^{237.00}$	227.00	20.0
5 HP Air Motor wNEMA 145TC Mount	8AM-NRV-28A	$6 \mathrm{6CC94}$	${ }^{352.00}$	331.25	31.0
5 HP Ar Motor w/Foot Mount	8AM-FRV-2B	$67 \mathrm{C95}$	387.00	269.75	26.0
1/3 HP Air Gearmotor w/hub Mount ${ }_{\text {l }}$		478412	308.00 645.00	271.75 620.50	4.5 31.0

MODULAR AC \& DC AND SATELLITE DISH LINEAR ACTUATORS

MODULAR AC \& DC LINEAR ACTUATORS

ailable in 12,36 or 90 VDC and 115 VAC ar drives and two tube assemblies ich provide 12 or $24^{\prime \prime}$ travel. Tube tpter and Pin-In-Groove coupling allows erchangeability between drives and res Nos. 6Z090 and 6Z091. All drives are o duty cycle; one minute on, four min's off*. All have ball bearings and are ally enclosed. Zinc die-cast gearboxes gasketed and grease lubricated. Delrin rs throughout except steel motor pins. Can be mounted by clevis and trun1 or optional clamp.
6Z086, 115 VAC Drive features auto t thermal protection and limit switch'SC motor drive comes with capacitor. is mount. Gray.
6Z087, 12 VDC Drive is gasketed front rear. Clutch mechanism. Clevis nt. Black.
SZO88, 36VDC Drive is for use as an ma actuator. Gasketed front and rear rtight strain relief. Microswitch feedk system for antenna positioning. rnal brushes and terminal strip. lator tube mount via trunnion or onal clamp No. 2A769. May be protectom environment by optional boot and - Featifes limit switches. Black.

6Z089; 90VDC Drive gasketed front and Externally accessible brushes. rh meelanism. Clevis mount. Black.

LINEAR ACTUATOR TUBES

gned to mate with tube adapter and In-Gröove coupling shafts of drives $6 \mathrm{Z} 086,6 \mathrm{Z087}$, 6Z088 and 62089. s havestrunnion mounting capability tod entbearing. Alternative mounting ided by optional clamp No. 2A769. contains a $3 / 4^{n}-6$ right hand single Acme thread screw. Yellow dichrofinish to prevent rust.

BOOT AND WIPE

s dirt, water and other contaminants if actuator. Install on No. 6 Z 088 when trive is used outside. Wipe is also le on No, 6Z090 or 6Z091. Gray.

aription	Stock No.	List	Each	Shipg. WL
Tube	62090	\$170.00	\$130.75	8.5
fube	67091	167.00	127.85	14.0
\& Wipe	62092	16.00	11.91	0.8
Clamp	24769	12.00	8.75	1.4

No. 6Z086

No. $6 Z 088$

7/16R. Clevis Mount For Drive Nos. 6Z086, 6Z087 and 6Z089

SATELLITE DISH LINEAR ACTUATORS

ole for use with 8 to 10 ft . dia. solid ft. dia. mesh-type dishes. Rated load: s. 36 VDC, available with more popReed switch or potentiometer feedsignal. Includes terminal strip for rical connection, watertight strain for input cable and limit switch for adjustment from 0 to $24^{\prime \prime}$. Weather ction provided by zinc plating with dichromate finish, protective boot iper and lifetime lubrication. Reed a has 24 counts per inch. Potentiovalve $10 \mathrm{~K} \Omega, 10$ turn. Von Weise

Feedthack Signal	Speed In. $/$ Min.	Rated Load	Duty Cycie\%*	Valts, DC	F/L Amps	von Weise Madel	Stock No.	List	Each	Shpg. Wit.
Read Switch	12	600 lbs. 600	20 20	36 36	3.0 3.0	V76-S V76-2	54651	$\$ 191.00$ 191.00	$\$ 146.70$ 146.70	20.0 20.0

(*) Duty cycle is based on 1 minute on/4 minutes off.

3/8 TO 6 FT.-LB. ELECTRIC BRAKES FOR MOTORS AND GEARMOTORS

3/8 AND 3/4 FT.-LB. MAGNETIC DISC BRAKE

For $115 \mathrm{~V}, 60 \mathrm{~Hz}$ gearmotors only. For rapid stopping and holding action on shaded pole, split-phase and PSC gearmotors used on conveyors, door openers, etc. Not intended for accurate positioning applications. Twin disc design is factory set for $3 / 4 \mathrm{ft}$. lb . for use with gearmotors with $1 / 14$ HP or larger. One disc can easily be removed to reduce torque to $3 / 8 \mathrm{ft}$-lb. for use with gearmotors with $1 / 15 \mathrm{HP}$ or smaller. $40^{\circ} \mathrm{C}$ maximum ambient, 1.0 service factor, continuous duty. Brake mounts on shaft extension of gearmotors by using brake hub and mounting bolts (incl.); engages and holds loads under power-off conditions, releases when power is applied. $115 \mathrm{~V}, 60 \mathrm{~Hz}$. $15^{\prime \prime}$ long leads connect to motor. $2^{27 / 32^{\prime \prime}}$ long, $4^{1 / 16^{\prime \prime}}$ diameter. In rush amp . 36 ; holding amp .16 . Other coils to convert voltage are available, call 1-800-323-0620. Dayton brand.
No. 5×400. Shpg. wt. 0.5 lbs. List $\$ 82.21$. Each \qquad $\$ 64.00$

11⁄2 FT.-LB. MAGNETIC DISC BRAKES

For $115 / \mathbf{2 3 0 V}, 60 \mathrm{~Hz}$ gearmotors only*. Magnetic disc brake designed for single and threephase TEFC gearmotors applications such as conveyors and door openers, requiring rapid stopping and holding action. Not intended for vertical holding applications such as vertical conveyors or hoists. Brake package contains replacement fan and endbell for converting TEFC gearmotors to brake gearmotors.
Single-phase static torque brake rated for $115 / 230 \mathrm{~V}, 60 \mathrm{~Hz}$ operation. $40^{\circ} \mathrm{C}$ ambient, 1.0 service factor, continuous duty. For three-phase gearmotors use brake with optional $230 / 460 \mathrm{~V}, 60 \mathrm{~Hz}$ magnet assembly, No. 4X573 listed below.
Brake engages and holds load under power-off conditions, automatically releases when power is applied. Load can be released when power is off by switching manual lever. Overall length of gearmotor increases $4^{3 / /^{\prime \prime} ;} 5^{11 / 16^{11}}$ diameter. 18 $8^{\prime \prime}$ leads for easy connection. Dayton brand.

$\begin{gathered} \text { Gearmotor } \\ \text { Phase } \end{gathered}$	Fits these Dayton High Torque Gearmotors							Stack No.	List	Each	Shpg. W.
Single	$\begin{aligned} & 27842 \\ & 27843 \\ & 22844 \end{aligned}$	$\begin{aligned} & 27845 \\ & 6 \mathrm{~K} 351 \\ & 6 \mathrm{~K} 352 \end{aligned}$	6K353 6K354 6K369	$\begin{aligned} & 6 \mathrm{~K} 375 \\ & 6 \mathrm{~K} 383 \end{aligned}$ $6 \mathrm{~K} 396$	$\begin{aligned} & 6 \mathrm{~K} 506 \\ & 6 \mathrm{~K} 583 \end{aligned}$ $6 \mathrm{Z} 399$	$\begin{aligned} & 6 Z 400 \\ & 6 Z 401 \\ & 6 Z 402 \end{aligned}$	6Z403	42447	\$180.49	\$141.95	7.5
Three*	$\begin{aligned} & 47384 \\ & 4 Z 385 \end{aligned}$	$\begin{aligned} & 4 \mathrm{ZZ386} \\ & 4 Z 387 \end{aligned}$	$\begin{aligned} & 47388 \\ & 47389 \end{aligned}$	$\begin{aligned} & 47390 \\ & 4 Z 391 \end{aligned}$	$\begin{aligned} & 4 \mathrm{ZZ392} \\ & 4 \mathrm{Z} 393 \end{aligned}$	$\begin{aligned} & 4 \mathrm{Z} 394 \\ & 62404 \end{aligned}$	6Z405				

(*) MAGNET ASSEMBLY for converting br to 460 V three-phase gearmotors. No. 4×573. Shpg. wt. 1.6 Ibs. List $\$ 36.1 \mathrm{C}$ Each.. $\$ 28$

3 AND 6 FT.-LB. NOMINAL MAGNETIC DISC BRAKES

Magnetic spring-set disc brakes mount on most totally enclosed fan-cooled Dayton general purpose motors, many right-angle gearmotors, and many mechanical adjustable speed drives. Use in applications requiring rapid stopping and holding action such as conveyors and door openers. Not intended for accurate positioning or indexing applications or vertical holdIng applications such as vertical conveyors and hoists.
Brake engages and holds load under power-off condition and automatically releases when power is applied. Load can be manually released when power is off by switching release lever. Include fan shroud, brake, fan, shaft adapter, and other hardware needed to mount to fan end of motor. Gray enamel finish. Dayton brand.

Static Torque Ft-Lbs.	Max. RPM input	Voltage AC $60 \mathrm{~Hz} \quad 50 \mathrm{~Hz}$		Amps Holding	Amps Inrush	Ambient	Service Factor	Dimensions finches) Length Diameter		Power Leads Length	Stack No.	List	Each	Shpg. Wt.
3 6	3450	115/230	95/190	0.3/0.2	3.61 .8	$40^{\circ} \mathrm{C}$	1.0	$4^{11 / 16}$	65/8	$24^{\prime \prime}$	$\begin{aligned} & 62814 \\ & 62815 \end{aligned}$	$\begin{array}{r} \$ 268.00 \\ 326.00 \end{array}$	$\begin{array}{r} \$ 187.50 \\ \mathbf{2 2 8 . 0 0} \end{array}$	9.0 9.0
3 6	3450	230/460	190/380	0.144/0.72	1.82/0.91	$40^{\circ} \mathrm{C}$	1.0	47/16	65/8	13	$\begin{aligned} & 3 M 360 \\ & 22871 \end{aligned}$	253.00 325.00	$\begin{aligned} & 177.00 \\ & 227.25 \end{aligned}$	8.0 8.0

N0. 62814									\|khk	No. 3n4360.			
2N863	3N017	3N442	3N627	5K672	6 K 306	6K436	6K599	6 K 727		27872	3N176	37857	7876\%682609
2N864	3N087	3 N 443	3N628	5 K 960	6 K 307	6 K 472	$6 \mathrm{K619}$	6 K 827	3704530	27873	3N925	47497	
2N865	3N234	3N446	3N680	6 K 045	6 K 308	6 K 473	$6 \mathrm{K622}$	$6 \mathrm{K831}$		27874	3N926	47886	Whatechzis7889
2N866	3N235	3N460	4K766	6K122	6 K 309	6K483	$6 K 637$	6 K 937		3N169	3N928	47887	31840
2N915	3 N 237	3N471	4K986	6 K 123	.6K342	6K484	6K639	6K938		3N170	3N509	47893	9301 xx,
2N916	3N285	3N472	5K121	6 K 124	6K358	6K562	6 K 640	6 K 950		3N171	3N513	47894	$\text { QNoI0, } 5 \mathrm{ke}$
2N924	3N317	3N548.	5K262	6K181	6K407	6 K 922	6K674	6K952		3N172	3N514	47895	
2N925	3N335	3N549	5 K 41	6K182	6 K 408	$6 \mathrm{K596}$	6K710	6K959	Y 3 U	3N173	32499	47896	
2N926	3N342	- 3N625	5K502	6 K 184	6 K 409	6 K 597	6K714	6K975		3N174	3Z605	47897	
3 K 348	3N427	3N626	5K636	6K197	6K418	6K598	6K719		181	3N175	37606		27606 Wexe

DOUBLE C-FACE MAGNETIC DISC BRAKES

-ake coll is rated at $115 / 208-230$ volt, 60 Hz or $10 / 208220$ volt, 50 Hz single phase ir use with single-phase motors or, when wired per structiöns included, with $230 / 460$, dual voltage threehase motors
5" long coil leads
rakes ofe rated at $40^{\circ} \mathrm{C}$ maximum ambient temperature nd 3450 RPM maximum input speed

WASHDOWN BRAKE FEATURES:
ISSC Certified
omplies with NEMA Def. MG1-1.26.5 for waterproof achines
SDA approved white epoxy paint
omplies with 3A Dairy Standards pertaining to nonprodit contact surfaces

Designed for operation on NEMA C-face motors up to 3 HP at 3450 (NEMA $56 \mathrm{C}, 143 \mathrm{TC}$, and 145 TC -see dimensional drawing above). Used for applications that require rapid stopping and holding power: conveyors, door openers, and general machine drives.
Brake is not intended for accurate positioning applications.
Brake engages and holds load under power-off condition. Brake must be energized at the same time as the motor. Brake has a manual release which resets automatically when magnet coil is energized.
: Nos. 6K233 and 3M366 brakes may be used to convert a NEMA C-face motor to a brake motor. They also may be used between a NEMA C-face motor and NEMA C-face gear reducer to make a brake gearmotor. Nos. ${ }^{\prime} 1 \mathrm{~L} 388$ and 1L389 brakes can only be used to make a brake gearmotor.
Standard brake has a black finish and the washdown brake has a white finish. CSA Certified (13814). Dayton brand.

		STANDARD DRIPPROOF BRAKES				WASHDOWN BRAKES			
Nominal atic Torque. ft.-Lbs.		$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	List	Each	$\begin{aligned} & \text { Shpg. } \\ & \text { Wut. } \end{aligned}$	Stock No.	List	Each	$\begin{aligned} & \text { Shpg. } \\ & \text { Wf. } \end{aligned}$
3 6	$\begin{array}{ll}\frac{1}{2} & \frac{2}{3}\end{array}$	$\begin{aligned} & 6 K 233 \\ & 3 M 366 \end{aligned}$	$\begin{gathered} \$ 202.09 \\ 224.77 \end{gathered}$	$\begin{aligned} & \mathbf{\$ 1 6 0 . 2 5} \\ & \mathbf{1 7 8 . 0 0} \end{aligned}$	$\begin{aligned} & \frac{13.0}{14 .} \end{aligned}$	$\begin{aligned} & 113888 \\ & 11389 \end{aligned}$	$\begin{gathered} \$ 321.92 \\ { }_{349.03} \end{gathered}$	$\$ 251.25$	14.0 14.0

ADJUSTABLE AC MAGNETIC CLUTCH FOR C-FACE MOTORS

Stearns $/{ }^{\infty}{ }^{\oplus}$

SELECTING A MOTOR BRAKE

Brake selection can be determined from the table at right given the horsepower (HP) and speed (RPM) of motor.

1. Select torque rating from chart.
2. Select mounting type: Double C-Face (page 258) or Close Coupled (pages 254 and 256).
3. Select series.
4. Select NEMA enclosure type and frame and voltage.

High cycling or high inertia loads require specific calculation to determine thermal rating of brake.
Heat Dissipation in Cyclic Applications: In general, a brake will repetitively stop a load at the duty cycle that a standard electric motor can repetitively start the load.
NOTE: In the table at right, brake torque ratings are no less than 140% of the motor full-load torque.
Thermal capacity is the maximum amount of energy (heat) a mass can absorb and dissipate in a given amount of time at a miven ambient temperature. The value is rated in horsepower seconds per minute (HP sec/min). Each brake is designed not to exceed a given thermal capacity limit.

Mator HP	Motor Shaft Speed (RPM)						
	700	900	1200	1500	1800	3000	3600
	Static Torque Rating of Brake (f-las)						
1/6	3	1.5	1.5	1.5	0.75	0.5	$0 . \overline{2}$
1/4	3	3	3.	1.5	1.5	0.75	0.5
1/3	6	3	3	3	1.5	1.5	0.75
U2	6	6	3	3	3	1.5	1.5
$3 / 4$	10	6	6	6	6	3	3
1	15	10	6	6	6	3	3
$11 / 2$	20	15	10	10	10	6	3
2	25	20	15	10	10	6	6
3	35	25	20	15	15	10	6
5	75	50	35	25	20 or 25	15	10
$7^{1 / 2}$	105	75	50	50	35	25	15
10	105	105	75	50	50	25	25
15	175	125	105	75	75	50	35
20	230	175	125	105	105	50	50
25	330	230	175	125	105	75	$5 C$
30	330	-330	230	175	125	75	$7!$
40	440	330	330	230	175	105	10:
50	650	440	330	330	230	*	*
60	750	550	440	330	330	*	*
75	1000	750	550	440	330	*	*
100	\cdots	1000	750	500	440	*	*
125	-	1000	1000	750	500	*	*
150	-	-	1000	750	750	*	*
200	\cdots	-	--	100	1000	*	*
250	-	-	-	-	1000	*	*

(*) Exceeds maximum speed rating for Senes $81,000,89,000$ and $\$ 6,000$ brakes.

- For $60 / 50 \mathrm{~Hz}$ operation
- All brakes operate on both single and three phase
- $40^{\circ} \mathrm{C}$ ambient
- Class B coil insulation
- Continuous duty
- Static torque range 1.5 through 1000 ft.lbs.
- NEMA C-face mounting 48C through 445TC
- Splined hubs ensure contact berween hub and friction disc
- Splined hub design can be used as a replacement brake in any application
- Horizontal mounting on Series $82,000,86,000$ and 87,000 brakes
- All position mounting on Series 56,000 brakes
- Non-asbestos friction discs
- Unitized construction for easy servicing of friction discs
- Spring-set design ensures automatic stopping and holding any time power to brake is interrupted; brake releases electrically
- Brake features manual release with automatic reset
- Simple 2 wire connection; leads supplied
- CSAA Certified (LR6254)

Typical Applications: Direct replacement for OEM brakemot applications already in service. Performance matched desig. for rapid stopping and holding of all major brakemotor desig! used in material handling, hoist, door openers, and gener machine drives.
Brake engages and holds load under power-off condition ar automatically releases when power is applied. Brake is ut intended for accurate positioning applications.
Series 48,000 and 56,000 Brakes compensate for friction linin wear with simple manual adjustments.
Series $82,000,86,000$, and 87,000 Brakes have a self-adjusting fea ture to compensate for friction lining wear and are designed fo more efficient operation where rapid cycling occurs.
NEMA 1 Enclosures are commonly used for indoor or enclosur protected outdoor environments. Enclosure limits drops of lis uid or solid particles from entering when striking from any angl from 0 to 15° downward from the vertical. Meet NEMA 1-1.25. specification*.
NEMA 4 Enclosures are commonly used for outdoor installations or where there are moist, abrasive, or dusty enviromments Enclosure limits the entry of dust, abrasives, and water that i sprayed on the enclosure. Meet NEMA MG $1-1.26 .5$ specifica tion*.
(*) Reference NEMA specifications for a detailed explanation and test method.

CLOSE COUPLED SPRING-SET AC DISC BRAKES

Stearns/|||

125	50	230/460	190/380	1800	$324 / 326 T C$	12.12	15.75	2.125	0.500×0.250	108201102NQF	$5 \cup 313$	3103.00	2840.00	186.0
175	50	2301460	190/380	1800	324/326TC	12.12	15.75	2.125	0.500×0.250	108202102NQF	50315	3183.00	2913.00	186.0
230	50	$230 / 460$	190/380	1800	$364 / 365 \mathrm{TC}$	12.12	15.75	2.375	0.625×0.312	108203102RQF	$5 \cup 317$	3425.00	3132.00	190.0
330	50	230/460	190/380	1800	$364 / 365 \mathrm{TC}$	12.12	15.75	2.375	0.625×0.312	108204102RQF	50319	3781.00	3461.00	195.0
440	50	230/460	190/380	1800	$364 / 365 \mathrm{TC}$	13.38	15.75	2.375	0.625×0.312	108205102RQF	51321	4231.00	3873.00	212.0
550	50	230/460	190/380	1800	404/405TC	13.38	15.75	2.875	0.750×0.375	108206102XQF	51323	4711.00	4313.00	218.0

125	50	230/460	190/380	1800	$324 / 3267 \mathrm{TC}$	12.19	15.75	2.125	0.500×0.250	8201202NQF	54314	3608.00	3303.00	194.0
175	50	230/460	$190 / 380$	1800	324326 TC	12.19	15.75	2.125	0.500×0.250	$108202202 N Q F$	50316	3713.00	3396.00	194.0
230	50	230/460	190/380	1800	$364 / 365 \mathrm{TC}$	12.19	15.75	2.375	0.625×0.312	108203202RQF	50318	3985.00	3648.00	195.0
330	50	$230 / 460$	190/380	1800	$364 / 365 \mathrm{TC}$	12.19	15.75	2.375	0.625×0.312	108204202RQF	51320	4396.00	4025.00	195.0
440	50	230/460	190/380	1800	404/405TC	13.44	15.75	2.875	0.750×0.375	108205202 XQF	51322	4917.00	4502.00	212.0
550	50	230/460	190/380	1800	404/405TC	13.44	15.75	2.875	0.750×0.375	108206202 XQF	50324	5474.00	5013.00	218.0

DOUBLE C-FACE ELECTRICALLY SET MODULAR CLUTCHES, BRAKES AND CLUTCH/BRAKES

- Optional modular kits (voltage, mounting, and base) available; see page 257
- Designed to accommodate standard motors that have been reworked with C-face kits
- Pre-burnished for out-of-box operction
- Large fully gasketed conduit boxes
- Exclusive bi-directional internal fan insures the same operafional temperature in both directions of operation; no external fan kits are required to operate at unit's rating
- Input shaft key is permanently installed
- Automatic air gap adjustment
- Precision sealed ball bearings
- Non-asbestos friction linings
- Class H magnet wire
- Epoxy encapsulated coil construction for uniform heat fransfer and superb moisture resistance
- Stainless steel internal hub for longer life
- UL Listed and CSA Certified

SELECTING A CLUTCH/BRAKE, CLUTCH, OR BRAKE

Selection can be determined from the table above given the horsepower (HP) and speed (RPM) of motor.

1. Select Series rating from chart.
2. Select type of unit: Clutch/Brake, C-Face Clutch, C-Face Brake, or C-Face Brake-No Output Shaft.

Designed as direct replacements for Warner Electric, Dodge, a Inertia Dynamics units. 50, 100, and 180 Series units are offer in TENV designs which match competitors open torque ratin and thermal capacities.
Starting and stopping of the load is achieved by switchil between the clutch and brake. Load will start when voltage applied to the clutch and will stop when voltage is applied to tl brake. Motor will run continuously, eliminating premature mot failure. Units mount between a C-face motor and a C-face redu er or indirect using optional adapter kit from page 257. Load ca be connected directly to the output shaft of the clutch/brak clutch, or brake.
Mounting: Available for mounting to $56 \mathrm{C}, 143 \mathrm{TC}, 145 \mathrm{TC}, 182 \mathrm{~T}($ $184 \mathrm{TC}, 213 \mathrm{TC}$, or 215 TC motors and can be converted to bas mounting by adding optional base kits on page 257. Option: input adapter kit on page 257 provides for indirect coupling to standard motor (utilizing a belt and sheave arrangement).
Voltage: 24 and 90 VDC units available. 90 VDC units can be cor verted to operate on either 115 or 230 volts alternating currer by adding optional Tor-ac ${ }^{*}$ unit into the conduit box. Order Toi ac unit separately from page 257 .
Overhung Load: 85 lbs. all units
Enclosure: Totally enclosed non-ventilated (TENV) on 50, 100, an 180 Series which meet IP54; splash proof on 210 and 250 Serie which meet IP21.

DOUBLE C-FACE CLUTCHES, BRAKES AND CLUTCH/BRAKES AND ACCESSORIES

$\begin{aligned} & \text { Key } \\ & \text { 'age } \\ & 356 \end{aligned}$	Static Torque Ft-Lbs.		Series	Input and Otetput Shatt Dia.	Enciosure	Voltage DC	Max. RPR	Motor Mounting	Dimens Length		Steantrs Model	Stock No.	List	Each	Sipg Wt
\qquad															
A	16	15	SM-50	5/8 ${ }^{1}$	TENV	90	3600	56 C	6.77	6.90	235056101AJL	$5 \cup 333$	\$626.00	\$427.25	25.0
A	16	15	SM-50	5/8	TENV	24	3600	56 C	6.77	6.90	235056101 AEL	51367	626.00	-427.25	25.0
A	35	15	SM-100	518	TENV	90	3600	56 C	6.77	6.90	235056102A」L	511334	794.00	542.00	25.0
A	35	15	SM-100	5/8	TENV	24	3800	56 C	6.77	6.90	235056102 AEL	$5 \cup 368$	794.00	542.00	25.0
A	35	15	SM-180	$7 / 8$	TENV	90	3600	148-5TC	6.83	6.90 .	235140102 AJO	$5 \cup 337$	794.00	542.00	25.0
A	35	15	SM-180	$7 / 8$	TENV	24	3600	143.5 TC	6.83	-6.90	235140102AEO	50383	794.00	542.00	25.0
8	75	7	SM-210	11/8	Splash Proof	90	3600	182-4TC	8.70	9.00	235180003 A.JR	51338	1413.00	965.00	43.0
B	145	6	SM-250	$13 / 8$	Splash Proof	90	3600	213.5 TC	9.14	9.00	235210004AJ	50341	1536.00	1050.00	43.0
1	16	15	SM-50	518	TENV	90	3600	56 C	6.77	6.90	236056101AJL	51342	524.00	357.75	. 20.0
1	35	15	SM-100	5/8	TENV	90	3600	56 C	6.77	6.90	236056102AJL	50345	670.00	457.50	20.0
	35	15	SM-180	78	TENV	90	3600	143-5TC	6.83	6.90	236140102AJO	51346	670.00	457.50	20.0
	75	7	SM-210	$11 / 8$	Splash Proof	90	3600	182-4TC	8.70	9.00	236180003AJR	50349	1188.00	811.50	34.0
	145	6	SM-250	$13 / 8$	Splash Proof	90	3600	213-5TC	9.14	9.00	236210004AJU	515350	1300.00	888.50	35.0
	16	15	SM50	$5 / 8$	TENV	90	3600	56 C	5.20	6.90	237056101AJL	5 S 533	361.00	246.25	16.0
	16	15	SM-60	58	TENV	24	3600	56 C	5.20	6.90	237056101AEL	50384	361.00	246.25	15.0
	35	15	SM-100	58	TENV	90	3600	56 C	5.20	6.90	237056102ANL	50354	460.00 -	314.00	15.0
	35	15	SM-100	$5 / 8$	TENV	24	3600	56 C	5.20	6.90	237056102AEL	5U385	459.00	313.25	15.0
	35	15	SM-180	$7 / 8$	TENV	90	3600	143-5TC	5.26	6.90	237140102AJO	$5 \cup 357$	459.00	313.25	15.0
	-75	15	SM-180	$7 / 8$	TENV	24	3600	143-5TC	5.26	6.90	237140102AEO	54386	459.00	313.25	15.0
	\% 75	7	SM-210	11/8	Splash Proof	90	3600	182-4TC	7.20	9.00	237180003AJR	50358.	893.00	620.00	30.0
	\% 145	6	SM-250	$13 / 8$	Splash Proof	90	3600	213-5TC	7.64	9.00	237210004AJU	50361	994.00	679.90	32.0
品															
	16	15	SM-50	5/8	TENV	90	3600	56 C	3.14	6.90	$237056101 \times \mathrm{IL}$	$5 \cup 362$	331.00	226.25	15.0
	16	15	SM-50	518	TENY	24	3600	56 C	3.14	6.90	237056101 XEL	50387	331.00	226.25	15.0
	-35	15	SM-100	$5 / 8$	TENV	90	3600	56 C	3.14	6.90	$237056102 \times \mathrm{KL}$	51363	447.00	305.25	13.0
	- $=3$	15	SM-100	$5 / 8$	TENV	24	3600	56 C	3.14	6.90	237056102 XEL	5 J 388	447.00	305.00	13.0
	- 85	15	SM-180	$7 / 8$	TENV	90	3600	143-5TC	3.14	6.90	237140102×10	51364	447.00	305.00	14.0
	-35	. 15	SM-180	$7 / 8$	TENV	24	3600	143-5TC	3.14	6.90	237140102XEO	$5 \cup 389$	447.00	305.00	14.0
,	- 65	7	SM-210	$11 / 8$	Splash Proof	90	3600	182-4TC	4.61	9.00	237180003 XIR	50365	858.00	586.50	27.0
	145	6	SM-250	$13 / 8$	Splash Proof	90	3600	213-5TC	4.61	9.00	237210004XJU	50366	954.00	652.00	27.0

or-ac Kit allows 90 VDC clutches and rakes to operate on either 115 or 230 olts alternating current input by adding nit into conduit box maintained. UL and SA unit approval.
rput Adapter Kit provides for indirect couling to a standard motor (utilizing a belt nd sheave arrangement).
ase Kit converts double C-face clutches nd clutch/brakes to base mounting by dding appropriate base kit. No base kit or brakes only.

STRAIGHT BEVEL GEAR DRIVES

DIMENSIONAL DRAWINGS FOR STRAIGHT BEVEL GEAR DRIVES

ASSEMBEY TYPES

Model No.	A	B	C	0	E	F	G	J	Type	Type	M	Kay
R1211	$81 / 4$	$51 / 2$	-	$51 / 2$	21/9	$41 / 4$	41/8	$2{ }^{1} 18$	1	2	3/8-16	$1 / 4 \times 13 / 4 \mathrm{Lg}$.
R1215	81/4	51/2	11	51/2	21/3	$41 / 4$	41/8	21/16	1	2	3/8-16	$1 / 4 \times 13 / 8 \mathrm{Lg}$.
R1412	93/8	$61 / 2$	13	$61 / 2$	$21 / 4$	$41 / 2$	55/8	$2{ }^{13} / 16$	$11 / 4$	21/2	1/2-13	$1 / 4 \times 13 / \mathrm{Lg}$.

Model No.	A	B	c	D	E	F	G	J	Type	Type	M	Key
R1214	1018	73/8	11	51/2	$2{ }^{1 / 8}$	41/4	41/8	2/16	1	2	3/8-16	$1 / 4 \times 13 / 5 \mathrm{Lg}$.
R1413	11/4	8\%/8	13	61/2	$21 / 4$	$41 / 2$	54/8	23/16	$11 / 4$	$21 / 2$	1/2-16	$1 / 4 \times 13 / 8 \mathrm{Lg}$.
$\left.{ }^{*}\right)+0.000-0.002$.												

SPIRAL BEVEL GEAR DRIVES

plicable ratings when used as a speed increaser and driven by＂Y＂or＂Z＂shaft only（see drawing below）． que in

RIGHT－90 SERIES

－Designed for high efficiency，quiet operation，and long service life
－Gears are made of hardened alloy steel
－Precision ground alloy steel shafts are mounted on precision ball bearings
－Housings are made of aluminum alloy；with all mounting surfaces pre－ cision machined
－All shaft projections have high quality oil seals
Prelubricated for life
－Made in USA

DIMENSIONAL DRAWING FOR SPIRAL BEVEL GEAR DRIVES

Model No．	A	B	C	D	E	F	G	H	J	K	L	M
RA6	$3^{15 / 16}$	$3^{21 / 32}$	$1^{1 / 4}$	$17 / 32$	$13 / 8$	$19 / 32$	$3 / 16$	$25 / 32$	$29 / 32$	$19 / 16$	$5 / 8$	$5 / 8$
RA10	$7^{1 / 4}$	$6^{1 / 32}$	2	$1^{15 / 16}$	$2^{1 / 8}$	$1^{1 / 2}$	$1 / 4$	$31 / 4$	$19 / 32$	$2^{2 / 16}$	$15 / 16$	1
RA15	10	$87 / 8$	3	$2^{15 / 16}$	3	2	$5 / 16$	5	$1 / 8$	$33 / 4$	$115 / 32$	$11 / 2$

$\begin{aligned} & \text { Model } \\ & \text { No. } \end{aligned}$	N	P	0	R	S	$\stackrel{\mathbf{H o l e s}}{ }$	$\underset{\text { Holes }}{T T}$	64	All ShaftsVKoyway			AA	8B
RA6	21／32	15／16	3／32	7／8	78	$3 / 16$	5／32	3／8	7／16	Flat		0.59	1.19
RA10	15／16	17／8	3／32	13／3	13／8	17／64	17／64	518	11／16	3／16	3／32	0.94	1.88
RA15	11／2	3	1／8	21／4	21／8	5／16	5／16	$3 / 4$	11／8	3／16	3／32	1.50	3.00

（\＃）$+0.000-0.001$ ．

SHAFT COUPLINGS

ecision machined high quality steel rmits accurate assembly，minimizes sration，and assures quiet opera－ in sert（3－iaw）type
－Three types of spider inserts available for different service requirements（see listing below）
－No lubrication needed
－Complete with keyway and setscrew

00	Overail Length	3／8	71／6＂	$1 / 2^{\prime \prime}$	9／16＂	5／8＇	3／4	7／8	15／w＂	$\underset{\mathbf{1}}{\text { For }}$	$11 /{ }^{2}$	$13 / x^{\prime \prime}$	T / κ^{6}	kNo	17／5＂	$11 / 2^{\prime \prime}$	19／6＂	15／3＂	13／4＊	$17 /{ }^{\text {＂}}$	2	21／6＂	List	Each	Shpg．
．4＂	25／16＂	21028	21029	21030					－	－	－	－	－	－	－	－	－	－	－	－	－		\＄15．60	\＄14．94	0.2
$1 / 2$	$23 / 4$		－	21031	21032	21033	24034	21035						－	－	－	－	－	－	－	－		19.20	18.38	0.4
	311／26		二	21036	21037	21038	21039	21040	21041	6G234							－	－	－				26.67	25.55	1.2
$1 / 2$	$41 / 8$ $516 / 32$		二	－	二	－	21042	21043	－	2104	21045	21045	21847	엄5	1052		－	－	－			\sim	41.60	39.85	1.8
：1	65／16												21054	9165	20.52	21825	21056	24057	21058	21059			57.10 90.73	54.65 86.85	3.8 7.7
$11 / 2$	73／16			－		－		－	－		－	－		－					21050	24051	21062	21063	130.75	125.10	13.0

POWER
 TRANSMISSION: SPEED REDUCERS
 C-FACE RIGHT ANGLE SPEED REDUCERS AND MOTOR/REDUCER COMBINATIONS

Mounting: Horizontal floor or ceiling only (*) Dayton brand motors (\dagger) 34 HP, continuous duty.

C-FACE RIGHT ANGLE SPEED REDUCER DIMENSIONAL DRAWINGS

These dimensional drawings are represen tative of the speed reducers found on this page.

C-FACE RIGHT ANGLE SPEED REDUCERS

Worm Center Distance	Overhung Load (Lbs.)
1.33^{n}	275
1.75	700
2.06	875
2.68	1300
3.25	1500

3 to 350 RPM
ngle (fleft hand facing C-face input)
nd double output shafts
rerchingeable with most Grove
lexalinie) and Ohio (Uniline)
If unirtishipped with oil
gned for low speed/high torque, con-
ius duty applications when coupled to MA 56C face (some $3.25^{\prime \prime}$ WCD units on input shaft and frame size), 1750 motop (not included). Features douippedtand spring loaded shaft seals large oll sump.
ing: Cusist iron
ngs: Ball on input shaft, tapered roller ings off output shaft
n : Thread-rolled and hardened alloy wortit for higher strength and lower er loss with forged bronze and hardworm gear
nting: Any position (with optional s from page 271) except input motor up

OPTIONAL MOUNTING BASES AVAILABLE FOR SPEED REDUCERS L!STED ABOVE, SEE PAGE 271

PARTS AVAILABLE, CALL 1-800-323-0620

C-FACE RIGHT ANGLE SPEED REDUCER DIMENSIONAL DRAWINGS

'hese dimensional drawings are representative of the peed reducers found above. Right and left hand shafts re determined while facing C-face input.

$\begin{aligned} & \text { 3mm } \\ & \text { inter } \\ & \text { ance } \end{aligned}$	Dimensions (laches)								
	A	B	D	E	F	G	H	J	AN
$3{ }^{3}$	3.50	4.13	3.00	3.00	1/4-20	4.94	1.75	1.33	2.22
\%	3.38	4.81	2.75	4.19	5/16-18	5.75	2.06	1.75	2.75
5	3.75	5.50	3.00	4.75	5/16-18	6.38	2.28	2.06	3.00
\cdots	4.44	7.13	3.38	6.38	3/8-16	8.00	2.94	2.63	3.69
5	5.00	8.50	4.00	7.50	7/16-14	9.38	3.50	3.25	4.88

Dayton

C-FACE RIGHT ANGLE

C-FACE RIGHT ANGLE SPEED REDUCERS

- BOSTON LIFETIME LIMITED WARRANTY. See page facing inside back cover of catalog for details
- SHIPPED LESS OIL (See listing for No. 4ZF30 on page 266)

Heavy-duty worm gear speed reducers with value-engineered features for flexible installation, long life, and simplified maintenance. Fine-grained cast-iron housing. Integral input worm and shaft of casehardened alloy steel.
Oversized ball and roller bearings for maximum performance. Extra threaded bolt holes, when used with base, allow multiposition installation on floor, sidewall, or ceiling (with optional base kits). Boston brand.

29 to 350 RPM with 1750 RPM inpu motor

- Single output shaft
- All position mounting with base kits shown on page 266
- Fan kit must be ordered separately; see page 266

Bore Code*	NEMA Mounting	Bore	Keyway
B4	42 CZ	$0.500^{\prime \prime}$	1/8 $\times 1 / 16$
B5	56 C	0.625	$3 / 16 \times 3 /:$
B7	140TC/180C	0.875	$3 / 16 \times 3 /$.
B9	$180 \mathrm{TC} / 210 \mathrm{C}$	1.125	$1 / 4 \times 1 / 8$
B11	$210 \mathrm{TC} / 250 \mathrm{VC}$	1.375	$5 / 16 \times 5 i$
B13	250 TC	1.625	$3 / 8 \times 3 / 1$

$\left.{ }^{(}{ }^{*}\right)$ Bore code found in Boston Model No.


```
PARTS NVMLABLE
    CNL
    7-600-323-0620
```


Recommended ratings are only applicable when using optional fan kit. Order appropriate fan kit separately from page 266.

C-FACE RIGHT ANGLE SPEED REDUCER ACCESSORIES

C-FACE RIGHT ANGLE

SPEED REDUCER DIMENSIONAL DRAWINGS

These dimensional drawings are represe tative of the speed reducers found pages 264 and 265 . Left hand shaft determined while facing C-face input.

FAN KITS

- For use with Boston speed reducers on pages 264 and 265

8. ${ }^{\text {che }}$ SPCIICAIIONS ANDORDERING DATA							
Reducer	$\underset{A}{\text { Dimen }}$	ns (In.)	Boston Model	Stock No.	List	Each	Stipg.
732	8.700	${ }_{5}^{4.87}$	51450	21089	\$54.37	\$47.95	2.0
752	10.87	${ }_{6} 6.25$	51452	2 2091	116.23	102.35	11.0
760	11.56	7.50	51453	$2 L 092$	132.99	117.15	13.0

SYNTHETIC GEAR OIL

Mobil SHC ${ }^{\text {® }} 634$ (Quart). Multi-viscosity synthetic oil based on synthesized hydrocarbon fluid technology. Lubricant is recommended for industrial enclosed gear sets and heavily loaded plain or rolling bearings operating under severe conditions such as extremely high or low temperatures and loads. It contains additives that enhance its oxidation stability, corrosion protection, and protection against wear.

Viscosity (SUS at 100	
ISO Viscosity Grade:	2236
Flash Point $\left({ }^{\circ}\right.$ F) min.:	460
Pour Point (${ }^{\circ}$ F) max.:	460
Po	-20

No. 4ZF30.3 Shpg. wt. 2.0 lbs. List. $\$ 10.00$.
Each.
nax

3 These products are covered by OSHA Hazard
Communication Standard, and Material Safety Data Sheets
(MSDS) are available. See page opposite inside back cover.

42C-FACE INPUT MOTORS FOR ABOVE DRIVES

Dayton
ings: Double-shielded ball
: $1 / 2^{\prime \prime}$ diameter
ion: CW/CCW nal Protection: None
ent: $40^{\circ} \mathrm{C}$
Continuous
\% Gray
d: Dayton

HP	$\begin{aligned} & \begin{array}{l} \text { Name- } \\ \text { platae } \\ \text { RPMM } \end{array} \end{aligned}$	$\begin{aligned} & V_{0}{ }_{00} \mathrm{~Hz} \end{aligned}$			$\begin{aligned} & \text { Ser- } \\ & \text { Sure } \\ & \text { fect. } \end{aligned}$	$\underset{\text { class }}{\text { lins }}$	Stock No.	List	Exch	Shpg.
1/8	1725	115/23	4.0	${ }^{2.0}$	1.0	B	11056	\$15	\$117.70	18.0
1/6	1725	$115 / 230$	4.2	2.1	1.0	B	$1 \mathrm{K057}$	158.	120.85	18.0
1/4	1725 1725	$115 / 230$	${ }_{7.0}$	${ }_{3.5}^{2.6}$	${ }_{1.0}^{1.0}$	${ }_{8}^{B}$	$1 K 058$ $1 K 059$	166.00 182.00	126.90 139.15	${ }_{23.0}^{22.0}$

HP	$\begin{aligned} & \text { Nam } \\ & \mathrm{HPI} \\ & 60 \mathrm{~Hz} \end{aligned}$	Ilate at 50 Hz	Volts 60/50 Hz	NEMA Nom E程.	$\begin{gathered} \text { Full } \\ \mathbf{A m 0 V} \end{gathered}$	Load st 440 N	Serr- vice Fctr.	$\begin{aligned} & \text { hus. } \\ & \text { Class } \end{aligned}$	Stock No.	List	Each	Shps.
1/4	1725	1425	$208.220 / 440$	66.0	1.0	0.5	1.0	B	3×841	\$162.00	\$123.95	17.0
1/3	1725	1425	208-220/440	70.0	1.3	0.65	1.0	B	3N842	- 170.00	130.00	20.0

- WINSMITH 24 MONTH LIMITED WARRANTY, see page facing inside back cover of catalog for details
TI USDA APPROVED EPOXY COATING prevents rust and corrosion in washdown environments
Po USDA rust preventative coating on all shafts
- Shaft slingers used to prevent contaminants from contacting oil seals
Breather vent to prevent liquids from entering reducer
Filled with Mobil SHC629 synthetic lubricant
- Double output shafts
- Reducers can be mounted with or without optional bases using predrilled and tapped holes provided (see bases on facing page)

Dayton 90 and 180 V PMDC Motors Available, See Page 196.

C-FACE RIGHT ANGLE SPEED REDUCERS

[^39]
C-FACE RIGHT ANGLE SPEED REDUCERS

C-FACE SPEED REDUCER

DIMENSIONAL DRAWINGS

hese dimensional drawings are representative of the speed educers found on facing page. These drawings may show imensional references that do not apply. If a dimension is not sferenced in the chart, it does not apply.
ight and left hand shafts are determined while facing C-face tput. Unless otherwise specified, on double shafted speed :ducers the right ONW and left ONW dimensions are of equal ugths.

nsmith lode! WN-LR		Overhung Load (Lhs.)	A	B	BC	$H 1$	w	X	Dimensions (Inches)				OUTPUT SHAFTS		INPUT SHAFTKoreKeyway	
	NEMA Frame								\checkmark	z	001	anW	PUT	KTS Keyway		
713	56 C	290	$37 / 8$	$67 / 16$	$57 / 8$	$4^{1 / 3}$	13/8	$13 / 8$	23/8	$31 / 18$	$1^{3 / 4}$	$2^{1 / 18}$	$3 / 4$	$3 / 16 \times 3 / 32 \times 1 / 8$	$5 / 8$	$3 / 16 \times 3 / 32$
317	56 C	650	43/8	71/2	57/8	53/6	$13 / 4$	$13 / 4$	$33 / \mathrm{s}$	37/9	24/8	29/16	1	$1 / 4 \times 1 / 8 \times 25 / 16$	5/8	$316 \times 3 / 32$
920	56 C	650	43/6	71/2	57/8	53/9	$13 / 4$	$13 / 4$	$33 / 8$	$43 / 8$	21/8	$29 / 16$	1	$1 / 4 \times 1 / 8 \times 25 / 16$	5/8	$3 / 16 \times 3 / 32$
224	56 C	1025	53/8	97/8	57/8	71/4	$21 / 4$	$24 /$	$4^{3 / 3}$	$4^{1 / 8}$	$2^{7 / 8}$	$2^{13 / 16}$	11/4	$1 / 4 \times 1 / 8 \times 2 / 16$	5/8	$3 / 16 \times 383$
$\begin{array}{r} 826 \\ 926 \end{array}$	$\begin{gathered} 56 \mathrm{C} \\ 145 \mathrm{TC} \end{gathered}$	1025	$\begin{aligned} & 53 / 18 \\ & \end{aligned}$	$\begin{aligned} & 97 / 9 \\ & 97 / 8 \end{aligned}$	$\begin{aligned} & 5 / 8 / 8 \\ & 5 / 8 \end{aligned}$	$\begin{aligned} & 7 / 8 / 8 \\ & 7 / 8 \end{aligned}$	21/4	21/4 ${ }^{21 / 4}$	$47 / 8$ $47 / 8$	$47 / 8$	$\begin{aligned} & \begin{array}{l} 31 / 8 \\ 31 / 8 \end{array} \end{aligned}$	${ }^{213 / 16}$	${ }_{1}^{11 / 4}$	$1 / 4 \times 1 / 8 \times 25 / 16$	$\begin{aligned} & 5 / 8 \\ & 7 / 8 \end{aligned}$	$\begin{aligned} & 3 / 16 \times 3 / 39 \\ & 3 / 16 \times 332 \end{aligned}$
880	56 C	1350	6	103/16	57/3	9	25/3	$2^{5 / 8}$	$51 / 2$	51\%	$31 / 2$	$27 / 8$	$1^{3 / 9}$	$5 / 16 \times 5 / 32 \times 23 / 4$	5/8	$3 / 16 \times 3 / 32$
930	145 TC	1350	6	$10^{3 / 16}$	57/9	9	25/8	$25 / 8$	$51 / 2$	$51 / 2$	$31 / 2$	$2^{7 / 8}$	$13 / 8$	$5 / 16 \times 5 / 32 \times 23 / 4$	718	$3 / 16 \times 3 / 32$
930	182 TC	1350	6	$103 / 16$	71/4	9	20\%	25/8	$51 / 2$	$51 / 2$	$31 / 2$	$27 / 8$	13/8	$5 / 16 \times 5 / 32 \times 23 / 4$	11/8	$1 / 4 \times 1 / 8$
985	56 C	2130	61/2	$111 / 4$	$5^{7 / 8}$	$10{ }^{1 / 8}$	25/8	$25 / 8$	$61 / 2$	$61 / 2$	4	$33 / 4$	$13 / 4$	$3 / 8 \times 3 / 16 \times 3 / 8$	5/8	$3 / 16 \times 3 / 32$
935	145 TC	2130	61/2	114/4	57/8	101/8	$2^{25 / 8}$	$2^{25 / 8}$	$64 / 2$	$6^{1 / 2}$,	$33 / 4$	13/4	$3 / 8 \times 3 / 16 \times 35 / 8$	718	$3 / 16 \times 3 / 32$
\%85	182 TC	2130	$61 / 2$	$11^{1 / 4}$	71/4	101/8	25/8	25/8	$61 / 2$	$61 / 2$	4	$33 / 4$	$13 / 4$	$3 / 8 \times 3 / 16 \times 35 / 8$	11/8	$1 / 4 \times 1 / 8$

OPTIONAL BASE KITS

Worm Center Distance	8 D	$\begin{aligned} & \text { Dimen } \\ & \text { BW } \end{aligned}$	$\underset{E}{ }$	$\stackrel{\text { ches }}{\text { F }}$	H	Winsmith Model	Stack No.	List	Each	Shig. Wt.
$1.33{ }^{\prime \prime}$	$37 / 8$	5	4	$21 / 2$	$1 / 4$	9998006G	11382	\$14.08	\$11.34	1.5
1.75	4518	5	4	$31 / 2$	$1 / 2$	9998002 G	1.1402	18.77	15.12	3.6
2.00	$51 / 4$	5	4	$31 / 2$	$1 / 4$	9998009G	11383	22.42	18.06	2.0
2.37	$53 / 4$	7	5\%	$41 / 2$	$3 / 8$	9998014 G	1L399\%	27.92	22.49	7.0
2.65	6	7	$53 / 4$	$41 / 2$	$3 / 8$	9998017 G	11397	31.26	25.20	4.5
3.00	${ }^{63 / 4}$	8	61/2	$51 / 4$	112	9998019 G	11381	36.17	29.15	7.5
3.50	10	$61 / 2$	51/4	81/4	1/2	9998034 G	11.396	38.51	31.05	9.2
1.33	37/8	5	4	21_{2}	$3 / 8$	9998007G	11379	14.08	11.34	2.2
1.75	5	5	4	$31 / 2$	$1 / 2$	9998003G	$1 \mathrm{L401}$	18.77	15.12	3.6
2.00	$51 / 2$	5	4	$31 / 2$	1/2	9998010 G	11380	22.42	18.06	4.0
2.37	$53 / 4$	7	$53 / 4$	$41 / 2$	$3 / 8$	9998013G	14400	27.92	22.49	8.3
2.65	6	7	$53 / 4$	$41 / 2$	388	9998017G	$1 \mathrm{L398}$	31.26	25.20	4.5
3.00 3.50	$10^{6 \%}$	8 $61 / 2$	$61 / 3$ $61 / 4$	$51 / 4$ $81 / 4$	$1 / 2$	9998019 G 9998034 G	${ }_{1}^{1 L 381}$	36.17	29.15	7.5
3.50	10	$61 / 2$	$51 / 4$	$81 / 4$	$1 / 2$	9998034 G	12395	38.51	31.05	9.7
1.33	5	4	31/4	$4^{1 / 4}$	1/4	9998005 G				
2.00	$5^{7 / 8}$	$4^{1 / 2}$	33/4	5	$1 / 2$	9998008 G	11385	22.42	18.06	4.0
3.00	8	6	$4^{3 / 4}$	7	12.	9998018 G	11.386	36.17	29.15	6.7

NOTE: All base kits include hardware.
(*) These bases match the mouting dimensions of Winsmith's "D-Line" units, however input shaft and other dimensions may vary. (\dagger) Contains two plates.

THE SPEED REDUCER BOOK

From Winsmith. Book explains how the various types of speed reducers work. It also defines industry terms and ratings. Chapters include speed reducer fundamentals, types, applications, installation and maintenance. It is tailored to the beginner. 179 pages.

Stock No.	List	Each	Sheg. W.
11.394	\$10.60	\$6.62	0.5

rIGHT ANGLE SPEED REDUCER MOUNTING BASES AND FLANGE/COUPLING KITS

Worm Center Distance	Input Motor Frame Size	Overall Length Reducer / Flange	BC	$\begin{gathered}\text { Motor Coupling } \\ \text { Keyway }\end{gathered}$		$\begin{gathered}\text { Reducer Coupling } \\ \text { Bore }\end{gathered}$Keyway		Stack No.	List	Each	Shpg. WL
$1.33^{\prime \prime}$	56 C	$919 / 32^{17}$	57/8"	5/8 ${ }^{4}$	$3 / 16 \times 3 / 32^{\prime \prime}$	$1 / 2^{4}$	$1 / 8 \times 1 / 16^{\prime \prime}$	3 A701	\$103.00	\$72.00	7.5
1.75, 2.06	$\begin{gathered} 56 \mathrm{C} \\ 143 \mathrm{TC} / 145 \mathrm{TC} \end{gathered}$	$\begin{aligned} & 10^{13 / 32} \\ & 10^{21 / 32} \end{aligned}$	$\begin{aligned} & 57 / 8 \\ & 57 / 8 \end{aligned}$	$\begin{aligned} & 5 / 8 \\ & 7 / 8 \end{aligned}$	$\begin{aligned} & 3 / 16 \times 3 / 32 \\ & 3 / 16 \times 3 / 32 \end{aligned}$	$\begin{aligned} & 5 / 8 \\ & 5 / 8 \end{aligned}$	$\begin{aligned} & 3 / 16 \times 3 / 32 \\ & 3 / 16 \times 3 / 32 \end{aligned}$	$\begin{aligned} & 3 A 702 \\ & 3 A 703 \end{aligned}$	$\begin{aligned} & 103.00 \\ & 112.00 \end{aligned}$	$\begin{aligned} & 72.00 \\ & 77.75 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 3.6 \end{aligned}$
2.62	$\begin{gathered} 56 \mathrm{C} \\ 143 T \mathrm{C} / 145 \mathrm{TC} \end{gathered}$	$\begin{aligned} & 122^{5 / 32} \\ & 133^{1 / 16} \end{aligned}$	$\begin{aligned} & 57 / 8 \\ & 5^{7 / 8} \end{aligned}$	$\begin{aligned} & 5 / 8 \\ & 7 / 8 \end{aligned}$	$\begin{aligned} & 3 / 16 \times 3 / 32 \\ & 3 / 16 \times 3 / 32 \end{aligned}$	$\begin{aligned} & 3 / 4 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 3 / 16 \times 3 / 32 \\ & 3 / 16 \times 3 / 32 \end{aligned}$	$\begin{aligned} & 3 A 706 \\ & 3 A 707 \end{aligned}$	149.00 149.00	104.15	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$
3.25	$\begin{gathered} 56 \mathrm{C} \\ 143 \mathrm{TC} 145 \mathrm{TC} \end{gathered}$ $182 \mathrm{TC} / 184 \mathrm{TC}$	$\begin{aligned} & 14^{13 / 16} \\ & 1413 / 16 \\ & 15^{13 / 16} \end{aligned}$	$\begin{aligned} & 57 / 8 \\ & 57 / 8 \\ & 71 / 4 \end{aligned}$	$\begin{aligned} & 5 / 8 \\ & 7 / 8 \\ & 11 / 8 \end{aligned}$	$\begin{aligned} & 3 / 16 \times 3 / 32 \\ & 3 / 16 \times 3 / 32 \\ & 1 / 4 \times 1 / 8 \end{aligned}$	$\begin{aligned} & 7 / 8 \\ & 7 / 8 \\ & 7 / 8 \end{aligned}$	$\begin{aligned} & 3 / 16 \times 3 / 32 \\ & 3 / 16 \times 3 / 32 \\ & 3 / 16 \times 3 / 32 \end{aligned}$	$3 A 708$ $3 A 709$ $3 A 710$	150.00 150.00 182.00	$\begin{aligned} & 104.40 \\ & 104.40 \\ & 127.05 \end{aligned}$	5.0 5.0 9.0

LIBRARY OF TECHNICAL MANUALS

Ipful reference books for the tradesman, student, and homeowner. Topics cover electricity, electric motors, welding, plumbing, frigeration, and air conditioning, hydraulics, and much more. See Index under Books, Technical.

INDIRECT DRIVE RIGHT ANGLE SPEED REDUCERS

- BOSTON LIFETIME LIMITED WARRAN-

 TY. See page facing inside back cover of catalog for details.- SHIPPED LESS OIL (see listing for No. 4ZF30 gear oil on page 266)

Nom Ous-	Worm	
put RPM	Ctr. Nom	
at 1750	Dist	ina
RPM	(WCD) Rat	

- 29 to 350 RPM with 1750 RPM input motor
- Single output shaft (left hand facing input shaft)
- All position mounting with base kits

Heavy-duty worm gear speed reducers with value-engineered features for flexible installation, long life and simplified maintenance. Fine-grained cast-iron housing. Integral input worm and shaft of casehardened alloy steel. Oversized ball and roller bearings for maximum performance. Extra threaded bolt holes, when used with base, allow multiposition installation on floor, sidewall or ceiling (see base kits, page 266). Boston brand.

DAYTON 180V PMDC
MOTORS AVAILABLE,
SEE PAGE 196.

SPEED REDUCER

DIMENSIONAL DRAWINGS

These dimensional drawings are representative of the speed reducers found above. These drawings may show dimensional references that do not apply. If a dimension is not referenced in the chart, it does not apply.
Left hand output shaft is determined while facing input shaft.

Worm Center Distance	Overtung Load	A	8	H1	101	INW	Dime Shaft IU	(finches) Key	001	ONW	Output Shaft	Ker
$1.00^{\prime \prime}$	150	2.50	3.25	3.63	2.31	0.81	. 375	$3 / 32 \times 3 / 8$	1.31	1.19	. 500	1/8 $\times 5 / 8$
1.33	200	2.88	4.25	4.64	3.05	\1.31	. 500	1/8×5/8	1.72	2.00	. 625	$3 / 16 \times 1$
1.54	300	3.69	5.13	5.36	3.45	1.56	. 625	3/16 $\times 13 / 16$	1.91	1.78	. 750	$3 / 16 \times 1$
1.75	500	3.69	5.50	6.75	3.81	1.56	. 625	$3 / 16 \times 13 / 16$	2.06	1.78	. 875	$3 / 16 \times 1$
2.06	700	3.81	6.00	6.38	4.34	1.56	. 625	3/16 $\times 13 / 16$	2.28	2.09	1.000	$1 / 4 \times 1 / 4$
2.38	900	4.06	6.38	6.94	4.88	2.00	. 750	$3 / 16 \times 1$	2.50	2.38	1.125	$1 / 4 \times 1 / 4$
2.62	1000	4.44	7.38	8.00	5.56	2.00	. 750	$3 / 16 \times 1$	2.94	2.62	1.125	$\mathbf{V} 4 \times 15 / 16$

INDIRECT DRIVE RIGHT ANGLE SPEED REDUCERS

ATISSMITH 24 MONTH LIMITED WAR－ AATY，see page facing inside back jver of catalog for details
SDA APPROVED EPOXY COATING reyents rust and corrosion in wash－ piwn environments
SDA rust preventative coating on all rafts
haft slingers used to prevent contam－ anints from contacting oil seals
reather vent to prevent liquids from ntering reducer
Jouble output shafts
iffed with Mobil SHC629 synthetic ubricant
Cainibe mounted with or without optional base using，predrilled and tapped holes provided（See bases below）．

Nom－ inal Output RPM at 1725 RPM	Worm Ctr． Dist． （WCD）	Nom－ inal Ratio	At 1725 RPM Input CONTINUOUS DUTY OUTPUT TORQUE In．－Lbs．at Input Motor HP Shown （1．0 Service Factor）								Max． Torque	Winsmith Madel WN－LR	Stock No．	List	Each	Shpg． Wt．
$\begin{aligned} & 29 \\ & 29 \end{aligned}$	$\begin{aligned} & 2.00^{*} \\ & 300 \end{aligned}$	$\begin{aligned} & 60 \cdot 1 \\ & 60: 1 \end{aligned}$	373	512	769	$\overline{1206}$	1642	－	二	二	$\begin{array}{r} 559 \\ 1809 \end{array}$	$\begin{aligned} & 920 \\ & 930 \end{aligned}$	$\begin{aligned} & 27954 \\ & 27961 \end{aligned}$	$\begin{array}{r} \$ 286.96 \\ 533.08 \end{array}$	$\begin{array}{r} \$ 231.50 \\ \mathbf{4 2 9 . 5 0} \end{array}$	$\begin{aligned} & 20.0 \\ & 31.0 \end{aligned}$
$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 2.09 \\ & 3.09 \end{aligned}$	$\begin{aligned} & 50.1 \\ & 50.1 \end{aligned}$	321	440	$\overline{65}$	$\overline{1032}$	1405	－	－	二	594 1916	920	27959 27900	286.96 533.08	2×1.50 429.50	20.0 51.0
$\begin{aligned} & 43 \\ & 43 \\ & 43 \end{aligned}$	1.33 2.00 3.00	40.1 40.1 40.1	${ }_{265}^{219}$	$\overline{363}$	561	849	$\overline{1156}$	$\overline{1770}$	二	－	$\begin{array}{r} 220 \\ 620 \\ 1983 \end{array}$	$\begin{aligned} & 913 \\ & 920 \\ & 930 \end{aligned}$	$\begin{aligned} & 27946 \\ & 27952 \\ & 27959 \end{aligned}$	$\begin{aligned} & 250.56 \\ & 286.96 \\ & 533.08 \end{aligned}$	$\begin{aligned} & 202.00 \\ & 231.50 \\ & 429.50 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 20.0 \\ & 51.0 \end{aligned}$
$\begin{aligned} & 58 \\ & 58 \\ & 58 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 2.00 \\ & 3.00 \end{aligned}$	$\begin{aligned} & 3011 \\ & 30.1 \\ & 30: 1 \end{aligned}$	201	－282	436		894	$\overrightarrow{1369}$	$\overline{1844}$	－	$\begin{array}{r} 225 \\ 634 \\ 2000 \end{array}$	$\begin{aligned} & 913 \\ & 920 \\ & 930 \end{aligned}$	$\begin{aligned} & 27956 \\ & 2751 \\ & 27958 \end{aligned}$	$\begin{aligned} & 250.56 \\ & 236.96 \\ & 533.08 \end{aligned}$	$\begin{aligned} & 212.00 \\ & 231.50 \end{aligned}$ 429.50	$\begin{aligned} & 13.0 \\ & 20.0 \\ & 51.0 \end{aligned}$
$\begin{aligned} & 86 \\ & 86 \\ & 86 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 2.00 \\ & 3.00 \end{aligned}$	$\begin{aligned} & 20: 1 \\ & 20: 1 \\ & 20.1 \end{aligned}$	144	195	307	470	$\overline{619}$	$\overline{T_{56}}$	$\overline{\overline{1287}}$	$\overline{1950}$	$\begin{array}{r} 222 \\ 619 \\ 1975 \end{array}$	$\begin{aligned} & 913 \\ & 920 \\ & 930 \end{aligned}$	$\begin{aligned} & 27944 \\ & 27950 \\ & 27957 \end{aligned}$	250.56 286.96 533.08	$\begin{aligned} & 202.00 \\ & 231.50 \\ & 429.50 \end{aligned}$	$\begin{aligned} & 130 \\ & 200 \\ & 21.0 \end{aligned}$
$\begin{aligned} & 115 \\ & 115 \\ & 115 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 2.00 \\ & 3.00 \end{aligned}$	$\begin{aligned} & 15: 1 \\ & 15: 1 \\ & 15: 1 \end{aligned}$	111	151	$\begin{aligned} & 218 \\ & 236 \end{aligned}$	360	$\overline{485}$	729	982	1488	$\begin{array}{r} 218 \\ 610 \\ 1927 \end{array}$	$\begin{aligned} & 913 \\ & 920 \\ & 930 \end{aligned}$	$\begin{aligned} & 27943 \\ & 27949 \\ & 27956 \end{aligned}$	$\begin{aligned} & 250.56 \\ & 286.96 \\ & 533.08 \end{aligned}$	$\begin{aligned} & 202.00 \\ & 231.50 \\ & 429.50 \end{aligned}$	13.0 20.0 51.0
$\begin{aligned} & 172 \\ & 172 \\ & 172 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 2.00 \\ & 3.00 \end{aligned}$	$\begin{aligned} & 10: 1 \\ & 10: 1 \\ & 10: 1 \end{aligned}$	77	104	160	246	$\overline{331}$	502	669	1014	$\begin{array}{r} 204 \\ 565 \\ 1764 \end{array}$	$\begin{aligned} & 913 \\ & 920 \\ & 930 \end{aligned}$	$\begin{aligned} & 27942 \\ & 27948 \\ & 22955 \end{aligned}$	$\begin{aligned} & 230.56 \\ & 286.96 \\ & 533.08 \end{aligned}$	202.00 231.50 429.50	130 200 510
$\begin{aligned} & 345 \\ & 345 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 2.00 \end{aligned}$	$5: 1$	40	54	83	125	$\begin{aligned} & 168 \\ & 169 \end{aligned}$	255	342	－	171	$\begin{aligned} & 913 \\ & 920 \end{aligned}$	$\begin{aligned} & 27941 \\ & 27947 \end{aligned}$	$\begin{aligned} & 250.56 \\ & 286.96 \end{aligned}$	202.00 231.50	13.0 20.0

SPEED REDUCER DIMENSIONAL DRAWINGS

Right and left hand output shafts are determined while fac－ ing input shaft．Unless otherwise specified， on double shafted speed reducers the right ONW and left ONW dimensions are
 of equal length．

Winsmith	Overhung		$B{ }_{H 1}^{\text {Dimensions (linches) }} X$					OUTPUT Shafts			InPUT SHAFT		
Model WN－LR		A					z	001	ONW	00	101	INW	1 U
913	290	$3^{3 / 8}$	$5^{1 / 8}$	41／3	$13 / \mathrm{s}$	$31 / 8$	$2^{23 / 8}$	13／4	$2^{1 / 1 / 6}$	$3 / 4$	$33 / 32$	$111 / 4$	$1 / 2$
990	650 1550	$4^{3 / 8}$	6614	5\％／9	13／4	43／8	33／8	${ }_{21 / 8}^{21 / 8}$	${ }^{29 / 16}$	1	${ }_{6}^{41 / 3}$	${ }_{2}^{21 / 16}$	$5 / 8$
930	1350	6	89／16	9	25／8	$51 / 2$	51／2	$31 / 2$	27／8	$13 / 8$	$61 / 2$	$25 / 8$	1

OPTIONAL BASE KITS									
$\begin{gathered} \text { Worm } \\ \text { Center } \\ \text { Distance } \end{gathered}$	BD			H	Winsmith	Stock No．	List	Each	Shpg．
$1.33{ }^{\prime \prime}$	$37 / 8$	$5 \quad 4$	$2^{1 / 2}$	$1 / 4$	${ }^{9998006 G}$	11382	\＄14．08	\＄11．34	1.5
1.75	45／8	54	$31 / 2$	1／2	${ }^{99980002 \mathrm{G}}$	11402	18.77	15.12	3.6
	51／4	5	$31 / 2$	$1 / 4$	${ }^{99988009 G}$	${ }^{11383}$	22.42	18.06	2.0
2.37	$5{ }^{53 / 4}$	53／4	$41 / 2$	$3 / 8$	${ }^{9998014 G}$	${ }^{113999} \dagger$	27.92	22.49	7.0
$\mathbf{2 . 6 5}$	6	$5{ }^{3 / 4}$	41／2	$3 / 8$	${ }^{9998017 G}$	11397	${ }^{31.26}$	25.20	4.5
3.00 3.50	${ }_{10} 0^{3 / 4}$	8 $61 / 2$ $61 / 2$ $51 / 4$	51／4	$1 / 2$	${ }_{9998034 \mathrm{G}}^{998019 \mathrm{G}}$	${ }_{1}^{1 L 381}$	36.17 38.51	29.15 31.05	7.5 9.2
BOTOM MOUNIING PLAIE（WT BASE									
1.33	37／8	5	$2^{1 / 2}$	$3 / 8$	${ }^{9998007 G}$	14379	14.08	11.34	2.2
1.75	5	4	$31 / 2$	1／2		$1 \mathrm{L401}$	18.77	15.12	3.6
2.00	$5 \times$	4	$31 / 2$	$1 / 2$	${ }^{9998010 G G}$	12380	22.42	18.06	4.0
2.37	$5^{3 / 4}$	$53 / 4$	$41 / 2$	$3 / 8$	9998013G	15400	27.92	22.49	8.3
2.65	G	${ }^{53 / 1}$	$41 / 2$	318	9998017G	11398	${ }^{31.26}$	25.20	4.5
3.00	${ }^{63}$	8 8 ${ }^{61 / 2}$	$8^{51 / 4}$	1／2	9998019G	11381	36.17	29.15	7.5
3.50	10	61／2 51／4	$81 / 4$	$1 / 2$	9998034G	1 L 395	38.51	31.05	9.7
BOTTOM MOUNTING PLATE FOR＂D－LINE＂CONVERSION＂（DT BASE）									
								11.34	
2.00	${ }_{8}^{5 / 8}$	$4^{4 / 2} \quad 33 / 4$	5	1／2	${ }^{99980008 G}$	11385	22.42	18.06	4.0
3.00	8	$6 \quad 4{ }^{3 / 4}$	7	1／2	9998018 G	11386	36.17	29.15	6.7

NOTE：All base kits include hardware．
＊）These bases match the mouting dimensions of Wirsmith＇s＂D－Line＂units，however input shaft and other dimensions may vary．（ \dagger ）Contains two plates．

POWER
 TRANSMISSION: SPEED REDUCERS

OPEN DRIPPROOF AND TEFC MOTORS, AN INDIRECT DRIVE RIGHT ANGLE SPEED REDUCI

INDIRECT DRIVE RIGHT ANGLE SPEED REDUCERS

- 2" Worm center distance
- 30 to 157 RPM*
- Single output shaft
- All units shipped with oil

Designed for continuous duty, high torque, slow speed applications where a compact, dependable speed reducer is required. Factory lubricated with an AGMA 8C oil. Gray finish. Dayton brand.
Worm Gear: Hardened steel
Worm Wheel: Forged bronze
Bearings: Tapered roller on output shaft for greater overhung load capacity.
Overhung Load: 600 lbs .
Oil Seals: Double-lip seals on input and output shaft. Inner hip is spring-loaded to keep lubricant in and outer lip keeps dirt and foreign matter out
Recommended Motors: $1 / 3$ to $1 \mathrm{HP}, 1725$ RPM

Mounting: All position

(*) Based on 1725 RPM input speed at max. HP. Lower input speed may be used with a proportional decrease in input HP and output speed. Lower input HP may be used with a proportional reduction in output torque.

Dimensions (laches)																	
A	c	D	\mathbf{D}^{\prime}	E	F	H	N	N^{\prime}	0					V	r	AB	XL
53/4	71/16	$21 / 2$	$41 / 2$	23/8	$4^{3 / 4}$	11/32	$113 / 16$	2	$5^{13 / 16}$	0.7500	0.7495	0.6250	0.6245	17/6	17/8	$2^{7 / 16}$	

INDIRECT DRIVE AND C-FACE PARALLEL SHAFT SPEED REDUCERS

Large prefilled oil reservoir and diecast housing provide superior heat dissipation
lions \& Gears: Carburized steel pinions. duction hardened helical and spur gears e computer matched for high efficiency; signed from AGMA standards.
arings: Deep groove ball bearings on putsoutput, and intermediate shafts arcase: Die-cast aluminum alloy brieation: AGMA \#4
alse Spring-loaded double lip seals on putend output shafts ounifing: Horizontal mount only nisthe: Gray

- Meets AGMA Class I design criteria

Pinion \& Gears: Heat-treated steel with helical first stage gearing
Bearings: Heavy-duty needle and ball bearings and thrust balls
Base: Removable to allow high or low positioning of output shaft; face mounting holes on output side of reducer
Gearcase: Die-cast aluminum housing
Lubrication: Shipped with heavy-duty oil lubricant in gear case
Seals: Spring-loaded lip-type oil seals or input and output shaft
Mounting: All position
finish: Gray
No. $4 Z 498$ matches NEMA 42 frame shaft height. Nos. 4 Z 499 thru 4Z503 match NEMA 48 frame shaft height.

INDIRECT DRIVE AND 56 C-FACE SPEED REDUCERS

(*) At 1725 RPM input motor speed.

PARTS AVAILABLE FOR INDIRECT DRIVE AND C-FACE PARALLEL SHAFT SPEED REDUCERS, CALL 1-800-323-0620

INDIRECT DRIVE AND 42 C-FACE SPEED REDUCERS

C-FACE PARALLEL SHAFT SPEED REDUCERS AND REDUCER/MOTOR COMBINATIONS

- All units shipped with oil - 30 to 91 RPM, continuous duty
- For use with $1 / 4$ to $1 / 2$ HP NEMA 56C, 1725 RPM motors

- Reversible rotation

Dayton parallel shaft speed reducers have heat treated, annealed cast-iron housings, precision machined for accurate alignment of gears. Reducers are available separately or with motors (see list of combinations below). Gray finish. Dayton brand.

Gears: Heavy-duty helical cut steel Input Shaft: Ball bearing supported Output Shaft: Tapered roller bearing sup ported
Housing: Cast iron
Oil Seals: Lip-type on input and output shafts
Mounting: Horizontal
Overhung Lood: 660 lbs .

Input Matar HP	Nome. Outpur 	Torque In.-Lbs.	REDUCER with BRIPPRODF MOTOR $50^{\circ} \mathrm{C}$ Rise, Continuous Duty			REDUCER with ERCL, FAR-COOLED MOI ${ }_{55^{\circ}}{ }^{\circ} \mathrm{C}$ Rise, Continuous Duty		
			Stock Na.	Each	Skpg. Wt.	Stock No.	Each	Shpg Wt.
$1 / 4$	30	470	72737	\$379.00	50.0	72741	\$395.75	51.0
	44	320	72738	379.00	50.0	72742	395.75	510
	60	235	72739	379.00	50.0	72743	395.75	51.0
	91	160	72740	379.00	48.0	72744	395.75	49.0
$1 / 3$	30	638	77135	398.75	51.0	77147	407.25	53.0
	44	435	72172	398.75	51.0	72176	407.25	53.0
	60	318		398.75	51.0	72148	407.25	53.0
	91	217	72137	398.75	49.0	72149	407.25	51.0
1/2	30	955	72138	415.25	54.0	72150	430.00	55.0
	44	661	72173	415.25	54.0	72177	430.00	55.0
	60	478	72139	415.25	54.0	72151	430.00	55.0
	91	326	72140	415.25	52.0	72152	430.00	53.0

208-220/440V $601 / 2$ BAIL BEARNO MOTOR

Input Motor HP	Nom. Output RPM	Torque ln.-Lbs.	REDUCER with DAIPPRODF MOTOR $40^{\circ} \mathrm{C}$ Rise, Continuous Duty			REDUCER with ENCL. FAN-CDOLED MOTC $55^{\circ} \mathrm{C}$ Rise, Continuous Duty		
			Stack No.	Each	Singe.	Stack No.	Each	Shpg. W.
1/3		638	72141			72153	411.00	51.0
	44	4335	72174	393.00	51.0	72178	411.00	51.0
	60	318	72142	393.00	51.0	72154	411.00	51.0
	91	217	72143	393.00	49.0	72155	411.00	49.0
1/2	30	955	72144	409.50	53.0	72156	433.00	55.0
	44	651	72175	409.50	53.0	72179	433,00	55.0
	60	478	72145		53.0	72157	433.00	55.0
	91	326	72146	409.50	51.0	72158	433.00	53.0

SPEED REDUCER DIMENSIONAL DRAWINGS

These dimensional drawings are representative of the style of speed reducers found on this page and page 275 (dimensions listed below are for models on this page; see dimensional charts on page 275 for specific dimensions for speed reducers shown on that page). These drawings may show dimensional references that do not apply. If a dimension is not referenced in the chart, it does not apply.

C-FACE PARALLEL SHAFT

INDIRECT DRIVE PARALLEL SHAFT

Dimensians fluches)									
8	8 C	81	D02	002	F	H2	ONW	04	Key
$65 / 16$	$57 / 8$	89/16	47/8	53/4	$71 / 2$	$73 / 16$	2	1	1/4 sq. $\times 1 / 4$

C-FACE INLINE HELICAL SPEED REDUCERS

- Standard NEMA C-face allows use of any industry standard motor
- Ratios up to $71: 1$ in only two stages; increases efficiency and reduces case size
- Pafenfed input bushing system allows positive forque transfer and eliminates fretting corrosion
- Dimensionally interchangeable with SEW Eurodrive inline helical reducers
- All units shipped prelubricated (shipped with Mobil SHC634 lubricant, No. 4ZF30)
- Powdered epoxy paint suitable for washdown applications
- Boston Gear 2-Year Warranty; see page facing inside back cover of catalog for details

(*) Bore code found in Boston model number.

(*) At 1750 RPM input motor speed.

	8		Kis	4					5	T140	16,	㮯	5								
Size	A	B	C	D	E	G	H	K	1	566	$\begin{aligned} & \text { M NEMA A } \\ & \text { 140TC } \end{aligned}$	$\begin{aligned} & \text { Mounting } \\ & \text { 180TC } \end{aligned}$	210TC	T	\checkmark	V		Key Length	π	DD	WT
F832A	5.31	4.33	4.33	3.35	0.88	0.47	2.95	5.79	2.28	9.82	9.82	10.65	-	0.39	0.750	1.57	0.19	1.28	1/4	0.63	25
F842A	5.71	6.30	4.33	5.12	1.38	0.63	3.54	7.01	2.95	10.73	10.73	11.55	-	0.39	1.000	1.97	0.25	1.75	1/4	0.63	32
F862A	7.48	7.87	5.31	6.50	2.17	0.79	4.53	9.06	3.54	12.26	12.26	14.61	-	0.59	1.250	2.36	0.25	2.00	3/8	0.87	63
F872A	8.06	9.65	6.69	8.07	2.36	0.98	5.51	10.83	4.53		15.15	16.76	16.76	0.75	1.625	3.15	0.38	2.37	5/8	1.42	99

WASHDOWN DC MOTORS AND DC SPEED CONTROLS

WASHDOWN DC SPEED CONTROLS

NEW Product Offering white epoxy finish

- Approved by USDA agricultural Canada
- NEMA rated washdown enclosure
- Built-in transient and surge suppression
- Jumpers for current scaling/horsepower adjustment
- UL Listed

$\mathrm{N}=1 \mathrm{~F} 42$

Shunt Arm VDC	Wound Field vDC	$\stackrel{H P}{\text { Range }}$	Input Volts	Speed Range	Enclosure Type	$\underset{H}{\text { Dimensions (Inches) }} \mathbf{W}$			Additional Switches	Stock No.	List	Each	Shpg. Wt.
90 180	100 200	1/8-1	$\begin{aligned} & 115 \\ & 230 \end{aligned}$	$\begin{aligned} & 50: 1 \\ & 50: 1 \end{aligned}$	$\begin{aligned} & \text { NEMA } 4 / 12 \\ & \text { NEMA } 4 / 12 \end{aligned}$	$\begin{aligned} & 91 / 2 \\ & 91 / 2 \end{aligned}$	5 5	$\begin{aligned} & \begin{array}{l} 51 / 2 \\ 51 / 2 \end{array} \end{aligned}$	Forward/Reverse Forward/Reverse	$\begin{aligned} & 1 F 794 \\ & 1 F 792 \end{aligned}$	$\begin{array}{r} \$ 424.08 \\ 424.08 \end{array}$	$\begin{array}{r} \$ 372.00 \\ 372.00 \end{array}$	9.0 9.0

PERMANENT MAGNET DC WASHDOWN MOTORS

- Gaskered construction
- Stainless steel shaft
- Shaft seals at drive and non-drive
ends
\square USDA approved white epoxy paint
- Drain holes at 3, 6,9, and 12 o'clock $=$ positions

E UL and CSA Approved

Typical Uses: Designed for variable speed operation in food beverage or processing plants where motor is exposed to high pressure washdowns or other high humidi: or wet environments.
Type: Permanent magnet
Beorings: Ball
Aounting: C-face with removable base
Ämbient: $40^{\circ} \mathrm{C}$
Insulation Class: F
Stervice Factor: 1.0
Byty: Continuous
Rotation: CW/CCW
Brand: Daỹton

NEW Product Offering

HP	Nameplate RPM	Full-Load Torque In.-lhs.	Full-Load Amps at Namplate Volts	NEMA Frame	Overall Length	Stock No.	List	Each	Shpg. W.
		- ${ }^{\prime}$	90VDCXASTHOWNHOTCRS 2						
1/4	1725	9.1	3.0	${ }^{56 \mathrm{C}}$	${ }^{10}{ }^{7 / 16^{\prime \prime}}$	$1 F 654$	\$429.09	\$283.25	17.0
$1 / 2$	1725	18.3	5.5	56 C	$12^{3 / 4}$	1 1F650	493.80	326.00	25.0
3/4	1725	27.4	8.2	56 C	143/4	15646	578.70	382.00	32.0
1	1725	36.5	10.9	56C	163/4	1 F642	693.00	457.50	38.0

1/2	1725	18.3	2.8	56 C	$12^{3 / 4}$	1 F648	493.80	326.00	250
3/4	1725	27.4	4.1	56 C	143/4	1 1F644	578.70	382.00	32.0
1	1725	36.5	5.3	56 C	163/4	1 F640	693.00	457.50	38.0

A WIDE SELECTION OF WASHDOWN AC MOTORS IS AVAILABLE

FOR A COMPLETE LISTING OF
WASHDOWN AC MOTORS, SEE PAGES 152 THRU 154.

- USDA approved corrosion-resistant white epoxy primer and paint to meet sanitary requirements
- Feature $\mathbf{3 0 3}$ stainless steel shaft with V-ring seal
- Dayton models have cast-iron C-face with drain holes at $3,6,9$, and 12 o'clock positions and comply with BISSC, 2A Dairy Standard and NEMA definition MG1-1.26.5 standard for waterproof motors

Typical Uses: For extended life on equipment in food, beverage, or chemical processing plants where motor is constantly exposed to high pressure washdowns or other high humidity or wet environments.

APPENDIX 9

WASHDOWN DRIVE COMPONENTS

UHMW-PE PLASTIC (WASHDOWN) BEARINGS

WASHDOWN SHAFT COLLARS

Typical Uses: Shaft collars are used on tools, machinery, and equipment to lock various components, including bearings, sprockets, and pulleys, in place. Also used as shaft protectors, spacers, and depth stops.
Plastic (Delrin) Shaft Collars provide high strength, weigh less than steel units, and are ideal for washdown applications because Delrin plastic is USDA/FDA approved. Delrin absorbs less moisture than other plastics, holds its form in temperatures up to $185^{\circ} \mathrm{F}$ and has good resistance to impact, abrasion, solvents, chemicals, and other harsh operating elements. Furnished with stainless steel setscrews.

STAKDARD ONE-PECE PLASTICSHAFI COIIARS

10	- 00	Width	Screw	Stock No.	Each	Shpg. Wt.
1/44	$5 / 8{ }^{\text {¹ }}$	$3 / 8{ }^{\prime \prime}$	\#10-32	1F518	\$1.42	0.1
5/16	5/8	3/8	\#10-32	1F514	1.42	0.1
3/8	$3 / 4$	7/16	1/4-28	$1 F 510$	1.42	0.1
1/2	$1 / 2$	1/2	1/4-28	1F504	1.52	0.1
$5 / 8$	11/8	1/2	1/4-28	1F500	1.72	0.1
3/4	$11 / 4$	1/2	5/16-18	1F496	1.82	0.1
7/8	13/8	$9 / 16$	5/16-18	$1 F 492$	2.52	0.1
1	-11/2	9/16	5/16-18	1 1488	2.72	0.1
11/8	$13 / 4$.	$9 / 16$	5/16-18	17486	4.72	0.1
11/4	2	11/16	3/8-16	$1 F 534$	5.82	0.1
13/8	$2^{1 / 4}$	$3 / 4$	3/8-16	$1 F 532$	6.94	0.2
11/2	21/4	$3 / 4$	3/8-16	$1 F 530$	8.44	0.2
15/8	$21 / 2$	$3 / 4$	3/8-16	$1 F 528$	9.14	0.2
13/4	$2^{3 / 4}$	7/8	1/2-13	$1 F 526$	9.84	0.2
17/8	$23 / 4$	7/8 -	1/2-13	$1 F 524$	9.84	0.2
2	3	7/8	1/2-13	$1 F 522$	10.74	0.2

ONE AND TWO:PECE CLAMP STYLE PLASTICSTATCCOIEARS

10	od	Widh	ow			Stock ${ }_{\text {TWOPOPiece }}^{\text {Each }}$		Shpo.
${ }^{1 / 416}$	${ }_{\text {1/16 }}$	${ }_{9}^{9 / 33^{\circ}}$	${ }_{\text {\#440 }}^{440}$	${ }_{17468}^{1740}$	\$3.12	${ }_{1}^{15594}$	${ }_{\text {\$3.12 }} \mathbf{3}$	0.1
$3 / 18$	718	1132	\#440	1546	3.22	$1{ }^{15590}$	3.22	${ }_{0}^{0.1}$
1/28	$\substack{11 / 8 \\ 1 / 1 / 6}_{\substack{1 / 6}}$	${ }_{7 / 16}^{1232}$	- \#8323	$1{ }^{15}$	3.	${ }^{155}$	3.72	0.1 0.1
$71 / 8$	${ }_{1}^{11 / 2}$	$1 / 2$	+1/28	1F458	3.82 4.32	${ }_{17582}^{1558}$	3.82 4.32	${ }_{\text {a }}^{0} 1$
1	1178	12	14.28	1545	4. 52		2	0.1
11/4	2\%1/6	12	1/428	174	6.32	156	6.32	0.1
-	${ }_{231}^{21 / 4}$	${ }_{9} 916$	1/423	$1{ }^{154}$	7.14		${ }_{7} 7.14$	0.2
	cosm	${ }_{1116}$	${ }_{51624}^{1 / 428}$	1	8.84	${ }_{1}$	8.84	- 0.2
${ }^{13 / 4}$	${ }^{2}{ }^{23 / 7}$	${ }_{1}^{11116}$	鯙1624	1	${ }_{1} 9.74$	$1 \mathrm{IF6}$	19.74	0.2
2		11/16	511624	15472	12.04	175	12.04	${ }_{0} 0.2$

- Roller chain sprockets in ANSI sizes 120, 140, 160 are sold with a minimum plain bore. User may machine to maximum bore indicated and add keyway and setscrew hole as required. See Standard Keyway and Sêtscrew Machining Guide shown belōw.
- Fot fixed bore sprockets see pages 282 and 283

PLAIN BORE ROLLER CHAIN SPROCKETS

$\begin{gathered} 00 \\ (\mathrm{ln} .) \end{gathered}$	Pitch Dia. (In.)	$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Teeth } \end{gathered}$	$\begin{aligned} & \text { Stock } \\ & \text { Bore } \end{aligned}$	Max.	$\begin{gathered} \text { Hub } \\ \text { Dia. } \ddagger \end{gathered}$	$\begin{gathered} \text { LTBt } \\ \text { Dimension } \end{gathered}$	$\underset{\text { Model }}{\text { UST }}$	$\begin{aligned} & \text { Stack } \\ & \text { No. } \end{aligned}$	List	Each	Shpg.
5.517	${ }_{4}^{4.856}$	$1{ }^{9}$	$11 / 4{ }^{1 / 4}$		33/4" ${ }^{3}$		${ }_{12089}^{12089}$	6G150	\$89.00	\$55.95	5.6
5.009	5.325	11	$11^{1 / 4}$	$23 / 8$	$39 / 16$	21/8	120811	$6 \mathrm{G152}$	104.00	67.75	8.4
6.498	5.796	12	11/4	2344	$4{ }^{1 / 8}$	21/8	120812	6G153	117.00	76.75	10.0
6.986	${ }^{6.296}$	13	11/4	3	$4^{9 / 16}$	${ }^{21 / 4}$	120813	6G154	131.00	85.85	12.0
7.472	${ }_{7215}^{6.741}$	14	11/4	${ }_{3}^{31 / 4}$	$43 / 4$	${ }^{21 / 4}$	120814	$6 \mathrm{6a55}$	1155.00	94.60	16.0
7.956	7.215	15	11/4	$31 / 4$	$4^{3 / 4}$		$120 \mathrm{B15}$	6 G 156	159.00	103.90	16.0
7.011	${ }_{6}^{6.73}$	11	${ }^{13 / 8}$	$3^{2 / 4}$	$4{ }_{4}^{4 / 4}$	${ }_{2}^{21 / 4}$	${ }_{1}^{140811}$	66157 66158	${ }^{157400}$	${ }^{102.60}$	${ }^{120}$
8.150	${ }_{7} .313$	13	13/8	334	$51 / 4$	23/8	140 Br 3	6G159	191.00	125.10	20.0
8.717	7.865	14	13/8	33/4	51/4	23/3	$140 \mathrm{B14}$	6G160	208.00	136.20	22.0
19.282	8.418	15	13/8	$44 / 4$	61/4	21/2	140815	6G161	225.00	147.15	26.0

6.028 6.696	5.226 5.848	9	${ }_{\substack{13 / 8 \\ 13 / 8}}$		${ }^{23 / 1 / 8}$	${ }^{21 / 4}$	16088 16089	${ }_{6 G 162}^{66163}$	155.00 163.00	101.25 106.55	12.0
7.356	${ }_{6.472}$	10	${ }_{13 / 8}$	23/4		$2{ }^{1 / 4}$	160B10	6 6 164	171.00	111.85	14.0
8.012	7.100	11	13/8	$3^{1 / 4}$	$43 / 4$	$21 / 2$	160811	$6 \mathrm{G165}$	195.00	127.25	18.0
8.664	7.728	12	13/8	$33 / 4$	$51 / 4$	25/8	160812	$6 G 166$	218.00	142.90	22.0
9.314	8.358	13	13/8	4	6	$23 / 4$	160813	6 G 167	244.00	159.75	28.0
9.962	8.988	14	$1{ }^{13 / 8}$	41/4	$6^{61 / 4}$	${ }_{2}^{23 / 4}$	${ }_{1}^{160814}$	6G168	${ }^{264.00}$	${ }_{173.25}^{173}$	33.0
10.608	9.620	15	13188	51/4	7	$23 / 4$	160B15	6G169	289.00	189.25	390

(*) Dimensions shown allow for standard keyway with setscrew at 90°.
(\dagger Length through bore.
(\ddagger) Huot diameters may vary to sut bore sizes.

$\begin{gathered} \text { Dia. of } \\ \text { Staft (in. }) \end{gathered}$	Keyset Width x Depth (in.)	Dia. of Setscrew (In.)*	Dia. of Shaft (in.)	Keyset Width x Depth (in.)	Dia. of Setscrew (In.)*
$5 / 16-7 / 16$	$3 / 32 \times 3 / 64$	8-32	213/26-31/4	$3 / 4 \times 3 / 8$	$3 / 4$
$\text { : } 1 / 2-9 / 16$	$1 / 8 \times 1 / 16$	10.24	$35 / 1633 / 4$	$7 / 8 \times 7 / 16$	$3 / 4$
- 5 /8-7/8	$3 / 16 \times 3 / 32$	$1 / 4$	$3^{13 / 16-41 / 2}$	$1 \times 1 / 2$	$3 / 4$
\% $15 / 16-11 / 4$	$1 / 4 \times 1 / 8$	$5 / 16$	$4^{9 / 16-51 / 2}$	$11 / 4 \times 58$	$3 / 4$
$=15 / 16-13 / 8$	$5 / 16 \times 5 / 32$	$5 / 16$	$59 / 10-61 / 2$	$11 / 2 \times 3 / 4$	1
max $17 / \mathrm{ld}-13 / 4$	$3 / 8 \times 3 / 16$	3/8	$6^{9} 16-71 / 2$	$13 / 4 \times 7 / 8$	1
\%men $13 / 16-2^{8 / 4}$	$1 / 2 \times 1 / 4$	1/2	$79 / 16885 / 16$	2×1	1
1-3\% $25 / 16-23 / 4$	$5 / 8 \times 5 / 16$	$5 / 8$	$9-10^{15 / 16}$	$21 / 2 \times 11 / 4$	1

(*) Setscrem size may vary depending on hub wall thickness.
Norte As a general nule, the hub wall over the keyway should be equal to or greater than the diameter of the setscrew.
NOTE 位aximum bore guidelines should be adhered to in order to ensure maximum pmoduct quality standards and user safety.

IRACTIONAL HP MOTOR SHAFT ARBORS

- Made from solid bar stock, then plated
- Accepts 1/2" bore buffing/finishing wheel up to $11 / 4^{\prime \prime}$ wide max.
- Includes socket setscrews, hex nut, and $11 / 2^{" O}$ OD flanged washers
- Right hand thread for CCW rotation facing shaft
- Left hand thread for CW rotation facing shaft

Fits Drive Shaft	Thread	Stock No.		List	Each	Stapg. We
1/24	1/2-20 RH	61.104		\$5.46	\$3.84	0.4
$5 / 8$	1/2-20 RH	6L105**		9.10	6.34	0.5
1/2	1/2-20 LH	61106		5.46	3.84	0.4
$5 / 8$	1/2-20 LH	6L107**	*	9.10	6.43	0.5

[^40]
HEAVY-DUTY MANDRELS

- Precision ball bearing pillow blocks are pre-lubricated and sealed for maintenance-free operation
- Will take up to 1 "thick buffing/finishing wheels
- $2^{\text {" }}$ dia. pulley uses A or 4 L type V-belt
- Includes hex nut and two washers ($11 / 2^{1 "}$ OD) for each end
- All components are plated to resist rust

Drive Shatt (lo.)	Treade RH		OD	Stpck No.	List	Each	Shpg. Wt.
$5 / 8 \times 12$ $3 / 4 \times 12$	5/8-11	$1 / 2-20$ $5 / 8-11$	$\stackrel{2}{2}^{\text {n }}$	$\begin{aligned} & 6 \operatorname{LO} 98 \\ & 6 \operatorname{Lo99} \end{aligned}$	$\begin{aligned} & \$ 50.40 \\ & 50.40 \end{aligned}$	$\begin{aligned} & \$ 35.55 \\ & 35.60 \end{aligned}$	3.3 3.6

THE RIGHT STUFF. RIGHT HERE. RIGHT NOW.
Our branches are conveniently located and stocked with commonly used items from this catalog.
If you need it now, call Grainger. To find the branch nearest to you, check the branch listings at the front of the catalog.

DOUBLE STRAND SPROCKETS

- For usè with Nos. 35-2, 40-2, 50-2, 60-2 80-2, and 100-2 double strand. roller chain on page 288
- Precision machined from high alloy carbon steel
- Nos. 35 through 80 , typically used as the drive-sprocket, have hardened teeth for extra durability
- Maximum bore guidelines should be adhered to in order to ensure maximum product quality standards
- When selecting multiple strand sprockets refer to Keyway and Setscrew Machining Guide on page 282

00	No. of Teeth	Stack Bore	Max. Bore	Hub Dia.	$\underset{\text { Dimension }}{\text { LTB* }}$	MST	Stock No.	List	Each	Stpg. WL
When										
1.746^{11}	13	$1 / 2^{\text {n }}$	$3 / 4{ }^{\prime \prime}$	$1^{1 / 8}{ }^{\text {m }}$	$11 / 4^{\prime \prime}$	D35B13H	61347	\$23.00	\$11.6	0.4
1.868	14	1/2	$13 / 16$	$11 / 4$	$11 / 4$	D35B14H	61348	24.00	11.	0.4
1.989	15	$1 / 2$	$7 / 8$	111/32	11/4	D35B15H	61.349	25.00	12.0	0.5
2.110	16	$1 / 2$	15/16	115/32	11/4	D35B16H	61.350	26.00	12.1	0.3
2.231	17	$1 / 2$	14/16	119/32	11/4	D35B17H	61351	27.00	13.0	0.7
2.352	18	$1 / 2$	11/8	123/32	$11 / 4$	D35B18H	$6 L 352$	28.00	13.7	1.0
2.472	19	1/2	$11 / 4$	127/32	11/4	D35B19H	61353	29.00	14.4	1.0
2.593	20	1/2	15/26	$131 / 32$	13/8	D35B20H	64.354	31.00	15.4	1.0
2.713	21	1/2	13/8	21/16	$13 / 8$	D35B21H	61355	32.00	16.0	1.2
2.833	22	1/2	17/16	$2^{3 / 16}$	13/8	D35B22H	6L356	33.00	16.6	1.0
2.954	23	1/2	$11 / 2$	25/16	$13 / 8$	D35B23H	$6 L 357$	34.00	17.2	1.5
3.074	24	1/2	15/8	27/16	13/B	D35B24H	01358	35.00	17.8	1.5
3.194	25	$1 / 2$	111/16	29/16	$13 / 8$	D35B25H	$6 L 359$	39.00	18.4	2.0

2.003	11	1/2	$3 / 4$	$17 / 16$	$1^{1 / 2}$	D40B11H	61360	36.00	18.01	0.6
2.166	12	1/2	7/8	19/16	$11 / 2$	D40B12H	61361	37.00	18.10	1.0
2.328	13	1/2	1	11/2	$11 / 2$	D40B13H	6t362	38.00	18.31	1.0
2.490	14	12	11/8	$1^{21 / 32}$	$11 / 2$	D40B14H	$6 \boxed{663}$	40.00	18.68	1.0
2.650	15	1/2	$11 / 4$	13/16	11/2	D40B15H	61364	40.00	18.68	1.0
2.814	16	$5 / 8$	$13 / 8$	$131 / 32$	$11 / 2$	D40B16H	6L365	41.00	18.79	1.5
2.974	17	$5 / 8$	17/16	$25 / 32$	$11 / 2$	D40B17H	61366	42.00	19.36	1.6
3.136	18	5/8	$11 / 2$	25/16	$11 / 2$	D40B18H	61367	43.00	20.46	1.9
3.292	19	5/8	15/8	$2^{15 / 32}$	$11 / 2$	D40B19H	64368	44.00	21.46	2.0
3.457	20	5/8	$13 / 4$	25/8	$11 / 2$	D40B20H	$6 \mathrm{L369}$	46.00	22.88	2.5
3.618	21	5/8	17/8	225/32	$15 / 8$	D40B21H	61370	48.00	23.93	3.3
3.778	22	5/8	$17 / 8$	$2^{15 / 16}$	15/8	D40B22H	61371	50.00	24.87	3.3
3.938	23	5/8	2	$33 / 32$	15/8	D40B23H	61372	54.00	26.55	3.9
4.098	24	$5 / 8$	$21 / 4$	$39 / 32$	15/8	D40B24H	61373	57.00	28.00	4.2
4.258	25	5/8	21/4	37/16	15/8	D40B25H	61374	58.00	28.65	4.4

2.504	11	518	15/16	$1^{15 / 32}$	$13 / 4$	D50B11H	6L375	52.00	25.75	0.9
2.708	12	5/8	$11 / 8$	111/16	13/4	D50B12H	$6 L 376$	53.00	25.85	1.2
2.911	13	5/8	15/16	17/8	$13 / 4$	D50B13H	61377	54.00	26.55	1.5
3.113	14	5/8	$13 / 8$	$23 / 32$	13/4	D50B14H	61378	55.00	27.15	1.9
3.315	15	5/8	11/2	29/32	$13 / 4$	D50B15H	$6 L 379$	55.00	27.15	2.3
3.517	16	5/8	15/8	$2^{1 / 2}$	$13 / 4$	D50B16H	61380	56.00	27.80	2.7
3.718	17	5/8	17/8	$2^{11 / 16}$	$13 / 4$	D50B17H	61381	58.00	28.55	3.1
3.919	18	5/8	115/16	$2^{7 / 8}$	$13 / 4$	D50B18H	$6 L 382$	59.00	29.30	3.6
4.121	19	$5 / 8$	$21 / 8$	$33 / 32$	$13 / 4$	D50B19H	$6 L 383$	60.00	29.70	4.1
4.321	20	5/8	$21 / 4$	$39 / 32$	$13 / 4$	D 50 B 20 H	$6 L 384$	62.00	30.85	4.6
4.522	21	3/4	$2^{3 / 8}$	$31 / 2$	$13 / 4$	D50B21H	$6 L 385$	65.00	32.40	5.1
4.722	22	3/4	23/8	$39 / 16$	17/8	D50B22H	66386	65.00	32.40	5.9
4.923	23	$3 / 4$	$21 / 2$	$33 / 4$	17/8	D50B23H	$6 L 387$	68.00	33.85	6.5
	24	3/4	21/2	$33 / 4$	$-17 / 8$	D50B24H	61388	71.00	35.55	6.9
5.323	25	1	21/2	$3^{3 / 4}$	17/8	D50B25H	61389	73.00	36.30	7.5

3.678	10	1	$11 / 8$	29/16	$23 / 4$	D80B10H	6L405	83.00	41.65	3.5
4.006	11	1	19/16	23/8	$21 / 2$	D80B11H	6L406	85.00	42.05	3.9
4.332	12	1	$13 / 16$	211/16	$2{ }^{1 / 2}$	D80B12H	61407	90.00	44.60	4.5
4.657	13	1	2	31/32	21/2	D80B13H	65.408	96.00	48.05	6.1
4.981	14	1	$21 / 4$	$35 / 16$	$2^{1 / 2}$	D80B14H	61409	101.00	50.45	7.3
5.304	15	1	$21 / 2$	35/8	$2^{1 / 2}$	D80B15H	EL410	110.00	54.65	8.7
5.627	16	1	$23 / 4$	4	23/4	D80B16H	EL411	119.00	59.55	11.0
5.949	17	1	$27 / 8$	$45 / 16$	23/4	D80B17H	61412	129.00	64.20	13.0
6.271	18	1	$31 / 8$	$4^{5 / 8}$	23/4	D80B18H	61413	138.00	68.80	15.0
6.593	19	1	$35 / 16$	$4^{15 / 16}$	23/4	D80B19H	6414	153.00	76.40	17.0
6.914	20	1	35/16	5	$23 / 4$	D80B20H	61415	169.00	84.15	18.0

\%				T\%		\% ${ }^{7}$			Whe	
4.185	9	1	$11 / 2$	25/16	$2^{7 / 8}$	D100B9	61416	114.00	56.85	4.7
4.598	10	1	$13 / 4$	211/16	$2^{7 / 8}$	D100B10	61417	122.00	60.85	6.5
5.008	11	1	21/8	$31 / 8$	27/9	D100B11	GL418	134.00	66.65	8.3
5.415	12	11/8	$21 / 4$	$33 / 8$	27/8	D100B12	64419	146.00	72.70	9.7
5.821	13	11/8	21/2	$33 / 4$	27/8	D100B13	61420	160.00	79.65	11.0
6.226	14	$11 / 8$	$23 / 4$	$43 / 16$	$2^{7 / 8}$	D100B14	6 6421	174.00	86.95	14.0
6.630	15	$11 / 4$	$31 / 8$	49/16	$31 / 8$	D100B15	61422	191.00	95.50	17.0

FIXED BORE ROLLER CHAIN SPROCKETS

For Plain Bore Roller Chain Sprockets
See Page 280

For Double Strand Sprockets See Page 281

For Stainless Steel Sprockets
See Page 286

	Pitch	No.	UST		ore Size, S	cify Stock				Shpg.
01	Dia.	Teeth	Madel	1/2	5/8	3/4	1'	List	Each	Wh.
1.674	1.462'	9	41B9F	64889	61890			\$11.50	\$7.01	0.2
1.839	1.618	10	41B10F	64891	$6 L 892$	$6 L 893$	-	12.50	7.37	0.3
2.003	1.775	11	41B11F	61894	$6 L 895$	61896	-	13.50	7.64	0.4
2.166	1.932	12	41B12F	$6 L 897$	6L898	61899		14.00	8.11	0.4
2.328	2.089	13	41B13F	$6 L 900$	$6 L 901$	61902	61903	14.25	8.39	0.5
2.490	2.247	14	41B14F	6L904	$6 L 905$	61906	$6[907$	14.75	8.87	0.6
2.652	2.405	15	41B15F	61908	61909	$6 L 910$	61911	15.50	9.63	0.7
2.814	2.563	16	41B16F	-	61912	$6 L 913$	$6 L 914$	16.50	10.25	0.8
2.974	2.721	17	41B17F	-	61.915	61916	61917	17.50	11.00	0.9
3.136	2.879	18	41B18F	-	$6 L 918$	62919	61920	19.00	11.77	1.1
3.292	3.038	19	41819F	-	$6 L 921$	$6 L 922$	61923	20.50	12.86	1.2
3.457	3.196	20	41B20F	-	$6 L 924$	$6 L 925$	$6 L 926$	22.00	14.38	1.3

(*) Setscrew located directly over keyway. (\dagger) $3 / 8^{\prime \prime}$ Bore size has no keyway.

hekx		Whr		${ }_{5}{ }^{\text {\% }}$	\%
Dia. of Shatt (In.)	$\begin{gathered} \text { Keyseat } \\ \text { Width x Depth (In.) } \end{gathered}$	Dia. of Setscrew*	$\begin{aligned} & \text { Dia. of } \\ & \text { of Shaft (In.) } \end{aligned}$	Width \times Depth (In .)	Dia. of Setscrew*
5/16-7/16	$3 / 32 \times 3 / 64$	832	$2^{13 / 16-31 / 4}$	$3 / 4 \times 3 / 8$	$3 / 4{ }^{\text {²}}$
1/2-9/16	$1 / 8 \times 1 / 16$	10-24	$35 / 16-33 / 4$	$7 / 8 \times 7 / 16$	3/4
5/8-7/8	$3 / 16 \times 3 / 32$	1/4	$3^{13 / 16-41 / 2}$	$1 \times 1 / 2$	$3 / 4$
15/16-11/4	$1 / 4 \times 1 / 8$	5/16	49/16-51/2	$11 / 4 \times 5 / 8$	$3 / 4$
15/16-13/8	$5 / 16 \times 5 / 32$	$5 / 16$	59/16-61/2	$11 / 2 \times 3 / 4$	1
17/16-13/4	$3 / 8 \times 3 / 16$	3/8	69/16-71/2	$13 / 4 \times 7 / 8$	1
$1^{13 / 16-21 / 4}$	$1 / 2 \times 1 / 4$	1/2	79/16-815/16	2×1	1
$25 / 16-23 / 4$	$5 / 8 \times 5 / 16$	$5 / 8$	$9-10^{15} / 16$	$21 / 2 \times 11 / 4$	1

[^41]NOTE: As a general rule, the hub wall over the keyway should be equal to or greater than the diameter of the setscrew.
NOTE: Maximum bore guidelmes should be adhered to in order to ensure maximum product quality standards.

FIXED BORE ROLLER CHAIN SPROCKETS

- ANSI standard sprockets for use with 35 through 160 pitch roller chain (see page 288)
- For larger sprockets order ANSI 120 , 140 and 160 plain bore sprockets from page 285
- Unigue cellular manufacturing in U.S. production facilities assures precise quaglity control
- Constructed of high alloy carbon steel
- Standard keyway and setscrew inclitided (except on 3/8" bore size)
- For standard keyway and setscrew machining guide see page 282

For Riveted Roller Chain St See Page 288

For Riveted Roller Chain Repair Links See Page 289
For Plain Bore Roller Chain Sprockets See Page 280
For Double Strand Sprockets See Page 281
For Stainless Steel Sprockets See Page 286

ANSI SPROCKET No. 50-5/8 ${ }^{\text {at }}$ Pitch												
00	Pitch Dia.	No. of Teeth	UST Model	3/4"	$\begin{array}{r} \text { For } \\ 7 / 8^{\prime \prime} \end{array}$	Size	cify Sto	No. $13 / 16^{\prime \prime}$	11/4"	List	Each	Shpg. Wt.
2095	1.828 ${ }^{\text {m }}$,	$50 \mathrm{B9F}$	$6 L .527$	-	-	-	-	-	\$16.00	\$10.11	0.3
2299	2.023	10	50 Bl 0 F	1.147	6 L 928	61929*	-			17.00	10.87	0.5
2504	2.219	11	50B11F	11448	6 L930	$6 L 931$				18.00	11.36	0.5
2708	2.415	12	$50 \mathrm{B12F}$	11149	61.932	11150	11151	$6 \mathrm{GL933}$	61934	18.00	11.77	0.7
2.911	2.612	13	50B13F	1 L 152	61935	11153	1154	61936	61.937	19.00	12.25	08
3.113	2.809	14	50B14F	11155	61938	11156	61.939	6 L940	1230	2000	13.00	1.0
3.315	3.006	15	50 B 15 F	1155	61.941	12158	11159	6 L942	11160	21.00	13.63	1.3
3.517	3.204	16	50 BI 6 F	12161	$6 L 943$	11162	11163	6 L944	1164	22.00	14.38	1.5
3.718	3.401	17	$50 \mathrm{BI7F}$	11165	6L945	11166	12167	6 L946	1268	25.00	16.09	1.7
3.919	3.599	18	$50 \mathrm{B18F}$	$6 L 947$	6 L 948	61949	$6 \mathrm{L950}$	$6 L 951$	6 LS52	28.00	17.88	2.2
4.121	3.798	19	50B19F	$6 L 053$	61954	61955	6 L 956	6 L957	61958	31.00	19.88	2.3
4.321	3.995	20	50 B 20 F	12169	6 L 959	11170	61960	62961	6 L.962	34.00	21.60	2.4
4.522	4.194	21	50 B 21 F	61.963	6L964	6L965	61.966	6 L967	6 L 968	40.00	26.05	2.4
4.722	4.392	22	50B22F	61.969	61.970	61971	6 L.972	61973	61974	43.00	28.25	2.4
4.923	4.590	23	50 B 23 F	6 L 975	6 L 976	6 L 977	6 6.978	61979	61980	47.00	30.45	2.5
5.123	4.788	24	$50 \mathrm{B24F}$	6.981	61982	14171	64.983	6 L 984	61585	52.00	33.15	2.9
5.323	4.987	25	50 B 25 F	61986	61987	61988	6 6L989	6 L 990	61991	54.00	34.95	3.0
5.523	5.185	26	$50 \mathrm{B26F}$	61.992	61993	6 L 994	64.995	${ }^{61996}$	66997	56.00	36.20	3.2
5.723	5.384	27	50827 F	fL998	6 L 999	6G001	6G002	66003	66004	57.00	36.65	3.2
5.927	5.582	28	50 B 28 F	6C005	6G006	6G007	66008	6G009	6G010	58.00	37.45	
6.122	5.781	29	50 B 29 F	6G011	6G012	6G013	6G014	6G015	66016	59.00	37.90	3.5
6.321	5.979	30	50 B 30 F	6G017	66018	66019	66020	6G021	66022	60.00	38.30	37

ANSI SPROCKET No. 60-3/4 ${ }^{\text {I }}$ Pitch

OD	Pitch Dia.	No. of Teeth	$\underset{\text { Model }}{\text { UST }}$	3/4"	1*	For Bore Size, Specify Stock No. $11 / 6^{4} \quad 11 / 4^{*} \quad 13 / 8^{*} \quad 1 / 16^{*}$				$11 / 2^{*}$	List	Each	Shyg. Wt.
2511"	2.193^{*}	9	60B9F		6 G 023	-					\$17.00	\$10.87	0.6
2759	2427	10	60 Bl 10 F	11.172	6G024	-					18.00	11.36	0.9
3.005	2663	11	60B11F		11173	11.174	1L175*		-	-	19.00	12.25	1.0
3.249	2.898	12	60B12F	-	11176	6G025	1L177*	-	-	-	21.00	13.63	12
3.493	3.134	13	60B13F	-	$1 \mathrm{L178}$	11179	1 L 180	6G026*	66027*	66028*	24.00	15.14	1.5
3.736	3.371	14	$60 \mathrm{Bl4F}$		11181	66029	11182	6G030	6G031*	66032*	28.00	17.88	1.9
3.978	3.608	15	60B15F	-	1188	IL184	1L185	66033	66034	6G035	33.00	20.64	23
4.220	3.845	16	60B16F		11186	6G036	1188	6G037	6G038	6C039	36.00	22.98	27
4.462	4.082	17	60B17F	-	$1 \mathrm{L188}$	66040	6 G 041	66042	6G043	66044	39.00	25.40	3.0
4.703	4.319	18	60 BI 18 F		11189	1L190	1191	6G045	6G046	6 G 047	42.00	28.05	38
4.945	4.557	19	60B19F		6 G 048	6G049	1192	6G050	6G051	6G052	45.00	29.35	3.6
5.186	4.794	20	60B20F	-	6G053	6G054	1.193	6G055	6G056	6 6057	48.00	30.70	3.8
5.426	5.033	21	60B21F	-	66058	6C059	$6 \mathrm{C060}$	66001	$6 \mathrm{GO62}$	66063	54.00	34.95	4.3
5.666	5.270	22	60822 F		6G064	6G065	6G065	6G067	6G068	6G069	58.00	37.45	4.7
5.907	5.508	23	60B23F		66070	6G071	6G072	$6 \mathrm{GO73}$	6G074	66075	60.00	38.30	4.9
6.147	5.746	24	60B24F		6G076	6G077	6G078	66079	6G080	66081	63.00	40.95	5.4

					1 SPRO	,	No.	-	1%					
00	$\begin{aligned} & \text { Pitch } \\ & \text { Dia. } \end{aligned}$	No. of	UST	$1{ }^{10}$	$1 \%{ }^{*}$	For Bore S $13 / 2^{n}$	Size, Spe	Specify Stoc			115/6"	List	Each	Sthg.
3.348	${ }^{2.9244^{*}}$	9	8089F	${ }^{66082}$	6G083							\$29.00	\$18.37	1.7
3.678	3.236	10	80B10F	66084	66085							32.00	20.23	1.9
4.006	${ }^{3.550}$	11	80B11F	6G036	6GOR7	66088	66039					35.00	22.57	2.5
4.358	${ }^{3.864}$	12	${ }^{\text {80B12F }}$	${ }_{6}^{66090}$	${ }_{6}^{66091}$	${ }_{60699}^{66}$	${ }_{6}^{66093}$	${ }^{\text {3 }}$ 66094*				+39.00	${ }_{28,40}^{25}$	2.9 39
4.657	4.179	13	80B13F	6G995	66096	66097	6 6 098	66099		100		42.00	28.05	3.9
${ }_{5}^{4.981}$	${ }^{4.494}$	14	$80 \mathrm{B14F}$	${ }^{\text {6G101 }}$	${ }_{66102}$	${ }_{6}^{66103}$	${ }_{6}^{66104}$	${ }_{66111}^{665}$				${ }^{49.00}$	${ }^{30.90}$	
${ }_{5}^{5.624}$	4.810 5.126	15 16	$80 \mathrm{B15F}$ 80B16F	${ }_{6}^{66117}$	${ }_{66114}^{661}$	${ }_{6 G 115} 6$	${ }_{6 G 116}^{6611}$	${ }_{6}^{66111}$			6 G 118	51.00	${ }^{32.95}$	5.6
5.949	5.442	17	80B17F	66119	6G120	66121	6 G 122	${ }^{66123}$			66124	66.00	${ }_{4295}$	6.15
6.271	5.759	18	80B18F	6G125	66126	6 6 127	66123	66129		-	66130	70.00	45.90	6.9
x^{2}	54	,	,	ANSI	O	CKET N	, 10	100-1	1/4	\%:				
0 D	$\begin{aligned} & \text { Pith } \\ & \text { Dith } \end{aligned}$		$\begin{aligned} & \text { No. of } \\ & \text { Teeth } \end{aligned}$	MST	$1{ }^{1 \times}$	For Bore	e Size, S S	e, Specity	$\text { Stock }{ }^{2}$	23/6"		ist	Each	$\overline{\text { Shpg. }}$
$4.185^{\prime \prime}$	$3.655^{\prime \prime}$			10089F	66131	6 G 13						\$76.00	599.65	
4.598	4.045		1010	100B10F	66133	6613						83.00	54.00	4.1
5.008	4.438		11.10	100B11F	6G135	6 G 13		66137	66138			93.00	60.75	6.0
${ }_{5}^{5.4515}$	4.830		$12 \quad 10$	100812F	66140	${ }_{6 G 14}$		${ }_{6 G 147}$	${ }_{66143}$	${ }_{6}^{66144}$		${ }^{100.00}$	65.20	8.0
5.821	5.224		$13 \quad 10$	$100813 F^{\prime}$	$6 \mathrm{G145}$	$6 \mathrm{G14}$		6 G 147	66148	66149		107.00	69.80	6.7

(*) Setscrew located directly over keyway.

POWER
 TRANSMISSION: SPROCKETS

BUSHED BORE ROLLER CHAIN SPROCKETS

For use with Nos. 40, 50, 60, and 80 pitch roller chain

- Precision machined

Sprockets with 30 teeth or less have hardened teeth for increased life

- Outside diameter (OD) range: 2.65" to 23.46"
- Bore range $1 / 2^{\prime \prime}$ to. $37 / 1 s^{\prime \prime}$ with required split taper bushing (not included); order split taper bushing separately on page 308

ROLLER CHAIN AVAILABLE, SEE PAGE 288

SPLIT TAPER BUSHINGS AVAILABLE, SEE PAGE 308

00	Pitch Dia.	Mo. of Teeth	Busching Req'd.	Browning Model	Stock Na.	List	Eack	Shpg. W.
3								
$2.65{ }^{\prime \prime}$	$2405{ }^{\circ}$	15	H	H40H15	6 L 27	\$44.76	\$1729	0.6
2.80	2569	16	H	H40f16	61.528	46.56	17.98	0.7
296	2.721	17	H	H40H17	61529	50.16	19.39	0.7
3.14	2.879	18	H	H40H18	1299	53.16	20.56	0.7
, 3.30	3.038	19	H	H40Fr19	11195	66.36	21.77	0.8
3.45	3.196	20	H	H40H20	12196	69.12	26.75	0.9
-362	3.555	21	P1	H40P21	65339	61.94	23.96	1.6
3.75	3.513	22	P1	$\mathrm{H}_{40 \mathrm{P} 22}$	6 L 531	69.14	26.80	1.7
- 3	3.672	23	P1	H40P23	61532	73.56	28.45	1.8
\% 4.10	3.831	24	H	H40H24	11.197	88.72	34.40	1.2
2420	3.989	25	P1	H40P25	61.533	81.56	31.60	1.9
444	4.148	26	PI	H40P26	6 L 34	85.16	33.00	2.0
\% 45	4.307	27	P1	H40P27	65535	86.96	33.65	2.1
4874	4.466	28	P1	H40P28.	61536	89.56	34.65	2.2
	4.625	29	P1	H40P29	61597	91.40	35.49	2.3
506	4.783	30	H	H40H30	11198	96.32	37.30	1.7
5.38	5.101	32	P1	40 P 32	65538	101.56	39.25	2.6
5.86	5.578	35	Pi	40P35	61539	104.76	40.55	2.9
\% 300	5.737	36	P1	40P36	11199	110.42	42.75	3.1
\%65	6.373	40	P1	40 P 40	12200	120.62	46.65	3.6
697	6.691	42	P1	40P42	61540	122.82	47.55	3.6
185	7.168	45	Pl	40 P 45	1201	125.02	48.40	4.3
7.93	7.645	48	P1	40P48	11202	130.02	50.30	5.0
8.89	8.599	54	PI	$40 \mathrm{P54}$	61541	136.22	52.70	5.3
9.94	9.554	60	Q1	40660	11203	114.52	44.30	7.7
1143	11.145	70	Q1	40870	11204	151.10	58.40	9.4
Ther ANS SPROCKEANO. 50 ,								
352	3.006	15	P1	H5OPI5	61542	48.78	18.85	1.3
3.52	3.204	16	P1	H50P16	66543	50.18	19.38	1.5
3.72	3.401	17	Pl	H50P17	6654	61.94	23.95	1.6
3.92	3.599	18	H	H50H18	11205	78.12	30.25	1.5
4.12	3.797	19	Pl	H50P19	65.545	66.54	25.70	1.9
4.32	3.995	20	H	H50FF20	11206	. 88.18	34.10	1.4
4.52	4.194	21	Pl	H50P21	61546	90.00	34.85	2.1
4.72	4.392	22	P1	H50P22	61547	92.60	35.85	2.2
4.92	4.590	23	Q1	H50023	6L548	69.52	26.90	3.0
5.12	4.788	24	Q1	1500224	11207	73.52	28.45	4.0
5.32	4.987	25	Q1	H50Q25	66.599	77.52	30.00	3.4
5.52	5.185	26	QI	H50Q25.	$6 \mathrm{CL50}$	85.12	32.95	3.5
5.72	5.384	27	Q1	H50027	. 6.551	90.12	34.85	3.7
5.92	5.582	28	Q1	H50228	11208	96.72	37.45	5.0
6.32	5.979	30	Q1	H50930	61552	10252	39.70	4.2
6.72	6.376	32	Q1 :	500432	${ }_{6}^{6553}$	106.12	41.10	4.6
7.32	6.972	35	Q1.	50035	6555	111.32	43,10	5.5
7.52	7.171	36	Q1	50936	11209	113.12	43.75	5.7
8.32	7.966	40	Q1	50940	11210	122.52	47.40	6.6
8.72	8.363	42	Q1	50242	65555	126.12	48.75	6.9
9.31	8.960	45	Q1	50945	11211	130.52	50.45	78
9.97	9.556	48	Q1	50 Q 48.	11212	137.72	53.20	8.6
11.11	10.749	54	Q1	50054	6.556	166.52	64.40	10.0
12.30	11.942	60	Q1	50Q60	11213.	173.12	66.90	13.0

LET US SUPPLY YOUR
MOTORS AND RELATED PRODUCTS

OD	Pitch Dia.	Ho. of Teeth	Bushing Req'd.	Brawning Model	Stock No.	List	Each	Shipg. Wi.
$3.45{ }^{\circ}$	$3.134^{\prime \prime}$	13	Pl_{1}	H60P13	11214	\$54.58	\$2108	1.3
3.74	3.371	14	Pl	H60P14	1215	66.54	25.75	13
3.98	3.607	15	Pl	H60P15	1216	70.34	27.20	1.7
4.22	3.844	16	P1	H60P16	$6 L 557$	81.56	31.60	2.0
4.46	4.082	17	P1	H60P17	66558	89.40	34.60	2.4
4.70	4.319	18	P1	H60P18	11217	98.00	37.90	24
4.95	4.557	19	P1	H60P19	61559	102.40	39.55	26
5.19	4.794	20	Q1	H60Q20	11218	77.52	30.00	33
5.43	5.032	21	Q1	H60¢2	11219	80.32	31.10	4.0
5.67	5.270	22	Q1	H60Q22	11220	87.32	33.85	4.4
5.97	5.508	23	Q1	H60Q23	61560	91.32	35.35	41
6.15	5.746	24	Q1	H60Q24	11221	98.92	38.30	5.0
6.39	5.984	25	Q1	H60Q25	11222	104.72	40.50	5.2
6.63	6.222	26	Q1	H60Q26	11223	128.52	49.70	5.0
6.87	6.460	27	Q1	H60Q27	61561	148.40	57.45	52
7.11	6.699	28	Q1	H60928	61562	130.72	50.60	6.1
7.59	7.175	30	Q1	H60030	11224	131.72	50.95	6.7
8.07	7.652	32	Q1	60032	6 L 53	145.92	56.45	7.4
8.78	8.367	35	Q1	60035	11225	148.32	57.40	8.5
9.02	8.605	36	Q1	60036	61564	150.92	58.35	8.7
9.98	9.559	40	Q1	60040	11226	154.52	59.70	11.0
10.46	10.036	42	Q1	60242	6 L 565	174.70	67.50	12.0
11.18	10.752	45	Q1	60945	1227	176.50	68.20	13.0
11.89	11.467	48	Q1	60048	61566	208.30	80.45	15.0
13.33	12.899	54	Q1	60054	61567	21290	82.25	20.0
14.73	14,331	60	Q1	60260	11228	273.12	105.50	23.0
17.12	16.717	70	Q1	60970	61568	306.32	118.30	31.0
17.63	17.194	72	Q1	60Q72	11229	323.32	124.90	32.0
4.98	4.494	14	Q1	H80Q14	6 L 569	80.72	31.25	2.9
5.31	4.810	15	Q1	H80015	6 L 50	111.32	43.10	6.0
5.63	5.126	16	Q1	H80Q16	61571	116.12	44.55	3.9
5.95	5.442	17	Q1	H80Q17	6 L 512	130.52	50.45	5.0
6.27	5.759	18	Q1	H80Q18	61573	143.92	55.65	3.5
6.59	6.076	19	Q1	H80Q19	$6 \mathrm{LL54}$	158.52	61.30	6.0
6.97	6.392	20	Q1	H80Q20	61575	174.30	67.40	8.0
7.24	6.710	21	Q1	H80221	6L5\%	177.90	68.80	6.0
7.56	7.027	22	Q1	H80022	64.577	183.90	71.10	7.2
788	7.344	23	Q1	H80C23	6 L 78	189.90	73.40	7.7
8.20	7.661	24	Q1	H80Q24	61579	193.50	74.80	10.0
8.52	7.979	25	Q1	H80C22	81580	199.10	77.00	10.0
8.84	8.296	26	Q1	H30Q26	66581	219.70	84.95	10.0
9.16	8.614	27	Q1	H30C227	65882	224.50	${ }^{86.80}$	9.7
9.48	8.931	28	Q1	H80Q28	6.5883	234.32	90.60	11.0
10.11	9.567	30	Q1	H80030	61584	240.52	93.00	12.0
10.75	10.202	32	Q1	80032	61585	252.12	97.40	14.0
11.07	10.520	33	Q1	80033	65.586	258.32	99.85	15.0
11.39	10.838	34	Q1	80934	61597	265.72	102.70	15.0
11.71	11.156	35	Q1	80035	61588	270.92	104.70	16.0
13.94	13,382	42	R1	80 R 42	61589	246.18	95.05	26.0
14.90	14,336	45	R1	80 R 45	66590	355.72	137.35	30.0
15.85	15.200	48	R1	80R48	66591	320.78	123.85	41.0
17.77	17.198	54	R1	80 R 54	61.598	358.98	138.55	41.0
$12.6{ }^{6}$	19.107	60	R1	80R60	61593	533.14	206.25	41.0
2283	22.289	70	R1	80R70	8659	665.90	2278.25	68.0
23.46	22.926	72	R1	80R72	61595	730.50	28225	70.0

POWER
 TRANSMISSION: SPROCKETS
 STAINLESS STEEL SPROCKETS

For use with Nos. 40, 50, and 60 stainless steel roller chains found on page 288

- Precision machined from 304 stoinless steel
- When selecting multiple strand sprockets refer to Keyway and Serscrew Machining Guide below

00	No. of Teeth	Stack Bare	Max. Bora	Hub Bia.	$\begin{aligned} & \text { LTBt } \\ & \text { Dimension } \end{aligned}$	UST Model	Stack Ho.	List	Each	Sheg. Wt.
$1.840^{\prime \prime}$	10	$1 / 2^{\prime \prime}$	$3 / 4{ }^{*}$	$11 / 4^{*}$	$7 / 8^{\prime \prime}$	40B10SS	$6 L 423$	\$63.00	\$ $\$ 31.35$	0.3
2.000	11	$1 / 2$	13/16	$13 / 3$	$7 / 8$	40B115S	61424	67.00	33.55	0.4
2.170	12	$1 / 2$	15/16	19/16	7/8	40B12SS	61425	72.00	35.80	0.4
2.330	13	1/2	11/16	19/6	7/8	40B13SS	$6 L 426$	74.00	36.95	0.5
2.490	14	12	$11 / 8$	$111 / 16$	$7 / 8$	40B14SS	61427	77.00	38.40	0.6
2.650	15	1/2	$13 / 4$	$1{ }^{13 / 16}$	$7 / 8$	40B16SS	$6 L 428$	80.00	40.00	0.7
2.810	16	588	$13 / 8$	2	7/8	40B16SS	61429	84.00	41.60	0.8
2.980	17	$5 / 8$	17/16	21/8	1	40817SS	61430	90.00	44.80	1.1
3.140	18	58	$11 / 2$	25/16	1	40B18SS	61431	96.00	47.95	1.2
3.300	19	588	$13 / 4$	$21 / 2$	1	40R19SS	61.432	110.00	54.80	1.4
3.460	20	58	$17 / 8$	$25 / 8$	1	40B20SS	61433	126.00	62.65	1.6
3.620	21	518	17/8	$23 / 4$	1	40B21SS	64434	137.00	88.40	1.7
3.780	22	548	$17 / 8$	$27 / 8$	1	40B22ss	64.435	150.00	74.80	18
3.940	23	$5 / 8$	2	3	1	4082356	61436	160.00	80.00	2.2
4.100	24	5/8	2	8	1	40 B 24 SS	64437	174.00	87.00	2.2
4.260	25	5×8	2	3	1	40825ss	61.438	186,00	92.65	2.3
4.420	26	5/8	2	3	1	$40 \mathrm{B26SS}$	61439	199.00	99.30	2.4
4.740	28	5/8	2	3	1	40128SS	6L440	214.00	106.95	2.8
5.060	30	$5 / 8$	2	3	1	40B305S	61442	251.00	124.85	2.9
5.860	35	$5 / 8$	2	3	1	40B35SS	61442	268.00	134.00	3.3

2.300	10	548	7/8	19/16	1	$50 \mathrm{B105S}$	61443	90.00	44.80	0.5
2.500	11	58	1	$13 / 4$	1	50811SS	6L444	97.00	48.15	0.6
2.710	12	5/8	$11 / 4$	$163 / 84$	1	$50 \mathrm{B12SS}$	61445	101.00	50.40	0.7
2.910	13	518	15/16	17/8	1	50813SS	6 L 446	106.00	52.70	0.8
3.110	14	$5 / 8$	17/16	21/8	1	50814SS	61.447	110.00	54.80	1.0
3.320	15	$5 / 8$	$11 / 2$	23/8	1	$50 \mathrm{B155S}$	6.448	115.00	57.05	1.0
3.520	16	5/8	$13 / 4$	$2^{1 / 2}$	1	50B16SS	61449	123.00	61.45	1.7
3.720	17	$5 / 8$	17/8	$211 / 16$	1	50817 SS	61450	132.00	66.00	1.5
3.920	18	5/8	17/8	$27 / 8$	1	5081855	64451	144.00	71.85	2.0
4.120	19	58	$13 / 4$	$21 / 2$	1	$50 \mathrm{B19SS}$	61.452	154.00	76.60	2.0
4.320	20	$3 / 4$	$13 / 4$	$2^{1 / 2}$	1	50B20ss	$6 L 453$	176.00	87.80	2.0
4.520	21	$3 / 4$	2	3	1	50B21sS	61.454	201.00	100.50	2.0
4.720	22	$3 / 4$	2	3	1	50B22SS	$6 L 455$	232,00	115.70	2.2
4.920	23	$3 / 4$	2	3	1	$50 \mathrm{B234S}$	6 L 456	256.00	127.90	2.5
5.120	24	$3 / 4$	2	3	$11 / 4$	$50 \mathrm{B24SS}$	61457	280.00	139.65	3.5
5.320	25	$3 / 4$	2	3	11/4	50B25SS	6t 458	307.00	153.25	3.0
5.520	26	$3 / 4$	2	3	11/4	50B268S	$6 L 459$	322.00	160.75	3.8
5.920	28	3/4	2	3	11/4	50B28SS	$6 L 460$	332.00	166.25	4.0
6.320	30	$3 / 4$	2	3	$11 / 4$	50B30SS	$6 L 461$	355.00	177.50	4.0
7.320	36	$3 / 4$	2	3	11/4	5083558	61462	384.00	192.00	5.2

TO ANSI SINGIE STRAMD SAANIESS STEEL SPROCKEIS NO. 60

3.250	12	$3 / 4$	$13 / 8$	$23 / 8$	$11 / 4$	60B12SS	61463	112.00	56.00	1.1
3.490	13	$3 / 4$	13/8	$2^{11 / 32}$	11/4	60B13SS	61464	123.00	61.45	1.5
3.740	14	$3 / 4$	$13 / 8$	29/6	11/4	60B14SS	61465	135.00	67.05	2.0
3.980	15	$3 / 4$	$1^{1 / 8}$	$27 / 8$	11/4	60815SS	61466	163.00	81.50	28
4.220	16	$3 / 4$	2	31/16	11/4	60B16SS	64467	177.00	88.20	2.8
4.466	17	$3 / 4$	$2^{1 / 4}$	$31 / 4$	11/4	$60 \mathrm{B175S}$	64468	195.00	97.40	3.0
4.700	18	$3 / 4$	2	3	$11 / 4$	601185S	61469	213.00	106.25	3.0
4.950	19	$3 / 4$	2	3	11/4	608195S	61470	232.00	115.70	3.2
5.190	20	$3 / 4$	2	3	$11 / 4$	60B20SS	61471	250.00	124.60	3.8
5.430	21	$3 / 4$	2	3	$14 / 4$	60B21SS	61472	262.00	130.85	4.0
5.670	22	$3 / 4$	2	3	11/4	$60 \mathrm{B2} 255$	61473	291.00	145.40	4.2
5.910	23	$3 / 4$	2	3	$11 / 4$	60B235S	$6 L 474$	323.00	161.25	4.5
6.150	24	$3 / 4$	2	3	$11 / 4$	6082455	$6 L 475$	358.00	179.00	5.0
6.390	25	$3 / 4$	2	3	11/4	$60 \mathrm{B255S}$	61476	403.00	201.50	5.0
6.630	26	$3 / 4$	2	3	$11 / 4$	608265S	61477	422.00	211.25	5.0
7.110	28	$3 / 4$	$23 / 8$	$34 / 2$	$11 / 4$	6082885	61478	443.00	221.75	6.4
7.590	30	$3 / 4$	$2^{3 / 8}$	$31 / 2$	$11 / 4$	60B30SS	61.479	460.00	230.00	7.7
8.780	35	3/4	$23 / 8$	$31 / 2$	$11 / 4$	60835Ss	61480	498.00	249.25	7.7

(i) Length through bore.

Shatia of (fin.)	$\begin{aligned} & \text { Keyseast } \\ & \text { Width } \times \text { Depth (In.). } \end{aligned}$	$\begin{gathered} \text { Dia, of } \\ \text { Setscrew } \end{gathered}$	$\begin{gathered} \text { Dia. of } \\ \text { of Shat (ia.). } \end{gathered}$	$\begin{aligned} & \text { Kayseat } \\ & \text { Width } \times \text { Dapth }(1 \mathrm{n}) \end{aligned}$	Dia. of Setscrew
$5 / 16.7 / 16$	$3 / 32 \times 3 / 64$	832	$2^{13 / 16-31 / 4}$	3/4 $\times 3 / 8$	$3 / 4^{n}$
1/2-9/16	1/8×1/16	10-24	35146-33/4	$7 / 8 \times 7 / 16$	$3 / 4$
5/8-7/8	$3 / 16 \times 3 / 32$	1/4	$3^{13 / 16-41 / 2}$	$1 \times 1 / 2$	$3 / 4$
15/16-11/4	$1 / 4 \times 1 / 8$	$5 / 16$	$49716-51 / 2$	11/4 $\times 5 / 8$	34
15/26-13/8	$516 \times 5 / 32$	$5 / 16$	$59116-64 / 2$	$11 / 2 \times 3 / 4$	1
$1^{1 / 16-13 / 4}$	$3 / 8 \times 316$	318	69/16-71/2	$13 / 4 \times 7 / 8$	1
$113 / 15-21 / 4$ $25 / 16-23 / 4$	$1 / 2 \times 1 / 4$ $5 / 8 \times 5 / 16$	1/2	$79 / 16-815 / 18$ $9-101 / 15$	$\underset{21 / 2 \times 1}{ } \times 1 / 4$	$\frac{1}{1}$

(*) Setscrew size may vary depending on hub wall thickness.
NOTE: As a general rule, the hub wall over the keyway should be equal to or greater than the diameter of the setscrew.
NOTE: Maximum bore guidelines should be adhered to in order to ensure maxinum product quality standards.

BUSHED BORE ROLLER CHAIN SPROCKETS

POWER
 TRANSMISSION: SPROCKETS

- For use with Nos. 100, 120, 140, and 160 pitch roller chain
- Precision machined
- Sprockets with 30 teeth or less have hardened teeth since they are traditionally the driver sprocket
- Bore range $3 / 4$ to $3^{7 / 16 "}$ with required split taper bushing (not included); order split taper bushing separately on page 308

ROLLER CHAIN AVAILABLE, SEE PAGES 287 THRU 289
SPLIT TAPER BUSHINGS AVAILABLE, SEE PAGE 308

WIDE RANGE OF COMPRESSORS

We have stationary and portable air compressors, air pumps, air tools, abrasive blast finishing equipment, spray guns, and air line components. See Index for complete product listings.

Let Us Supply Your In-Plant Safety Equipment
First aid kits, fire extinguishers, eye and face protectors, flammable liquid containers, work gloves, and audible and visual warning devices are available from this catalog. Refer to Index for page listings.

CORROSION-RESISTANT RIVETED ROLLER CHAIN AND INDIVIDUAL LINKS

Abstract

POLY CHAIN (PC) esignef for conditions where lubrication impractical or undesirable. Can withand some corrosive conditions and is ited for environments requiring sanitary Inditions. Inner links are polyacetal,

 iter links are 304 stainless steel.NICKEL PLATED (NP)
uitable for slightly corrosive environents axd for outdoor conditions exposed rain Temperature range: $15^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$. ot recommended in applications exposed - foodor high temperature variance.

304 STAINLESS STEEL (SS)

leal for fresh and saltwater exposures. titable for corrosive conditions involving od, chemicals, and pharmaceuticals. \rightarrow mpe lure range: $-40^{\circ} \mathrm{F}$ to $750^{\circ} \mathrm{F}$.

600 STAINLESS STEEL (AS)

ombines corrosion resistance of 304 cainless steel with a 00% higher maximum lowable load made possible through \cdot at treating of pins, bushings, and Hers. Temperature range: $-40^{\circ} \mathrm{F}$ to $\therefore 0^{\circ} \mathrm{F}$.

For more detailed information on specific substance compatibility, see "Corrosion Resistance Guide" above right.

A WIDE SELECTION OF BELTS is AVAILABLE,
SEE PAGES 294 THRU 298.

RIVETED ROLLER CHAIN

				SPECIFICATIONS AND ORDERING DATA							
ANSI Size	Pitch	$\begin{gathered} \text { Width } \\ \mathbf{W} \end{gathered}$	Dia. R		Rivet End to Center Line L		Maximum Allowable Load (Lbs.)	Stock No.	List	Each 10 Ft . Length	Stipg. Wt
$\begin{aligned} & \text { 40PC } \\ & 50 \mathrm{PC} \\ & 60 \mathrm{PC} \end{aligned}$	$\begin{aligned} & 1 / 2^{\prime \prime} \\ & 5 / 8 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 5 / 16^{11} \\ & 3 / 8 \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & 0.312^{\prime \prime} \\ & 0.400 \\ & 0.469 \end{aligned}$	$\begin{aligned} & 0.325^{\prime \prime} \\ & 0.406 \\ & 0.506 \end{aligned}$	$\begin{aligned} & 0.392^{\prime \prime} \\ & 0.472 \\ & 0.581 \end{aligned}$	$\begin{aligned} & 0.717^{\prime \prime} \\ & 0.878 \\ & 1.087 \end{aligned}$	100 154 198	$6 L 079$ $6 L 080$ $6 L 081$	$\begin{array}{r} \$ 178.00 \\ 223.00 \\ 311.00 \end{array}$	$\$ 153.50$ 192.75 268.75	2.6 4.0 6.0
40 NP 50NP GONP	$\begin{aligned} & 1 / 2 \\ & 5 / 8 \\ & 3 / 4 \end{aligned}$	5/16 $3 / 8$ $1 / 2$	0.312 0.400 0.469	0.325 0.406 0.506	$\begin{aligned} & 0.392 \\ & 0.472 \\ & 0.581 \end{aligned}$	1.787 0.717 0.878 1.087	660 1140 1630	$\begin{aligned} & 6 L 073 \\ & 6 L 074 \\ & 6 L 075 \end{aligned}$	42.00 60.00 79.00	36.25 51.40 67.85	4.5 7.0 11.0
$\begin{aligned} & 4055 \\ & 5055 \\ & 6055 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 5 / 8 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 5 / 16 \\ & 3 / 8 \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & \hline 0.312 \\ & 0.400 \\ & 0.469 \end{aligned}$	$\begin{aligned} & 0.325 \\ & 0.406 \\ & 0.506 \end{aligned}$	$\begin{aligned} & 0.392 \\ & 0.472 \\ & 0.581 \end{aligned}$	$\begin{aligned} & 0.717 \\ & 0.878 \\ & 1.087 \end{aligned}$	$\begin{aligned} & 100 \\ & 154 \\ & 231 \end{aligned}$	$6 L 076$ $6 L 077$ $6 L 078$ 6 L07	$\begin{aligned} & 209.00 \\ & 262.00 \\ & 366.00 \end{aligned}$	$\begin{aligned} & 180.50 \\ & 226.75 \\ & 316.25 \end{aligned}$	4.4 7.0 10.0
40AS 50AS 60AS	$\begin{aligned} & 1 / 2 / 8 \\ & 5 / 8 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 5 / 16 \\ & 3 / 8 \\ & 1 / 2 \end{aligned}$	0.312 0.400 0.469	0.325 0.406 0.506	0.392 0.472 0.581	10.717 0.878 1.087	165 230 350	$6 L 070$ $6 L 071$ $6 L 072$	275.00 363.00 494.00	237.75 313.75 426.50	4.3 70 10.0
				CORR	ION	ESIS	ICE G	DE			

Substance	Chain Type			Substance	Chain Type		
	$\begin{aligned} & \text { SS } \\ & \text { AS } \end{aligned}$	NP	PC		AS	NP	PC
Acetone	-	$=$	-	Carbon Tetrachloride	\#	$=$	\#
Oil (Plant, Mineral)	\bullet	-	\bullet	Potassium Hydroxide (20\%)	-	$=$	$=$
Alcohol	-	$=$	-	Sodium Hydroxide (20\%)	-	$=$	
Ammonia Water	-	=	-	Nitric Acid (5\%)	-	=	
Sodium Chloride	\#	$=$	\#	Vinegar	\#	$=$	\#
Hydrochloric Acid (2\%)	$=$	$=$	$=$	Hypochlorite Soda	$=$	$=$	=
Sea Water	\#	=	\#	Soft Drinks	-	$=$	
Hydrogen Peroxide	-	=	$=$	Soap and Water Solution	-	\#	
Caustic Soda (25\%)	-	=	$=$	Paraffin	-	-	
Gasolne	-	=	-	Frut Juice	-	$=$	
Formic Acid	$=$	=	$=$	Benzene	-	$=$	
Formaldehyde	-	$=$	-	Water	-	\#	
Milk	-	$=$	-	Vegetable Juice	-	=	
Lactic Acid	-	$=$	*	Iodine	=	=	
Citric Acid	-	=	\#	Sulfunc Acid	$=$	$=$	
Chromic Acid (10\%) Acetic Acid (5\%)	\bullet	=	=	Phosphoric Acid (10\%)	\#	$=$	=
Acetic Acid (5\%)	-	$=$	=				

Highly corrosion resistant. \# Marginally corrosion resistant (depending on application conditions).
$=$ Not corrosion resistant.
INDIVIDUAL CHAIN LINKS
(SOLD IN PACKAGES OF 5)

ANSI Size	CONNECTING LINKS				OFFSET LINKS			
	Stock No.	List	Per Pkg.	Shpg. Wt	Stock No.		Per Pkg.	Shpg. Wt.
40NP	$6 L 091$	\$10.00	\$8.07	0.1	6 L082	\$19.00	\$16.30	0.1
50NP	$6 \mathrm{LO92}$	12.00	10.25	0.3	6L083	25.00	21.05	0.2
60NP	$6 L 093$	20.00	16.34	0.3	6L084	30.00	25.30	0.3
	$6 \mathrm{LO94}$	21.00	16.38	0.1	6 6 085	35.00	29.85	0.1
505S*	$6 L 095$	23.00	19.15	0.2	6 6L086	41.00	35.35	0.2
60SS*	6L096	29.00	24.32	0.3	$6 L 087$	57.00	49.15	0.3
40AS	1L541	22.00	18.65	0.1	$6 L 088$	44.00	37.35	0.1
50AS	1 1540	26.00	22.37	0.2	61089	52.00	44.30	0.2
60AS	$1 \mathrm{L539}$	36.00	30.70	0.3	61090	71.00	61.40	0.3

(*) Also for use on Nos. 6L079 through 6L081.

ROLLER CHAIN TOOLS

Description	ANSI Size	Mir.	Mit's. Model	Stock No.	List	Each	Shpg. W.
Chain Puller Chain Puller	$\begin{aligned} & 35-60 \\ & 80-240 \end{aligned}$	Browning Browning	$\begin{aligned} & 35 \\ & 80 \end{aligned}$	$\begin{aligned} & \text { 5A555 } \\ & \text { 5A556 } \end{aligned}$	$\begin{aligned} & \$ 29.04 \\ & 55.17 \end{aligned}$	$\begin{aligned} & \$ 17.29 \\ & 32.95 \end{aligned}$	0.4 2.2
Chain Detacher Chain Detacher	$\begin{aligned} & 35-50 \\ & 60-100 \end{aligned}$	${ }_{\text {T'ST }}$ UT	- ${ }_{\text {D-35 }}$	$\begin{aligned} & \text { 1A911 } \\ & \text { 1A912 } \end{aligned}$	31.00 58.00	26.35 49.65	1.0

RIVETED ROLLER CHAIN

125	2 H 092	\$25.00	\$20.82	2.4
40	$2 W 093$	26.00	21.45	4.5
$\because 41$	$2 W 094$	19.00	15.84	2.8
- $=50$	2w095	37.00	31.05	7.3
max	2w1096	51.00	42.55	11.0
\% 90	2W221	83.00	70.25	18.0
, 100	2 W222	217.00	156.50	27.0
$i=120$	6L481	324.00	234.00	39.0
140	81482	377.00	272.50	52.0
160	61483	470.00	240.00	68.0
35	2W192	246.00	190.00	26.0
40	2×193	244.00	187.75	48.0
41	$2 W 194$	189.00	144.30	33.0
50	$2 W 195$	366.00	282.50	75.0
60	3 MOSR	502.00	387.25	110.0
C2040	6L511	44.00	36.60	5.0
c2050	8t512	55.00	46.05	5.7
c2060H	64513	81.00	68.10	8.0
c20goh	61514	145.00	122.85	15.0
35.2	61484	84.00	71.10	3.5
40-2	64485	118.00	05.30	8.0
50-2	EL486	140.00	118.75	14.0
60-2	61487	213.00	180.75	21.0
80-2	64488	336.00	285.00	35.0
100-2	el489	529.00	488.50	53.0

(*) Inchudes one connecting link for each 10 ft of chain.

- Factory preloaded to reduce initial stretch to 0.01%, minimizing necessary adiustments after first use
- Special prelubrication minimizes stretch to increase wear life and reduce mainfenance costs
- Advanced micron production control ensures total contact between pin and bushing, increasing chain wear life
- Rollers and special wide-waist plates have been shot peened for greater maximum allowable loads
- Meet all American National Standard: Institute (ANSI) requirements
- Fully interchangeable with other ANSI roller chain

				Rivat End	Commecting		Maximum	Average
		Roller	whing	to Contar	End to	Overall	Allowable	Ultimate
ANSI	Pitch	Width	Dia.	lime	Centertine	Width	Load	Strength
Size	P	W	R	12	11	14812	(Lhs)	(Lhs.)
Y, 4 为								
35	$3 / 8{ }^{n}$	$3 / 16^{\text { }}$	$0.200^{\prime \prime}$	$0.270^{\prime \prime}$	$0.230{ }^{\text {n }}$	$0.500^{\text {\# }}$	430	2,310
40	1/2	5/16	0.312	0.392	0.325	0.717	730	4,180
41	1/2	1/4	0.306	0.313	0.266	0.579	430	2,200
50	518	3/8	0.400	0.472	0.406	0.878	1,260	6.930
60	$3 / 4$	$1 / 2$	0.469	0.581	0.506	1.087	1,750	9,570
80	1	58	0.625	0.758	0.640	1.398	2,970	16,280
100	$11 / 4$	3/4	0.750	0.900	0.778	1.678	5,060	26,400
120	11/2	1	0.875	1.138	0.980	2.118	6,800	37,400
140	$13 / 4$	1	1.000	1.248	1.059	2.307	9,000	48,500
160	2	$11 / 4$	1.125	1.451	1.254	2.705	11,900	60,600
C2040	1	$5 / 16$	0.312	0.380	0.325	0.705	595	3,515
C2050	11/4	$3 / 8$	0.400	0.469	0.406	0.875	970	5,795
C2060H	$11 / 2$	1/2	0.469	0.652	0.573	1.225	1,410	8,075
C2080H	2	5/8	0.625	0.823	0.720	1.543	2,400	15,400
W4.								
$35-2$	318	3/16	0.200	0.469	0.429	0.898	810	4,750
40-2	1/2	5/16	0.312	0.675	0.608	1.283	1,370	8,075
502	$5 / 8$	318	0.400	0.833	0.762	1.595	2,380	13,395
60-2	$3 / 4$	1/2	0.469	1.053	0.956	2.008	3,310	18,810
$80-2$	1	518	0.625	1.335	1.217	2.552	5,610	33,440
100-2	$11 / 4$	$3 / 4$	0.750	1.606	1.484,	3.090	8,600	52,800

Maximam Allowathe Load is the maximum tension a chain may be safely subjected to. This value should never be exceeded by the actual design load factored by speed, temperatume, and dynamic adjustruents as applicable.
Average Untimate Tansila Strength is the mean average of a series of tensile tests where the chains are loaded to a destructive fa ure. Average Ulimate Tensile Strength is not a measure of the load at which a chain may be applied; it is indicative only of the te sile strength quality of the chain.

APPENDIX 8

PERMANENT MAGNET DC MOTORS AND SPEED CONTROL

90 VDC PERMANENT MAGNET MOTORS

 lotation,CW/CCW It Recooghized: E47479
inish: Black
3rand: Bäyton
90 VDC Motors Performance Matched' with Control Listed on Page 203.

DIRECT MOUNT GEARMOTOR SPEED CONTROL

- Mounts directily to many Dayton permanent magnet DC gearmotors.
- Can be panel mounted for use with many other 90V PMDC gearmotors
- Ideal for applications that require convenient speed adjustment right at the gearmotor
- Eliminates need to run long wires from controller to gearmotor, offering streamlined, compact drive package
- Full wave unfiltered control with freewheeling diode
- Made of strong Noryl plastic
- Adjustments: On-Off speed knob and current limit (0.2-4.0 amps) and min./max. speed
- Adaptable to von Weise models VW07, VW31, VW33; VW62, VW80, VW83, VW94, VW88, VW89 using 90 VDC permanent magnet motors

Input Volts $(60 \mathrm{~Hz})$$\quad$ HPRange	Arm. Volts	Constant Torque Spd. Range	Speed Reg.	Stock No.	List	Each	Shpg. Wt.
115 1/35-1/6	90	15:1	10-30\%	64191	\$75.00	\$57.50	0.5
Mounts Directly to rear of Nos.:	Mounts remotoly with panel to Nos.:						
47530 thru 47533	6A192 thru 6A194 4Z128 thru 4Z134 4Z381 thru 4Z383 1L491 4Z135 thru 4Z138 4Z528 1L492 4Z140 thru 4Z142 4Z530 thru 4Z533					47534 thru 47539 $4 \mathrm{Z723}$ thra 42728 6Z910 thru 6Z916	
47534 thru 47539							
$4 \mathrm{Z723}$ thru 4Z728							

POWER
 TRANSMISSION: [C MOTORS

PERMANENT MAGNET DC MOTORS

Typical Uses: Designed for use with 90 and 180 V speed controlfers or NEMA type K BG power supplies on constant or diminishing torque applications. Applications include drives for conveyors, food packaging, and processing machinery.
Motors have a $10-32,1 / 2^{\prime \prime}$ deep tapped hole on the fan end shaft. This hole can be used to mount No. 6Z392 pulse generator (see listing below).
All Daytôn módèls and GE 56 frame models have a removable base. GE 148ATC and 1412ATC are footless. Use 140 frame accessory kits from page 197 with these models. All Daytor models and GE Nos. 2M501 thru-2M508 are performance matched with Dayton and Dart speed controllers on nearby pages.

Type: Permanent magnet
Bearings: Ball
Mounting: C-face
Service Factor: 1.0
Insulation Class: F
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW
Dayton Approvals: UL Recognized (E47479) CSA Certified.(LR39033)
GE Approvals: 56 frame UL Recognize (E47088), CSA Certified (LR56410); 14 frame UL Recognized (E79538) only.
Brand: Dayton and GE

HP	$\begin{aligned} & \text { Name- } \\ & \text { piate } \\ & \text { RPM } \end{aligned}$	Full-toad Terque In.-Lbs.	Enciosure	Full-Load Artips at Namephate Volts	NEMA Frame	$\begin{aligned} & \text { Over- } \\ & \text { all } \\ & \text { Length } \end{aligned}$	GE Model	Stock No.	List	Each	Stipg. Wt.
1/4	1725	9.1	TENV	2.8	56 C	$10.53{ }^{\prime}$	5BPB56HAA37	2M501*	\$293.00	\$187.75	21
1/3	1725	-12.2	TENV	3.6	56 C	11.53	5BPB56KAA52	2N502*	335.00	214.25	26.
1/2	1725	18.3	TEFC	5.5	56 C	12.91	5BPB56KAA51	2M503*	350.00	224.50	
3/4	1725	27.4	TEFC	8.0	56 C	14.91	5BPB568AA29		440.00	281.	
1	1725	36.5	TEFC	10.7	56 C	14.91	5BPB56SAA42	2N505*	556.00	356.7	

1/2	1725	18.3	TEFC	2.8	56 C	12.91	5BPB56KAA53		338.00	216.75	29
3/4	1725	27.4	TEFC	4.0	6 C	14.91	5BPB56PAA30		440.00	282.00	39.0
1	1725	36.5	TEFC	5.3	56 C	14.91	5BPB56SAA43	2M506	556.00	356.75	4.0
1	1150	54.8	TEFC	5.0	148ATC	16.86	5CD123GP901B	4W705	1080.00	697.50	88
11/2	2500	37.8	TEFC	7.5	148ATC	16.86	5CD123UP001B	4.19710	1080.00	697.00	67.0
11/2	1750	54.0	TEFC	7.1	148ATC	16.86	5 CD 123 PP 001 B		1080.00		79.0
11/2	1150	82.2	TEFC	7.2	1412ATC	20.73	5 CD 125 TP 001 B		1344.00	86	15.0
2	2500	50.4	TEFC	9.8	148ATC	16.86	5CD123UP002B	44713	1080.00	793.50	77.0
2	1750	72.0	TEFC	9.8	149ATC	17.98	5 CD 124 TP 001 B	4N712†	1192.00	766.50	90.0
2	1150	109.6	TEFC	9.8	1412ATC	20.73	5CD125TP002B	4*711才	1459.00	941.50	115.0
3	2500	75.6	TEFC	14.5	1412ATC	20.73	$5 \mathrm{CD125YP} 001 \mathrm{~B}$	4M715	1459.00	1058.00	115.0
3	1750	108.0	TEFC	14.5	1412AT	20.73	5 CD 125 WP 001 B	$4 \mathrm{M714t}$	1459	943.50	115.0

(*) Has $^{*} 38^{n}$ dia hole $1 / 2^{n}$ deep, drilled on opposite drive shaft to accommodate a tach mounting lit and
includes a $10-32$ adapter to allow use with pulse generator below.
(\dagger) Has $1 / 2^{\prime \prime}$ dia. shaft $1 / 2^{\prime \prime}$ long on opposite drive shaft to accommodate No. 67557 tach mounting kit

WOUND FIELD DC MOTORS

Typical Uses:. Cunveyors, wire feeders, photo, food and paper processing, printing, factories. and textile mills, and other constant or diminishing torque applications with NEMA Type K DC power supplies.
Special Features: Smooth operation at low'speeds. C-face allangle mountinge Continuous rated torque to 5% base speed (when used with properly matched controller with freewheeling diode).

Type: Shunt wound Bearings: Ball
Moưnting: C-face (foöt optional,' except on 56 C frame)
Ambient: $40^{\circ} \mathrm{C}$
Service Factor: 1.0
Insulation Class: F
Duty: Continuous
Rotation: CW/CCW:
UL Recognized: 56 'frame (E47088); 140 frame (E79538)
CSA Certified: 56 frame (LR56410)
Finish: Gray
Brand: GE

Type	GEwtel	Stock	List	Each	$\begin{aligned} & \text { Shpg } \\ & \text { Wht. } \end{aligned}$
Flush Foot	658 AAG	6	\$27.00	\$18.19	1.4
Pedestal Foot	658BAGO1	62555 62556			0
PYY Tach. Mtg. Kit \dagger	$690 \mathrm{AAG01}$	62557	334.00	225.50	1.0

(†) Tachometer not included, see page 204. No. 62557 also works with 180 frames.

PARTS AVAILABLE; CALL 1-800-323-0620

HP	$\begin{gathered} \text { Mane } \\ \text { whate } \\ \text { hPMPM: } \end{gathered}$	NEMA \therefore Frame	$\begin{gathered} \text { Kdabet } \\ \text { Dia. } \end{gathered}$	$\begin{aligned} & \text { Arm. } \\ & \text { Volts } \\ & \text { DC } \end{aligned}$	Field Volts vDC	F/ Amps at Nameplate Volts	Inertia WK ${ }^{2}$ Ft.-Lhs.	Full-Load Torque la.-Lbs.	Overall Length	GE Model	Stock No.	List	Each	Shpg. Wt
YY/														
	1750	L182ACY	$41 / 2{ }^{1}$	180	200/100	4.9	0.28	36.0	$15.26^{\prime \prime}$	5CD142GE011B002	4M716	\$1417.00	\$872.50	115.0
1/2	: 1750	L182ACY	$4{ }^{1 / 2}$	180	200/100	7.3	0.28	54.0	15.26	5CD142GE011B005	4 M 717	1559.00	959.00	107.0
	- 1750	186ACY	41/2	180	200/100	9.4	0.45	72.0	16.76	$5 \mathrm{CD143ME003B001}$	44718	2001.00	1231.00	130.0
	1750	186ATC	$81 / 2$	180	200/100	9.4	0.45	72.0	16.76	$5 \mathrm{CD} 143 \mathrm{MC003B006}$	44719	2001.00	1231.00	92.0
	\% 7750	186ACY	41/2	180	200/100	14.4	0.45	108.0	16.76	5CD143ME003B010	4n720	2001.00	1231.00	105.0
3	\% 1750	L186ATC	$81 / 2$	180	200/100	14.4	0.45	108.0	18.76	$5 \mathrm{CD143MC003B012}$	419721	2972.00	1759.00	138.0
5	- H_{1750}	L186ATC	$8{ }^{1 / 2}$	180	200/100	24.1	0.67	180.1	18.76	5 CD 144 UC 023 B 001	4N724*	. 3751.00	2309.00	148.0
5	$\because 1750$	219ATC	$8^{1 / 2}$	180	200/100	23.7	1.49	180.1	25.22	5CD153TC008B006	4 M 723	4063.00	2499.00	245.0
1/4	" 1725	56 CH	$4^{1 / 2}$	90	100	2.8	0.038	9.1	11.2	5BCD56CD247	4N701 \dagger	587.00	357.00	24.0
$1 / 3$	- 1725	56C\#	$41 / 2$	90	100	3.6	0.058	12.2	11.9	5BCD56ED307	4M678 \dagger	649.00	394.25	29.0
$1 / 2$	- 1725	56C\#	$41 / 2$	90	100	5.0	0.082	18.3	13.9	5BCD56ND88	4M702†	768.00	467.00	40.0
$1 / 2$	1725	56C\#	$41 / 2$	180	200	2.6	0.082	18.3	13.9	5BCD56ND91	4N703 \dagger	785.00	476.75	42.0
3/4	1725	56 CH	$41 / 2$	90	100	8.4	0.10	27.4	15.9	5BCD56RD397	4 M 675	867.00	527.00	54.0
3/4	1725	56C\#	$4^{1 / 2}$	180	200	3.8	0.10	27.4	15.9	5BCD56RD418	4M676	884.00	537.00	55.0
1	2500	146ATC	$4{ }^{1 / 2}$	180	200/100	5.3	0.14	25.2	15.61	$5 \mathrm{CD122NE001B}$	62545	793.00	488.00	62.0
1	1725	56 CH	$41 / 2$	180	200	5.1	0.10	36.5	15.9	5BCD56RD398	41.1677	1008.00	612.50	56.0
1	1750	146ATC	$41 / 2$	180	200/100	5.1	0.14	36.0	15.61	$5 \mathrm{CD122HE001B}$	62544	811.00	499.25	56.0
1	1750	L182ACY	$41 / 2$	180	200/100	5.0	0.28	36.0	15.26	5CD142FE012B008	4M726 \dagger	1873.00	1153.00	92.0
1	1750	L182ATC	$81 / 2$	180	200/100	5.0	0.28	36.0	15.26	5CD142FC008B018	4M725 \dagger	1873.00	1153.00	102.0
1	1150	148ATC	$41 / 2$	180	200/100	5.0	0.18	54.8	16.86	5CD123GE001B	67543	949.00	548.50	69.0
11/2	2500	148ATC	$4^{1 / 2}$	180	200/100	7.5	0.18	37.8	16.86	$5 \mathrm{CD123UE001B}$	62548	959.00	590.00	69.0
11/2	1750	148ATC	$4^{1 / 1 / 2}$	180	200/100	7.3	0.18	54.0	16.86	$5 \mathrm{CD123PE001B}$	62547	976.00	600.50	59.0
11/2	1750	186ACY	$4^{1 / 2}$	180	200/100	7.3	0.45	54.0	16.76	$5 \mathrm{CD143LE007B005}$	4M727 \dagger	2049.00	1261.00	102.0
$11 / 2$	1750	186ATC	$81 / 2$	180	200/100	7.3	0.45	54.0	16.76	5CD143LC007B021	4M722†	2049.00	1261.00	140.0
11/2	1150	1412ATC	41/2	180	200/100	7.0	0.32	82.2	20.73	$5 \mathrm{CD125TE001B}$	62546	1237.00	761.50	105.0
2	2500	148ATC	$4^{1 / 2}$	180	$200 / 100$	9.8	0.18	50.4	16.86	$5 \mathrm{CD123UE002B}$	62551	1150.00	707.50	69.0
2	1750	149ATC	41/2	180	$200 / 100$	9.5	0.23	72.0	17.98	$5 \mathrm{CD124TE001B}$	62550	1168.00	719.00	69.0
2	1750	L186ACY	$41 / 2$	180	200/100	9.5	0.67	72.0	18.76	5CD144SE005B008	4M728 \dagger	2409.00	1483.00	128.0
2	1750	Li86atC	$81 / 2$	180	200/100	9.5	0.67	72.0	18.76	5CD144SC003B032	4M729 \dagger	2409.00	1483.00	128.0
2	1150	1412ATC	$41 / 2$	180	200/100	9.5	0.32	109.6	20.73	$5 \mathrm{CD125TE0} 2 \mathrm{~B}$	62549	1481.00	911.00	100.0
3	2500	1412ATC	41/2	180	$200 / 100$	14.5	0.32	75.6	20.73	5CD125YE001B	62553	1481.00	911.50	104.0
3	1750	1412ATC	41/2	180	200/100.	14.0	0.32	108.0	20.73	$5 \mathrm{CD125WE001B}$	62552	1499.00	921.50	93.0
3	1750	189ACY	$4^{1 / 2}$	180	200/100	13.9	0.77	108.0	20.76	5 CD 145 VE 005 B 006	4M731 \dagger	3060.00	1882.00	165.0
3	1750	189ATC	$8{ }^{1 / 2}$	180	$200 / 100$	13.9	0.77	108.0	20.76	5 CD 145 V 005 BB 001	$4 \mathrm{NT30t}$	3060.00	1882.00	162.0
5	1750	2110atC	$81 / 2$	180	200/100	23.0	1.71	180.1	26.72	5CD154ZC802B802-	4N732 \dagger	5009.00	3082.00	289.0

[^42]No. 62558. Servo-Tek Tach Mounting Kit (tachometer not included). Use with 140 frame only. GE Model 893A666AAG01.

PERMANENT MAGNET DC MOTORS WITH MATCHED SPEED CONTROLS

90 \& 180 VDC PERMANENT MAGNET MOTORS

Typical Uses: Packaging equipment, pumps, fans, blowers, conveyors, and other constant or diminishing torque applications. =not for constant HP, cyclic load, or rapid reversing applications.
Special Features: Permanent magnet DC motor has matched speed controller mounted to end bracket of motor. Control has eight-foot, 3 -conductor cordset for mplugging into standard AC receptacle (no wiring required). Controller supplies DC power to motor through an additional eight-foot, 3 -conductor cordset between motor and controller. Allows remote mounting of controller when removed from motor end bracket. External access to motor brushes.

Input Voltage: 115 VAC, $60 / 50 \mathrm{~Hz}$ on Nos. 4Z248, 1F800, 1F796, 2Z846, and 1F798; $230 \mathrm{~V}, 60 / 50 \mathrm{~Hz}$ on No .4 Z 226 (requires 250 V, ' 20 A receptacle)
Bearings: Prelubricated ball
Mounting: C-face with removable rigid base Énclosure: Motor, TEFC; control, NEMA 4/12
Ambient: $40^{\circ} \mathrm{C}$
Service Factor: 1.0
Insulation Class: F
Duly: Continuous .
Rotation: CW/CCW
Brand: Dayton

SPEED CONTROL FEATURES

Speed Regulation: Within 5% of namepla RPM
Full-Wave Rectification
Min. and Max. Speed Adjustable
Current/Torque Limit: Built-in (adjustable)
IR Compensation: Built-in (fixed)
Soft Start Acceleration
Transient and Surge Protection
Control Circuitry on One Printed Boord
Control Protection: Fused
Forward On/Off/Reverse On Switch
Power-On Indicator Light
NEMA 4/12 Enclosure
UL Listed (E165942)

	Stock No.		Max. Output Torque at all Speeds. In.-Lhs.	CONTINUOUS DUTY HP AT SET SPEED																Controller Speed Range
$\underset{H P}{\operatorname{Max}}$				$\begin{aligned} & \quad 2500 \\ & \mathrm{RPM} \end{aligned}$	$\begin{aligned} & 2700 \\ & R P W \end{aligned}$		$\begin{aligned} & 1725 \\ & 8 P M \end{aligned}$	$\begin{aligned} & 1300 \\ & \text { RPM } \end{aligned}$	$\begin{array}{r} 900 \\ \text { RPM } \\ \hline \end{array}$		$\begin{aligned} & 500 \\ & \text { RPM } \end{aligned}$	$\begin{gathered} 125 \\ \text { RPM } \end{gathered}$		$\begin{gathered} 85 \\ \text { RPM } \\ \hline \end{gathered}$		$\begin{array}{r} 50 \\ \text { RPM } \\ \hline \end{array}$		$\begin{gathered} 35 \\ \text { RPM } \end{gathered}$		
$1 / 4$	47248		9.1	-	-		0.250	0.188		0.130	0.072	0.018		0.012		0.007		0.005		to 1
1/2	15800		16.2				0.500	0.376		0.260	0.144	0.036		0.024		0.013		0.009		to 1
$3 / 4$	27846		18.9	0.750	0.630		0.517	0.390		0.270	0.150	0.037		0.025		0.015				- 1
$3 / 4$	1 F796		27.2		-		0.750	0.565		0.391	0.217	0.054		0.037		0.022		0.015		to 1
1	1 F 798		36.5				1.000	0.753		$0.5<1$	0.290	0.072		0.049		0.029		0.020		to 1
$11 / 2$	47226		37.8	-41.500	1.260		1.034	0.780		0.540	0.300	0.075		0.051		0.030				to 1
$1^{1 / 2}$	15802		54.8				1.500	1.130		0.782	0.435	0.108		0.074		0.043		0.030		to 1
2	1 F804		73.0				2.000	1.150		1.040	0.579	0.145		0.098		0.058		0.041		
$\operatorname{Max}_{H P}$	Nameplate RPM	NEMA Frame	$\begin{aligned} & \text { Input } \\ & \text { Volts AC, } \\ & 60 / 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \text { Armature } \\ & \text { Volts } \\ & \text { DC } \end{aligned}$	Full- Load Amps	A	B	C	$\underset{\text { D }}{\text { Dimensions (lnch }}$		${ }_{H}$	L	P	Stock No.		List		Each		Shpg. wt.
1/4	1725	56 C	115	90	4.2	5	$53 / 4$	$171 / 16$	51/4	67/8	$61 / 4$	1013/16	41/2		47248		\$500.18		\$438.75	21.0
1/2	1725	56 C	115	90	3.4	5	53/4	1613/16	$51 / 4$	$67 / 8$	$6^{1 / 4}$	$10^{7 / 16}$	$41 / 2$		$1 F 800$		512.13		448.25	21.0
314	2500 . 5	56 C	115	90	11.0	5	$53 / 4$	191/16	$51 / 4$	$67 / 8$	$61 / 4$	$12^{13 / 16}$	$41 / 2$		27846		623.58		547.00	28.0
3/4	1725	56 C	115	90	8.1	5	53/4	1813/16	$51 / 4$	67/8	$61 / 4$	$12^{7 / 16}$	$41 / 2$		17796		613.81		537.50	75.0
1	1725	56 C	115	90	10.6	5	$53 / 4$	$2013 / 16$	$51 / 4$	$71 / 2$	$61 / 4$	$14^{9 / 16}$	$6^{1 / 2}$		$1 F 798$		884.39		774.00	67.0
11/2	2500	56 HC	230	180	11.0	5	$53 / 4$	$229{ }_{16}$	$7^{1 / 2}$	$7{ }^{1 / 2}$	$61 / 4$	$16^{5 / 16}$	$6^{1 / 2}$		47226		1005.48		882.00	60.0
$1^{1 / 2}$	1750	143 TC	230	180	8.2	5	$53 / 4$	241/4	$71 / 2$	$71 / 2$	$6^{1 / 4}$	18	$61 / 2$		17802		1102.89		964.00	29.0
2	1750	143 TC	230	180	11.6	5	53/4	$251 / 4$	$7^{1 / 2}$	$71 / 2$	61/4	19	$6^{1 / 2}$		17804		1332.43		1166.00	21.0

IF YOU'RE IN A BIND, CALL GRAINGER

If it's an emergency, chances are Grainger's got the items you need today. Grainger has over 330 well-stocked branches nationwide. So you can replace, build, or repair it right away. And we're conveniently located. To find the branch nearest you, check the white pages in your local telephone directory under "Grainger."

DIGITAL TACHOMETERS, PULSE GENERATOR, AND SPEED CONTROL

FIELD PROGRAMMABLE DIGITAL TACHOMETER AND PULSE GENERATOR

Compact in size, sturdy aluminum construction. Field programmable rate based display. Four digit $.58^{n}$ LED display. Wire clamp terminal strip for easy connections. Operates on 5 volt square wave pulse supplied by No. 62392 pulse generator or equivalent. Input voltage:' $120 \mathrm{~V}, 60 \mathrm{~Hz}$. -10° to $45^{\circ} \mathrm{C}$ ambient. $\pm 10 \%$ rated line voltage. Dart brand.
[A] No. 62390 Tachometer/Ratemeter converts input pulses to engineering units (RPM, Gal./Min., Ft./Sec., etc.)
B] No. 62392 Pulse Generator pravides 5 volt square wave pulse with frequency proportional to shaft RPM of unit to which it is mounted. 6 foot cord. Maximum shaft speed is 5000 RPM. $70^{\circ} \mathrm{C}$ ambient.

Koy	Madet	Stack No.	List	Each	Shpg. Wt.
A	$\begin{aligned} & \text { DM1004 } \\ & \text { PU-2E } \end{aligned}$	$\begin{aligned} & 67390 \\ & 62392 \end{aligned}$	$\begin{array}{r} \$ 263.00 \\ 69.00 \end{array}$	$\begin{array}{r} \$ 175.25 \\ \mathbf{4 5 . 4 0} \end{array}$	1.15

THE RIGHT STUFF. RIGHT HERE. RIGHT NOW.
Our branches are conveniently located and stocked with commonly used items from this catalog. If you need it now, call Grainger. To find the branch nearest you, check the white pages in your local telephone directory under "Grainger."

aypical Uses: Conveyors and packaging -equipment, exercise equipment, pumps, =fans, blowers, and other constant or diminishing torque applications.
ETENV and TEFC DC permanent magnet motors, 1725 RPM are performance matched with © DC-1 VS drives on facing page. Designed for adjustable speed applications with continuous rated torque over a $20: 1$ speed trange on single phase, full-wàve power supply with a freewheeling diode. Continuous torque capabilities are teduced between 100% and 5% base speed if operated on a power supply with no Greewheeling diode. Features external brush access, conduit box, and built-in Thermostat \dagger. Black finish. Reliance brand.

> Bearings: Permanently lubricated double- shielded ball
Mounting: NEMA 56C face and mounting
base
Service Forctor: 1.0
Insulation Class: F
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Rotation: CW/CCW

HP	$\begin{aligned} & \text { Am. } \\ & \text { Vofls } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { Name- } \\ & \text { flatae } \\ & \text { flate } \end{aligned}$	$\begin{aligned} & \text { Full- } \\ & \text { Lood } \\ & \text { Amps } \end{aligned}$	Frame	$\begin{gathered} \text { Enclo- } \\ \text { sure } \end{gathered}$	Reliance Model	Stock No.*	List	Each	Stpg.
1/4	90	1750	2.8	56 C	TENV	T56H1050	68804	\$302.91	\$256.25	20.0
1/3	90	1750	3.6	${ }^{565}$	TENV	${ }^{\text {T56H1051 }}$	67805	335.64	283.75	22.0
1/2	${ }_{0}^{90}$	1750	5.2	${ }_{56 \mathrm{C}}^{56}$	TEFC	${ }_{\text {T56HH1052 }}$	${ }_{68806}^{68807}$	$\begin{array}{r}372.00 \\ \hline\end{array}$	319.50 385	31.0 330
3/4	90	1750	7.8	56 C	TEFC	T56H1055	62807	423.25	385.75	33.0
1	90 180	1750 1750	10.0 5.0	${ }_{56 \mathrm{C}}^{56 \mathrm{C}}$	TEFC	T56H1059	6Z8088	494.95 494.95	451.00 451.00	38.0 38.0
$2^{11 / 2}$	180.	1750	7.3 9.8	$\begin{aligned} & 56 \mathrm{HCZ} \\ & 56 \mathrm{HCz} \end{aligned}$	TEFG.	T66H1057 T56H1058	$\begin{aligned} & 67810 \\ & 68811 \end{aligned}$	816.34 9698	$\begin{aligned} & 742.50 \\ & 882.00 \end{aligned}$	50.0 59.0

$\left.{ }^{(}\right)$Limited availability-contact local branch.

Stock Hos.	A	, ${ }^{\text {a }}$	C	0.	F	P	U	AH ${ }^{\prime}$, Key -	
									S4.	Lgth.
68807	6.38	5.72	12.59	8.74	2.00	6.22	. 625	2.06	. 19	1.25
6Z808, 6Z809	6.38	5.72	14.34	8.74	2.00	6.22	. 625	2.06	. 19	1.25
68810	6.62	5.88	17.30	9.00	2.00	7.33	. 875	2.12	. 19	1.38
62811	6.62	5.88	18.92	9.00	2.00	7.33	. 875	2.12	. 19	1.38

(\dagger) If a motor thermostat is not used, another means of motor thermal protection must be utilized.

			Stoct Its		Stock Ma.			Ech	
90 VDC MOTORS			No. 62801 Drive		No. 62892 Drive		No. 62803 Drive		
67804	1725	$1 / 4$	72194	\$630.50	72203	\$744.50	72211	\$744.50	27.0
62805	1725	13	7 7195	+656.50	72204	770.50	72212	770.50	29.0
62806	1725	1/2	72196	690.50	72205	804.50	72213	804.50	38.0
62807	1725	3/4	72197	753.50	72206	867.50	72214	867.50	40.0
62808	1725	1	72198	815.50	72207	929.50	72215	929.50	45.0
180 VDC MOTORS			No. 67801 Drive		No. 62802 Drive		No. 67803 Drive		
62809	1725	1	72199	815.50	72208	929.50	72216	929.50	45.0
62810	- 1725	$11 / 2$	72200	1093.00	72209	1207.00	72217	1207.00	57.0
62811	1725	2	72202	1225.00	72210	1339.00	72218	1339.00	66.0

DC/SCR CONTROL/MOTOR COMBINATIONS AND ADJUSTABLE DC CONTROLS

POWER TRANSMISSION: DC DRIVES

90V AND 180 V MOTOR/CONTROL COMBINATIONS

Dayton

 Conikots, INC.

formance-matched combinations of Dayton ?rmanent magnet 90 V DC motors with iyton and Dart controls DC/SCR speed introls are provided at right. For more tailed specifications, the motors and leed controls indicated at right are listed pnearby pages.
pw to use: Locate motor by stock number the left hand column. To the right will the stock numbers for that item comned with different controllers. See colmanifeading for the specific control sired. Note that this is not an exhause list.

Kh MOA SPAPCMTMS												
				Combinitrite								
				5\%								
90 VDC MOTORS						No. 4Z827 Control		No. 18527 Contral		No. 17828 Control		
47142	1800	1.3	1/27	72857	\$17275	72861	\$181.75	728855°	\$258.00	6.0		
42141	1800	1.95	$1 / 18$	12858	172.75	72852	181.75	72856	258.00	8.8		
$4 \mathrm{Z140}$	1800	4.38	1/8	72859	- 178.75	72883	187.75	72867	264.00	11.6		
42528	1800	5.63	1/6	72850	- 190.25	72884	. 197.25	72858	273.75	12.5		
	90 VDC MOTORS			No. 5X412 Control		No. 6X165 Control		No. 2M510 Control				
48142	1800	1.3	1/27	72701	$\therefore 228.00$	72581	-485.00	72219'	133.50	4.2		
47141	1800	1.95	$1 / 18$	72702	. 228.00	72580	435.00	72320	183.25	7.0		
42140	1800	4.38	1/8	72703	233.75	72579	441.00	7221	169.00	9.8		
42528	1800	5.63	16	72793	243.50	72019	450.50	7202	198.75	10.7		
90 VOC MOTORS				No. 5x485 Control		No. 2M171 Conitrol		No. 48829 Control				
2M167	1725	9.1	$1 / 4$	714005	488.00	7MM001	569.00	72869	655.50	23.8		
2M168	1725	18.3	$1 / 2$	710006	522.50	714032	603.50	72897	690.00	31.8		
2M199	1725	27.4	$3 / 4$	74.007	577.00	7M003	658.00	72871	744.50	38.8		
2N170	1725	36.5	1			7 M 004	728.50	-72872	815.50	44.8		
180 VDC MOTORS				No. 42377 Control		No. 62386 Control		No. 2M510 Congrol				
$\begin{aligned} & 47524 \\ & 42525 \end{aligned}$	1725 1725	$\begin{array}{r} 18.3 \\ 27.4 \end{array}$	1/2	77784	$\begin{aligned} & 556.00 \\ & 617.50 \end{aligned}$	72723	$\begin{array}{r} 384.00 \\ =45.75 \end{array}$	$\frac{7225}{7205}$	$\begin{aligned} & 267.00 \\ & 328.75 \end{aligned}$	25.7 28.7		
180 VDC MOTORS				No. 42377 Control		No. 62386 Contiole		\therefore Mo. Ezeiz Control				
42378	1725	36.5		72751	688.00	72227	516.50	\therefore ¢゙-	-	40.0		
42379	1725	54.0	$11 / 2$	72752	924.00	72274	752.50		-	78.0		
47350	1725	72.0	2	72753	1014.00	72275	84200			84.0		
67791	1725	108.0	3				-	72276	1578.00	107.0		

ADJUSTABLE DC CONTROLS FOR PM AND SHUNT WOUND MOTORS

- $\pm 10 \%$ rated voltage
- AC frequency: $\mathbf{4 8}$ to 62 Hz
- All.circuitry packaged on a single accessible surface mount circuit board
- Armature voltage or motor driven DC tachometer feedback
- Complete application adjustments
- Must be used with power disconnect switch between controller and power supply
- Built-in surge suppressor
- Relay in control circuit prevents automatic restarting after power outage

Typical Uses: For use with permanent magnet DC motors on facing page, or shunt wound DC motors, in a variety of constant or diminishing torque applications requiring wide range adjustable speed control. These inchide conveyors- assembly lines, packaging, food processing, exercise, silk screening, mixing, and photo processing equipment.
$\mathrm{DC} 2 \mathrm{~V} \star \mathrm{~S}^{\text {® }}$ drives feature adjustable minimum (0 to 50%)/maximum (50 to 100%) speed, IR drop compensation (5 to 10\%) and current limit (10 to 150%). Internal jumper reconnections match the drive incoming power (115 or $230 \mathrm{VAC}, 50$ or 60 Hz) and select motor horsepower ($1 / 4$ thru 2), desired feedback, armature voltage or motor driven DC tachometer.
Power cube contains all semiconductors. Speed regulation with 95%-load change: voltage feedback $2-5 \%$, with $20: 1$ constant torque; tachometer feedback 1%, with $50: 1$ constant torque. (Separately adjustable accel/decel rates of 0.5 to 30 seconds.)
Full-wave, half-control power conversion with back diode. Built-in half wave field supply for operation of short circuit protection and accessibility.
NEMA/UL Type 12 K construction. $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ ambient, up to 3300 feet $(1000$ meters) in elevation. 1.0 service factor. UL Listed (E59092), IEC classified, CSA certified. Black finish. Reliance ${ }^{\text {© }}$ brand.

TACHOMETER GENERATORS

Tachometer Generator is a generator mechanically coupled to a rotating machine whose main function is to generate a voltage, the magnitude or frequency of which is used either to determine the speed of rotation or the common shaft or to supply a signal to a control circuit to provide speed regulation.
Typical Uses: Speed indication on a variety of mill drives; machine tools, paper machines, and industrial machines.
Special Features: Hazardous location models have built-in temperature-sensing switch with leads brought out. When properly wired to the external control circuit, maximum frame temperature is limited as required by UL and the NEC.
Bearings: Ball
Enclosure: TENV
Insulation Class: A
Duty: Continuous
Rotation: CW/CCW or reversing service
Field: Alnico magnets
Finish: Gray

(\dagger) Double shaft extension is $17 / 8^{\prime \prime}$ long $\times 5 / 8^{\prime \prime}$ diameter with keyway each end. (\ddagger) Include base.

ENERGY SAVING PRODUCTS FOR HOME, FARM, AND INDUSTRY
Including blowers, fans, furnaces, heaters, lighting, motors, controls, thermostats water heaters, and other items. See Index under Energy Saving Products.

24 AND 90 VDC PERMANENT MAGNET PARALLEL SHAFT GEARMOTORS

POWER

TRANSMISSION: GEARMOTORS

254 IN.-LBS., HIGH TORQUE

ircase: Die-cast alúminum fication: Heavy fluid gear oil prs: Hardened steel irings: Needle with thrust Is on case; ball on motor 1s: Spring-loaded lip-type inpût andoutput seals
 , in

20.4 TO 100 IN.-LBS., HIGH TORQUE

iearcase; Die-cast aluminum ubrication: Permanent heavy luid gear oil
Gears: 1st stage steel, helical; subsequent stages steel or heat-treated powdered metal spur
3earings: Needle on case outjut shaft; ball on motor
ieals: Spring-loaded lip-type leoprene on input and output shafts

Róation:'Reversible
Thermal Protection: None,
Brushes: Externally replaceable
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Enclosure: TENV
Warrantiy: 2 Year

FOR DC GEARMOTOR SELECTION GUIDE
SEE PAGES 212 AND 213

Nameplate RPM	F/L Torque In.-ths.	Overhtug Load Lbs.	Inpert	$\begin{gathered} F / L \\ \text { Amps ai } \\ 90 \mathrm{Vac} \end{gathered}$	Gear Ratio	Stock No.	List	Each	Shpg. wt
2	100	90	$1 / 40$	0.36		67910	\$252.00	\$193.25	
	100	90	1/40	0.36		67911	25.00	193.25	
9	100	90	140	-0.36	185.5:1	62912	252.00	193.25	6.0
20	100	90	$1 / 20$	0.6	95.5:1	67913	252.00	193.25	6.0
37	74	90	$1 / 20$	0.6	49:1	67914	252.00	193.25	6.0
71	40	90	$1 / 20$	0.6	25.2:1	67915	252.00	193.25	6.0
139	20.4	90	1/20	0.6	12.9:1	67916	252.00	193.25	6.0
Stock No.		L		X		k No.	1	X	
6291062911		$5.44^{\text {" }}$		$2.45{ }^{\prime \prime}$		914	$4.69{ }^{\text {" }}$	$3.15{ }^{\text {n }}$	
		5.44		2.45		915	4.69	3.15	
62912		5.44		2.45		916	4.69	3.15	
68913		5.44		2.45					

Optional Mounting Bracket for Nos. 6Z910 thru 6Z916 attaches to face of gear box to provide floor, wall or ceiling mount. Includes steel bracket and four screws. Dayton brand.
No. 2A754. Shpg. wt. 0.7 lbs. List \$14.00. Each \qquad $\$ 10.37$

PARTS AVAILABLE FOR MANY DC GEARMOTORS, CALL 1-800-323-0620

90 VDC PERMANENT MAGNET PARALLEL SHAFT GEARMOTORS

27 TO 250 IN.-LBS., HIGH TORQUE

Gearcase: Die-cast aluminum Lubrication: Permanent heavy fluid gear oil
Gears: Hardened steel; 1st stage helical, subsequent stages spur

Bearings: Needle roller and thrust balls on case; ball on motor
Seals: Spring-loaded lip-type on input and output shafts

Mounting: All position
Rotation: Reversible
Thermal Protection: None
Brushes: Externally replaceable
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Enclosure: TENV
Approvals: Nos. 6A193 and 6A194 are CSA. Certified (68769); Nos. 4Z131-4Z134 are UL Recognized (E47479)
Warranty: 2 Year

Nameplate RPM		Overturng Load Lbs.	$\underset{H P}{\text { Input }}$		$\begin{aligned} & \text { Gear } \\ & \text { Ratio } \end{aligned}$	Stock No.	List	Each
5	227	150	$1 / 20$	0.4	336:1	6A193	\$300.00	\$230.25
9	250	150	120	0.6	208:1	6A194	300.00	230.25
18	150	150	1/20	0.6	101:1	42134	300.00	23025
34	82	150	120	0.6	53:1	42133	300.00	230.25
51	55	150	$1 / 20$	0.6	35:1	42132	300.00	230.25
109	27	150	1/20	0.6	16.5:1	4Z131	300.00	230.25

3xky									
Nameplate RPM	FullLoad Torque ln.-Lbs.	Overhung Load Lbs.	$\underset{\substack{\text { Input } \\ \text { HP }}}{\substack{\text { Pr }}}$	FullLoad Amps at 90 VDC	Gear Ratio	Stack No.	List	Each	Shpg Wt.
24	280	150	$1 / 8$	1.5	77:1	4Z130	\$384.00	\$285.50	13.1
31	244	150	$1 / 8$	1.5	58:1	42383	384.00	285.50	13.6
54	130	150	$1 / 8$	1.5	34:1	47129	352.00	262.00	12.0
61	113	150	1/8	1.5	30.1	47382	35200	262.25	13.0
92	77	150	1/8	1.5	20:1	42381	352.00	262.25	13.0
167	43	150	18	1.5	11:1	42128	352.00	262.25	13.0

43 TO 280 IN.-LBS., HIGH TORQUE

Gearcase: Die-cast aluminum
Lubricafion: Permanent heavy fluid gear oil
Gears: Hardened steel
Bearings: Needle roller and thrust balls on case; ball on motor
Seals: On input and output shafts

Warranty: 2 Year
Mounting: All position Rotation: Reversible Thermal Protection: None
Brushes: Externally replaceable Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous Enclosure: TENV IS AVAILABLE, SEE INDEX FOR PAGE.

90 VDC PERMANENT MAGNET PARALLEL SHAFT GEARMOTOR \& SPEED CONTROL

POWER
TRANSMISSION:
GEARMOTORS

PARALLEL SHAFT GEARMOTORS

101 TO 1112 IN.-LBS., HIGH TORQUE

ircase. Die-cast aluminum
rication: Permanent, heavy d geazoil
ars: Härdened steel," ${ }^{-1}$ st ge helical, spur subsequent ges
arings: 綪eavy-duty ball and edle roller and thrust balls case; ball on motor
als: Lip-type on input and tput shofts

Mounting: All position
Rotation: Reversible
Thermal Protection: None
Brushes: Extra large for long life
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Enclosure: A] TENV; B] TEFC
Warranty: 2 Year

PARTS AVAILABLE FOR MANY DC GEARMOTORS, CALL 1-800-323-0620

DIRECT MOUNT GEARMOTOR SPEED CONTROL

- Mounts directly to many Dayton permanent magnet DC gearmotors
- Can be panel mounted for use with many other 90V PMDC gearmotors
- Ideal for applications that require convenient speed adjustment right at the gearmotor
- Eliminates need to run long wires from controller to gearmotor, offering streamlined, compact drive package
- Full wave unfiltered control with freewheeling diode
- Made of strong Noryl plastic
- Adjustments: On-Off speed knob and current limir ($0.2-4.0 \mathrm{amps}$) and min./max. speed
- Adaptable to von Weise models VW07, VW31, VW33, VW62, VW80, VW83, VW94, VW88, VW89' using 90 VDC permanent magnet motors

Inpurt Volts $(60 \mathrm{~Hz}) \quad$ HP Range	Arm. Volts	Constant Torque Spd. Range	Speed Reg.	Stock No.	List	Each	Shpg. W.
115 1/35-1/6	90	15:1	10-30\%	6A191	\$75.00	\$57.50	0.5
Mounts Directly to rear of Nos.:	Mounts remotely with panel to Nos.:						
47530 thru 47533	6A192	194	47128 thru 47	4738	4Z383	47534 thru 4	
42534 thru 4Z539			4Z135 thru 47			42723 thru 4	
47723 thru 4Z728			4Z140 thru 4	$4 \mathrm{Z53}$	42533	67910 thru 6	

36 TO 140 IN.-LBS., HIGH TORQUE

Gearcase: Die-cast aluminum Lubrication: Oil filled
Gears: Worm, hardened steel; output gear bronze alloy
Bearings: Needle/ball on case; ball on motor
Seals: Lip-type on input and output shafts
Mounting: All position; except with input motor down (under gear head)

Rotation: Reversible Thermal Protection: None
Output Shaft:
[A] $1 / 8 \mathrm{HP}$ single shafted
[B] 1/4 HP double shafted
Brushes: Externally replaceable Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Enclosure: A] TENV; [B] TEFC Warranty: 2 Year

200 TO 215 IN.-LBS., HIGH TORQUE

Gearcase: Die-cast aluminum
Lubrication: Oil filled
Gears: Ist stage steel, helical;
2nd stage hardened steel
worm, bronze alloy
Bearings: Needle/ball on case;
ball on motor
Seals: Lip-type on input and output shafts
Mounting: All position, except with input motor down (under gear head)

Rotation: Reversible
Thermal Protection: None
Output Shaft: 1/10 HP double shafted
Brushes: Externally replaceable
Ambient: $40^{\circ} \mathrm{C}$
Duty: Contiruous
Enclosure: TENV
Warranty: 2 Year

Nameplate RPM	FullLoad Torqua In.-Lhs.	Over- hung Lus.	$\underset{\text { MP }}{\substack{\text { Input }}}$	Full-Load Amps at 90 VBC	Gear Ratio	Stack No.	List	Each	Shipg. Wt.
$\begin{aligned} & 5 \\ & \hline 22 \end{aligned}$	$\underset{200}{215}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 1 / 10 \\ & 1 / 10 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.3 \end{aligned}$	$351: 1$ $81: 1$	11491	$\$ 620.00$ 620.00	$\begin{aligned} & \$ 476.75 \\ & 476.75 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 15.0 \end{aligned}$

PARTS AVAILABLE FOR MANY DC GEARMOTORS,

 CALL 1-800-323-0620

TRANSMISSION: GEARMOTORS

90 VDC RIGHT ANGLE GEARMOTORS

34 TO 340 IN.-LBS.

hrcase: Zinc die-cast rication: Grease packed brsizinput gear, steel; worm, rdened steel; output gear, it inen
prinigs: Bronze sleeve on e; ball on motor
Is:On output shaft

Mounting: All-position Rotation: Reversible Thermal Protection: None Brushes: Externally replaceable Ambient $40^{\circ} \mathrm{C}$.
Duty: Continuous
Enclosure: TENV

$\begin{aligned} & \text { Name- } \\ & \text { plate } \\ & \text { HPM } \end{aligned}$	F月 Torque In.-lis.	Overhung Load Lhs.	Input $H P$	$\begin{aligned} & \text { F/L } \\ & \text { Amps at } \\ & 90 \mathrm{VDC} \end{aligned}$	Gear Ratio	Stack No.	List	Each	Shpg. Wt.
3.2	340^{*}	100	1/12	0.80	525:1	42723	\$265.00	\$203.50	10.0
6	177	100	$1 / 12$	0.83	275:1	42724	265.00	203.50	10.0
9.9	228	100	1/12	0.83	167:1	42725	265.00	203.50	10.0
23.5	102	100	1/12	0.83	70:1	42726	265.00	203.50	10.0
45	56	100	1/12	0.83	37:1	42727	265.00	203.50	10.0
89	34	100	1/10	0.89	37.1	42728	265.00	203.50	10.0

$\left({ }^{*}\right)$ Intermittent rating. If continuous application, rating is 250 in .-bs.

UNIVERSAL 115 V AC/DC RIGHT ANGLE GEARMOTOR

27. TO 250 IN.-LBS.

Gearcase: Zinc die-cast Lubrication: Grease packed Gears: Input gear, phenolic and steel; output gear, cast iron Bearings: Bronze sleeve on both case and motor
Seals: On output shaft
Mounting: All position \}otation: Reversible

Thermal Protection: None

Input HP: 1/15
Brushes: Replaceable; approx.
300 hours life
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Enclosure: Vented
Speed Control: Adaptable to No. 4X796

REPLACEMENT PARTS FOR AC/DC GEARMOTORS
Vo. 2M184. Input $115 \mathrm{~V}, 5000$ RPM, AC/DC Motor. Shpg. wt. 2.7 bs. List \$89.00. Each.. \$66.45

Vo. IR410. Replacement Brushes (Pkg. of 6). Shpg. wt. 0.1 lbs. 'ist \$24.00. Each

REPLACEMENT ARMATURE AVAILABLE,

CALL 1-800-323-0620

Fex M UNUERSAL $115 V$ AC/DC $50 / 60 \mathrm{~Hz}$										
$\begin{aligned} & \text { Name- } \\ & \text { plate } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Load } \\ & \text { Speed } \\ & \text { RPM } \end{aligned}$	Full- Load Torque In.-Lhs.	Over- hung Lhs.	Gear Ratio	$\begin{gathered} \text { Full- } \\ \text { Load } \\ \text { Amps } \\ \text { at } \\ 115 \mathrm{~V} \end{gathered}$	Stock Right Hand Output		List	Each	Shpg.
2.8*	9	250	100	1787:1	1.3	22797	11486	\$177.00	\$135.70	6.0
6.7	24	162	100	745:1	1.3	22798	11485	177.00	135.70	
12.8	37	110	100	390:1	1.3	27799	1L484	177.00	135.70	6.0
21	66	100	100	238:1	1.3	22800	1 L483	177.00	135.70	6.0
21	66	100	100	238:1	1.3	22801 \ddagger		177.00	135.70	6.1
50	176	45	100	100:1	1.3	22802	11482	177.00	135.70	
100	306	27	100	52:1	1.3	27803	11481	177.00	135.70	6.2

${ }^{*}$) No. 11486 is 4 RPM. (\dagger) Output shaft viewed facing lead end of motor.
(\ddagger) Double output shaft.

SPEED CONTROL FOR AC/DC GEARMOTOR

No. 4X796. 5 Amp Speed Control. Shpg. wt. 0.3 lbs. List ...\$26.26. Each.

POWER TRANSMISSION: GEARMOTORS

SUBFRACTIONAL AC GEARMOTORS

18 IN.-LBS.
Gearcase: Zinc die-cast
Lubrication: Grease filled
Gears: Delrin and steel
Bearings: Porous bronze sleeve on both case and motor

Mounting: All position:
Rotation: CW facing output shaft
Thermal Protection: Impedance

PARTS AVAILABLE FOR MANY AC GEARMOTORS,
CALL 1-800-323-0620

1.18 TO 50 IN.-LBS.

Gearcase: Zinc die-cast Lubrication: Grease filled
Gears: Heat treated cut steel and acetal Bearings: Porous bronze sleeve on both case and motor
Mounting: All position
Rotation: CW facing output shaft
Thermal Protection: Impedance

Torque In.-Lbs. Start	Run	Overhung Load Lbs.	$\underset{H P}{\text { Input }}$	Gear Ratio	$\begin{aligned} & \text { Name- } \\ & \text { plate } \\ & \text { RPM } \end{aligned}$	Full-Load Amps at 115 V	$\begin{gathered} \text { Stack } \\ \text {. No. } \end{gathered}$	List	Each	Shpg. Wt.
50	50	50	1/400	2965:1	1	0.3	27804	\$54.00	\$40.90	2.5
25	25	50	1/400	1471:1	2	0.4	27805	54.00	40.90	2.6
21.50	22.5	50	1/330	495:1	6	0.4	27806	54.00	40.90	2.3
25.	25.7	50	1/135	250:1	12	0.4	22807	54.00	40.90	3.3
10.50	15.2	50	1/120	149:1	20	0.5	27808	54.00	40.90	3.8
6.50	11.6	50	1/120	96:1	30	0.5	27809	54.00	40.90	3.3
3.25	4.7	50	1/120	48:1	60	0.4	27810	54.00	40.90	3.3
1.50	2.7	50	1/120	24:1	120	0.4	27811	54.00	40.90	3.5
0.75	1.18	50	1/120	15:1	200	0.4	27812	54.00	40.90	35

MANY BRANDS OF PUMPS \& PLUMBING PRODUCTS AVAILABLE

ALLDOS • DAYTON • BRADLEY - MACCLEAN • IDEAL - RULE - ZOELLER - AQUANOT • BASEMENT WATCHDOG

4 TO 50 IN.-LBS.

arcase: Zinc die-cast.
pricition: Grease filled. karstinelrin and steel
zarings: Porous bronze sleeve on both se and motor
bunfigig: All position
, tation: CW facing output shaft
termaf Protection: Impedance

3.3 TO 100 IN.-LBS., HIGH TORQUE

Gearcase: Gasketed zinc die-cast with screws
Lubrication: Grease filled
Gears: Hardened steel and phenolic
Bearings: Roller on case; ball and porous bronze sleeve on motor
Mounting: All position
Rotation: CW facing output shaft
Thermal Protection: Auto
Warranty: 2 Year

Torque In.-Ibs.		Overhung Load Lhs.	$\begin{gathered} \text { Input } \\ \text { HP } \end{gathered}$	Gear Ratio	$\begin{aligned} & \text { Name- } \\ & \text { plate } \\ & \text { RPM } \end{aligned}$	Full-Load Amps at 115 V	Stack No.	List	Each	Shpg. Wt.
Start	Rurn									
100	100	65	1/150	6860:1	0.5	0.26	67901	\$75.00	\$57.00	3.4
100	100	65	1/100	3237.24:1	. 5	0.47	62902	${ }^{75.00}$	+57.00	3.4
40	50	50	1/100	487.56:1	6	0.46	21002	70.00	53.40	2.9
40	50	22	1/85	268.47:1	12	1.02	67903	70.00	53.40	3.6
4	5	2.6	1/45	16.81:1	200	1.51	62904	70.00	53.40	3.8
3	3.3	1.5	1/45	9.625:1	360	1.51	62905	70.00	53.40	3.8

${ }^{*}$) All ratings are at 60 Hz . Also operable at 50 Hz at $5 / 6$ of 60 Hz rating for HP , amps, and RPM.
PARTS AVAILABLE FOR ALL AC GEARMOTORS, CALL 1-800-323-0620

POWER
TRANSMISSION:

SUBFRACTIONAL AC GEARMOTORS

GEARMOTORS

B

12 TO 120 IN.-LBS.
Gearcase: Zinc die-cast
Lubrication: Grease filled
Gecirs: Phenolic, sintered and cut s'teel
Bearings: Porous bronze sleeve on both case and motor
Mounting: All position
Rołation: CW facing output shaft
Thermal Protection: None

Key:	Torgue In.the		Overhung Load Lhs.	${ }^{\text {Input }}$	Gear Ratio	$115 \mathrm{~V}, 60 \mathrm{~Hz}$			$220-240 \mathrm{~V}, 50 \mathrm{~Hz}$			List	Each	Shy	
			$\begin{aligned} & \text { Name- } \\ & \text { papte } \end{aligned}$			FullLoad	Stock	$\begin{aligned} & \text { Name- } \\ & \text { (late } \end{aligned}$	FullLoad	Stock					
	Stait	Run				RPM	Amps.	No.	RPM	Amps	No.				
A	100	120		7	1/60	525:1	6	1.65	$3 \mathrm{M104}$	5	0.7 .	14457	\$59.73	\$53.80	4.3
B	50	65	7	1/60	291:1	10	1.65	$3 \mathrm{M103}$	8.3	0.7	1 L 456	74.00	66.60	4.1	
A	21.5	${ }_{12} 1.5$	7	$1 / 60$	126:1	25	1.5	47146	21	0.7	14458	59.73	53.80 53	4.4	
A	10	12	7	1/60	63.6:1	50	1.2	42147	42	0.7	1 L 59	59.73	53.80	4.4	

25 TO 150 IN.-LBS., HIGH TORQUE

Gearcase: Zinc die-cast with screws and gasketed cover
Lubrication: Grease filled
Gears: Hardened steel and phenolic
Bearings: Roller on case; ball and porous
bronze sleeve on motor

25tw										
Tarque in.-Lhs.'		Overturng Load Lbs.	InputHP	Gear Ratio	$\begin{aligned} & \text { Name- } \\ & \text { plate } \\ & \text { RPM } \end{aligned}$	Futl-Load Amps at 115 V	Stack No.	List	Each	Shpg. Wt.
Start	Run									
80	100	56	$1 / 100$	2685.27:1	1	0.55	21001	\$80.00	\$61.20	3.6
80	130	56	$1 / 90$	786.61:1	4	0.85	62906	80.00	61.20	3.0
150	. 150	65	1/85	562.52:1	6	1.06	62907	80.00	61.20	4.8
25	45	15	1/85	124.11:1	25	1.06	62908	80.00	61.20	4.8
15	25	10	1/45	60.71:1	50	1.40	62909	80.00	61.20	4.9

(*) All ratings are at 60 Hz . Also operable at 50 Hz at 516 of 60 Hz ratings for HP , amps, and RPM.

Mounting: All position
Rotation: CW facing output shaft
Thermal Protection: Auto
Warranty: 2 Year

SUBFRACTIONAL AC AND AC BRAKE TYPE GEARMOTORS

回

E
2 TO 30 IN.-LBS.
arcose: Zinc die-cast with steel cover
pricotion: Grease filled*.
arsiPhenolic and metal
arings: Porous bronze sleeve on both
se and motor
puntiag: Allposition
tation: Reversible
ermal Protections None
apacitor: Required, Order No. 6X652 sepa-
ately

BRAKE TYPE, 6 TO 13 IN.-LBS.
Gearcase: Zinc die-cast with steel cover Subrication: Grease filled
Gears: Sintered steel and phenolic
3earings: Porous bronze sleeve on both sase and motor
Mounting: All position on models with magretic brake; output shaft horizontal only on models with cone brake
Rotation: CW facing output shaft Thermal Protection: None

$\begin{gathered} \text { Terques } \\ \text { in.-Lhs. } \\ \text { Start Ru } \end{gathered}$		Overhung Lad Lhat.	$\underset{H P}{\text { Input }}$	Gear Ratio	$\begin{aligned} & \text { Name- } \\ & \text { Plate } \end{aligned}$	Fult Load Amps	Sz Stock No.	$\begin{aligned} & 220 \\ & \begin{array}{l} 220 \\ \text { Name- } \\ \text { plate } \end{array} \end{aligned}$	FullLoad Amps	0 Hz Stock No.	List	Each	Shpg. mi.
11.5	13 6	3.5 3.5	$1 / 70$ $1 / 70$	125:1	25 50	0.75 0.76	$3 M 257$ 3×258	21 42	0.36 0.36	11466 1465	$\$ 45.39$ 46.96	$\begin{aligned} & \$ 40.90 \\ & 42.30 \end{aligned}$	2.9 3.0
11.5	13 6	3.5	1/70	126:1 6 6.6:1	25 50	0.75 0.75	3 M 1028	$\stackrel{21}{42}$	0.36 0.36	11468	41.02 44.17	$\begin{aligned} & \mathbf{3 6 . 9 5} \\ & \mathbf{3 9 . 8 0} \end{aligned}$	2.6

PARTS AVAILABLE FOR MANY AC GEARMOTORS, CALL 1-800-323-0620

SUBFRACTIONAL AC GEARMOTORS BRAKE TYPE

Torque In.-Lbs. Start Run	Overhung Load Lhs.	Input	Gear Ratio	$115 \mathrm{~V}, 60 \mathrm{~Hz}$ Name- Full- plate RPM Road Amps NtockNo.			220-2N,			List	Each	$\mathbf{S I}$
							Nameplate		Stor			
								Ant	No.			
2230	3.5	1/100	439:1	7	0.55	3M231	5.8	0.19	$1 L 464$	\$48.46	\$43.65	-
2230	3.5	1/100	439:1	7	0.55	3M287	5.8	0.3	12463	40.71	36.65	

Rotation: CW facing output shaft
PARTS AVAILABLE FOR MANY AC GEARMOTORS,
Thermal Protection: Impedance
CALL 1-800-323-0620

1.5 TO 42 IN.-LBS.

Gearcase: Zinc die-cast with steel cover Lubrication: Grease filled
Gears: Phenolic and steel .
Bearings: Porous bronze sleeve on both case and motor
Mounting: Output shaft horizontal only
Rotation: Reversible
Thermal Profection: None
Brake: Spring-loaded friction type
Capacitor: Required, order No. 6X652 sepa-
Brake: Magneticclapper type or cone type

rately

SKZ

SUBFRACTIONAL AC GEARMOTORS BRAKE TYPE

12 TO 72 IN.-LBS.

tarcase: Zinc die-cast with steel cover orication: Grease filled pars: Phenolic and steel brings: Porous bronze sleeve on both se and motor
punting: All position tation: CW facing output shaft ermal Protection: None vae: MiMagnetic clapper type

	5											
					15V;60		220-	240V,	50 Hz			
$\begin{aligned} & \text { Torque } \\ & \text { ln-Lhs. } \\ & \text { Start Run } \end{aligned}$	Overhuary Load Lbs.	Ingut	Gear Ratio	$\begin{gathered} \text { Name- } \\ \text { Rate } \\ \text { RPM } \end{gathered}$	$\begin{aligned} & \text { Full- } \\ & \text { Loas } \\ & \text { Arpps } \end{aligned}$	Stock	$\begin{gathered} \text { Name- } \\ \text { patite } \\ \text { RPM } \end{gathered}$	$\begin{aligned} & \text { Fullt } \\ & \text { Coad } \\ & \text { Amps } \end{aligned}$	Stock No.	List	Each	Sthpg.
	7	$1 / 60$	525:1	6	1.4	47148	5	0.65	11462	\$71.49	\$64.35	4.5
1821	7	1/60	126:1	$\stackrel{25}{50}$	1.5	47149	21	0.65	14461	${ }_{71.49}$	64.35	4.5
$9 \quad 12$	7	1/60	63.6:1	50	1.2	42150	42	0.65	12460	71.49	64.35	4.5

PARTS AVAILABLE FOR MANY AC GEARMOTORS, CALL 1-800-323-0620

Enclosure: Open fan cooled
3rake: A] Ratchet type; B None

Duty: Continuous
Enclosure: TENV
$=$ Capacitor: Included

PARTS AVAILABLE FOR MANY AC GEARMOTORS,

\qquad C
CALL 1-800-323-0620

12 TO 67 IN.-LBS.

Gearcose: Die-cast alloy
Lubrication: Grease filled
Gears: Phenolic, sintered and cut steel
Bearings: Heavy-duty needle on output shaft on case; ball on motor
Seals: Grease seals on input and output shafts
Mounting: All position
Rotation: Reversible
Thermal Protection: None
Ambienf: $40^{\circ} \mathrm{C}$
Duly: Continuous
Enclosure: TENV
Brake: Adaptable to No. 5X400 brake
Capacitor: Required, order No. 6X653 separately

Nameplate RPM	FullLoad Torque In. Al t s.	Dverhung Load llis.	input	Gear Ratio	full-Loud Amps at 115 V	Stock No.	List	Each	Shyg. Wt		citor ired Each
14	67	50	160	108.6.1	0.38	42062	\$124.46	\$112.05	6.7	6x653	\$4.49
28	50	50	$1 / 25$	58.11	0.51	42063	124.46	-112.05	7.4	6X653	4.49
54	30	50	1/25	28.7:1	0.51	42064	126.90	114.25	6.3	6X653	4.49
95	20	50	1/25	15.7:1	0.59	42065	126.90	114.25	6.5	6x653	4.49
124	14	50	1/25	11.8:1	0.51	42612	126.90	11425	6.8	6×653	4.49
154	12	50	1/25	10.5:1	0.59	42613	126.90	114.25	6.8	6x653	4.49

${ }^{(}{ }^{*}$) Ratings are for 60 Hz . Also operable at 50 Hz at 56 of 60 Hz ratings for HP , amps, and RPM.
Optional Mounting Bracket attaches to face of gear box to provide floor, wall, or ceiling mount. Includes steel bracket and four screws. Dayton brand.
No. 2A754. Shpg. wt. 0.7 lbs. List $\$ 14.00$. Each .$\$ 10.37$

GRAINGER HAS OVER 330 BRANCHES NATIONWIDE
We're well stocked with items you use everyday and our salespeople
are knowledgeable, courteous professionals who care about your business. To find the branch nearest you, check the branch listings at the front of the catalog.

FRACTIONAL AC GEARMOTORS PARALLEL SHAFT

20 TO 100 IN.-LBS. HIGH TORQUE

arcase: Die-cast aluminum
brication: Permanent heavy gear oil
aars: Ist stage steel, helical; subsequent
:ages steel or heat treated powdered tetal spur
eqुings: Heavy-duty needle on output
hatet on case; ball on motor
ieals: Spring-loaded lip-type on input and utput shafts
houming: All position
ofotion: Reversible
hemal Protection: None
Ambiant: $40^{\circ} \mathrm{C}$
Duty: Continuous
Brake Adaptable to No. 5X400
Waritanty: 2 Year

ACCESSORIES

Conduit Box Kit includes conduit box and cover. Capacitor mounting stud welded to inside cover. Accepts Nos. 2A699 and 2A700. "Matchbox" capacitors not included. Dayton brand.
No. 2A701. Shpg. wt. 0.5 Ibs. List \$5.16.
Each \qquad
4 MFD "Matchbox" Capacitor designed for use with conduit box No. 2A701 and 1/80 HP 115V gearmotors (only) listed on this page.
No. 2A699. Shpg. wt. 0.1 Ibs. List $\$ 7.85$. Each.
............................... $\$ 7.27$

8 MFD "Matchbox" Capacitor (not shown) designed for use with conduit box No. 2 A 701 and $1 / 20 \mathrm{HP} 115 \mathrm{~V}$ gearmotors (only) listed on this page.
No. 2A700. Shpg. wt. 0.1 lbs . List $\$ 10.52$.
\qquad
Mounting Bracket attaches to face of gear box to provide floor, wall, or ceiling mount. Includes steel bracket and four screws. Dayton brand.
No. 2A754. Shpg: wt. 0.7 lbs. List $\$ 14.00$. Each... $\$ 10.37$

$\begin{aligned} & \text { plate } \\ & \text { RPM } \end{aligned}$	$\begin{aligned} & \text { F/ } \\ & \text { Torque } \\ & \text { no.-bs. } \end{aligned}$	Load Lhs.	$\underset{H P}{\substack{\text { Input }}}$	Gear Ratio	$\begin{aligned} & \text { Load } \\ & \text { Amps } \end{aligned}$	Stock No.	List	Each	$\underset{\substack{\text { Shpg. } \\ \mathrm{W} . \\ \hline}}{ }$	Capac Stoc No.	leq'd. Each
$\frac{1.2}{2.3}$	100 100	${ }_{90}^{90}$	1/80	${ }^{1369: 1}$	0.30 0.30	6207	$\$ 217.00$ 217.00	$\begin{gathered} \$ 166.75 \\ 166.75 \end{gathered}$	${ }_{5}^{5.7}$	6X652 6×652	\$4.49
5	100	90	$1 / 80$	362:1	0.30	6207	217.00	166.75	5.5	6X652	4.4
8	76	90	$1 / 80$	186:1	0.30	62076	217.00	166.75	5.3	6×652	4.49
16.7	100	90	1120	96.1	0.62	62077	217.00	166.75	6.6	6×65	5.38
32.	96	90	120	49:1	0.62	6707	217.00	166.75	6.4	6X65	5.38
63	49	90	1/20	25:1	0.62	6207	217.00	166.75	6.2	${ }_{6 \times 65}$	
95	${ }^{30}$	9	1220	17:1	0.62	6 619	217.00	166.75	6.0	6x65	5.38
124	20	90	120	$10: 1$	0.62 0.62	6208	217.00 217.00	166.75 166.75	6.0	6x655 6×655	5.38
$\frac{1.2}{3}$	100 100	90	180	${ }^{1369.1}$	0.024		${ }_{222200}^{22200}$	0.75	80		
4.5	100	90	1/80	362:1	0.24	1L522	222.00	170.75	5.7		
8.8	76	90	1/80	186:1	0.24	1 L 519	222.00	170.75	6.0		
	${ }_{96}^{100}$	${ }_{90}^{90}$	-	:1	${ }_{0}^{0.32}$	$1{ }^{1} 5$	222.00 22200	,			
63	49	90	1/20	$25: 1$	0.32	$1{ }^{1521}$	222.00	170.	6.0		
95	30	90	1/20.	17:1	0.32	1 L 518	222.00	170.75	10.0		
124	25	90	120	13:1	0.32	15531	222.00	170.75	9.0		
154	20	90	1/20	10:1	0.32	15529	222.00	170.75	7.7		
				96:1		6700	${ }^{223.00}$	171.25	7.2	${ }^{6 \times 655}$. 38
63	49	90	1/20	49:1	${ }^{0.62}$	$\begin{aligned} & 6208 \\ & 6208 \end{aligned}$	${ }_{2223.00}^{23.00}$	171.25 171.25	7.0	6X655 6×655	
95	5	90	$1 / 20$	17:1	0.62	6A19	223.00	171.25	6.5	6x655	
124	20	0	$1 / 20$	13:1	0.62	GZO1	${ }_{223}^{223.00}$	171.25	6.6	6×655	
154	20	90	$1 / 20$	10:1	0.62	6	223.00	171.25	6.0	6×655	
16.7	100	90	120	$96: 1$	0.33	1L5	$\stackrel{228.00}{ }$	175.25	7.5		
32,	49	90	120	25:1	${ }_{0}^{0.33}$	15230	228.00	175.25	8.0	(incluaed	
95		9	$1 / 20$	17:1	0.33	1517	228.00	175.25	7.9		
124	20	0	$1 / 20$	13:1	${ }^{0.33}$	15330	${ }^{228.00}$	175.25	8.0	Included	
154	20	90	1/20	10:1	0.33	$1 \mathrm{L528}$	228.00	175.25	7.0		

${ }^{*}$) An ratings are for 60 Hz . Also operable at 50 Hz at 566 of 60 Hz ratings for HP , amps, and RPM.

PARTS AVAILABLE FOR MANY AC GEARMOTORS,
CALL 1-800-323-0620

POWER
 TRANSMISSION: GEARMOTORS
 FRACTIONAL AC GEARMOTORS PARALLEL SHAFT

42 TO 113 IN.-LBS.

Gearcase: Zinc die-cast
Lubrication: Grease filled
Gears: Phenolic and steel
Bearings: Porous bronze sleeve on case;
ball on motor
Seols: On output shafts
Mounting: All position
Rotation: CW facing output shaft
Thermal Protection: None
Ambient: $40^{\circ} \mathrm{C}$
Buty: Continuous
Enclosure: TEFC

30 TO 150 IN.-LBS.

Gearcase: Zinc die-cast
Lubrication: Grease filled
Gears: Steel/heat treated steel
Bearings: Needle/sleeve on case; ball on motor
Seols: On output shaft
Mounting: All position
Rotation: Reversible
Thermal Protection: None
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Enclosure: TEFC
Brake: Adaptable to No. 5X400 using one dise in brake
Capacitor: Included

PARTS AVAILABLE FOR MANY AC GEARMOTORS,
CALL 1-800-323-0620

MANY BRANDS OF AIR TREATMENT PRODUCTS AVAILABLE

FRACTIONAL AC GEARMOTORS PARALLEL SHAFT

[

38 TO 350 IN.-LBS.,

 HIGH TORQUEGearcase: Die-cast aluminum
Lubrication: Permanent heavy gear oil
Gears: Hardened steel; helical 1st stage, spur subsequent stages, AGMA Class 9
Bearings: Heavy-duty needle roller and thrust balls on case; ball on motor
Seals: Lip-type on input and output shafts Mounting: All position
Rotation: CW facing output shaft on shaded pole models; reversible on split-phase models
Thermal Protection: None
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous

Ker	$\begin{aligned} & \text { Name- } \\ & \text { Name- } \\ & \text { plate } \end{aligned}$	Ftill-Load Torque In.-Lhs	Overhung Load Lbs.	${ }_{\text {InP }}$ Input	Brake Req'd.	Gear Ratio	$\begin{gathered} \text { Full-Loa } \\ \text { Arups } \\ 115 \mathrm{~V} \end{gathered}$	Stock No.	List	Ench	w
A	4	200	175	1/40		396:1	1.4	3 M 326	\$262.00	\$201.00	9.0
	6	200	175	$1 / 40$	1	$265: 1$	14	3M327	262.00	201.00	-
	${ }^{13.5}$	200	175	$1 / 20$	1	118:1	${ }_{12}^{1.6}$	3M328	${ }^{262.00}$	201.00	10.0
	${ }^{30} 67.5$	125	175 175	1/15	1	23:1	${ }_{2.2}^{2.2}$	3M329 3m330	${ }_{262.00}^{262.00}$	201.00 201.00	11.0 10.0
Whaty											
8888	${ }_{30}^{13.5}$	${ }_{125}^{200}$	175	1/15	1	118:1	1.7	27817	${ }_{323}^{32.00}$	248.25	1.0
	${ }^{30}$	125 55	175	$1 / 15$	1	63:1	1.7	6 6 303	${ }^{323.00}$	248.25	11.0
	67.5 100	${ }_{38}^{55}$	175	1/15	1	23:1	1.7	27818	${ }_{323}^{323.0}$	248.	
$\mathbf{C}$$\mathbf{C}$$\mathbf{C}$$\mathbf{C}$$\mathbf{C}$											
		${ }^{275}$	175	$1 / 6$		64.6:1	4.2	GK328	394.00	303.00	17.0
	40	225	175	1/6	2	42.7:1	4.2	6K329	394.00	303.00	17.0
	60	150	175	$1 / 6$	2	28.1:1	4.2	6 K 331	${ }^{394.00}$	303.00	17.0
	90	100	175	$1 / 6$	2	19.1:1	4.2	615332	3394.00	303.00	17.0
	135	65	175	1/6	2	12.65:1	4.2	6K334	394.00	303.00	17.0

Enclosure: TEFC
Brake: Adaptable to No. 5X400 brake
Worranty: 2 Year

FRACTIONAL AC GEARMOTORS PARALLEL SHAFT

30 TO 385 IN.-LBS., HIGH TORQUE

Gearcase: Die-cast aluminum
tübrication: Permanent heavy gear oil
Gears: Hardened steel; helical 1st stage, spur subsequent stages, AGMA Class 9
Bearings: Heavy-duty needle roller and thrust balls on case; ball on motor
Seals: Lip-type on input and output shafts
Hounting: All position; can also be face
mounted
Ptation: Reversible
Thermal Protection: None
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Enclosure: TEFC
Broke: Adaptable to No. 5X400
Capacitor: Included

PARTS AVAILABLE FOR MANY AC GEARMOTORS,

 CALL 1-800-323-0620Warranty: 2 Year

A WIDE SELECTION OF WASHDOWN PRODUCTS IS AVAILABLE

Washdown products are for applications in food, beverage, or chemical processing
 plants where product is constantly exposed to high pressure washdowns or other high humidity or wet environments. Many washdown products feature USDA approved cor-rosion-resistant white epoxy primer and paint to meet sanitary requirements.

For Washdown DC Speed Controls,
For Permanent Magnet DC Washdown Motors,
For AC Washdown Motors,
For UHMW-PE Plastic Washdown Bearings,
For Washdown Shaft Collars,
For Washdown Speed Reducers,
See Pages 268 and 277.

FRACTIONAL AC GEARMOTORS PARALLEL SHAFT

$\left.{ }^{*}\right)$ Key dimension $3 / 16 \times 3 / 16 \times 1 / 8^{*}$ long; except No. 22847 is $1 / 4 \times 1 / 4 \times 1^{3} / 4^{4}$ long.

7. 69 TO 438 IN.-LBS.

arçase: Cast iron
orication: SAE \#90 type EP differential
arsisteel
arings: Ball on output shaft on case; ball motor
als Elip-type on input and output shafts ounfing: Horizontal stotion: Reversible hermiof Protection: None mbient: $40^{\circ} \mathrm{C}$ uty: Eontinuous iclosifie: Open dripproof

SHW

Nameplate	Full-Load Torque In.-Lbs.	Overhung Load Lhs.	$\begin{gathered} \text { Input } \\ \text { HP } \end{gathered}$	Gear Ratio	Full-Load Amps at 115V	Stock No.	List	Each	Shpg. Wt.
45	438	385	1/3	$38: 1$	5.8	27847	\$525.00	\$367.25	39.0
89	219	245	1/3	19:1	5.8	27848	433.00	303.00	39.0
157	125	245	1/3	11:1	5.8	27849	433.00	303.00	37.0
288	69	245	1/3	6:1	5.8	22850	393.00	275.00	36.0

LTY THREEPHASE, OPEN DRIPPRCOF-208 220/440V, 60 flz

Namepiate RPM	Full-Load Torque In.-Ihs.	Overhung Load Lhs.	Enput HP	Gear Ratio	Full-Load Amps at 2204	Stock No.	List	Each	Shpg. W.
157	125	245	1/3	11:1	1.4	22851	\$524.00	\$366.75	36.0

${ }^{(}{ }^{*}$) All ratings are for 60 Hz . Aso operable at 50 Hz at 56 of 60 Hz ratings for HP, amps, and RPM.

100 TO 600 IN.-LBS.

Gearcase: Zinc die-cast
ubrication: Grease filled
jears: Heat treated steel/phenolic
3earings: Needle/ball/sleeve on case; ball in motor
jeals: On output shaft
Aounting: All position
:otation: Reversible
hermal Protection: None
imbient: $40^{\circ} \mathrm{C}$
zuty: Continuous
inclosure: TEFC
irake: Adaptable to No. 5 X400 using one isc in brake
:apacitor: Included

POWER TRANSMISSION: GEARMOTORS

FRACTIONAL AC GEARMOTORS PARALLEL SHAFT

175 TO 600 IN. -LBS.

Gearcase: Zinc die-cast
Lubrication: Grease filled
Gears: Steel/heat treated steel
Bearings: Needle/sleeve on case; ball on motor
Seals: On output shaft
Mounting: All position
Rotation: Reversible
Thermal Protection: None
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Enclosure: TEFC
Brake: Adaptable to No. 5X400 using one disc in brake
Capacifor: Included
PARTS AVAILABLE FOR MANY AC GEARMOTORS,
CALL 1-800-323-0620

Seals: On output shaft
Mounting: All position
Rotation: CCW
Thermal Protection: None
Ambient: $40^{\circ} \mathrm{C}$
NTN
A COMPLETE SELECTION OF NTN BEARINGS IS AVAILABLE, SEE PAGES 312 THRU 321.
Duty: Continuous

Enclosure: Open vent
MANY BRANDS OF HYDRAULICS/PNEUMATICS AVAILABLE
VTCEES5.

FRACTIONAL AC GEARMOTORS PARALLEL SHAFT

100 IN.-LBS., HIGH TORQUE

rrcase: Die-cast aluminum
rication: Permanent heavy gear oil
ars: Hardened steel; helical 1st stage, ir subsequent stages. AGMA Class 9
mrings: Heavy-duty ball and needle roller case; ball on motor
als:lip-type on input and output shafts unfirig: All position; can also be face unted
ation: Reversible
:rmeft Protection: None
biem: $40^{\circ} \mathrm{C}$
ry: Eontinuous
atures: Double output shafts
cloşūe: TEFC
akejAdaptable to No. 5X400 using two scs=
apacitor: Required, order No. 6X660 sepately
carränty: 2 Year

(*) Ratings are for 60 Hz . Also operable at 50 Hz at $5 / 6$ of 60 Hz ratings for HP , amps, and RPM

A WIDE SELECTION OF DEFINITE PURPOSE MOTORS IS AVAILABLE

For C-Face Motors,
For Hazardous Location Motors,
For 50 Hz and $60 / 50 \mathrm{~Hz}$ Motors,
For Instant Reverse Motors,
For Farm Duty Motors,
For Pump Motors,
For Appliance/Tool Motors,

See Pages 118 thru 125.
See Pages 126 thru 133.
See Pages 134 thru 138.
See Page 139.
See Pages 140 thru 148.
See Pages 149 thru 173.
See Pages 174 thru 183.

1900 TO 3000 IN.-LBS.

Gearcase: Zinc die-cast
Lubrication: Grease filled
Gears: Heat treated steel/phenolic
Bearings: Needle/sleeve on case; ball on
motor
Seals: On output shaft
Mounting: All position
Rotation: Reversible
Thermal Protection: None
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Enclosure: TEFC
Capacitor: Required, ordèr No. 6X655 separately

PARTS AVAILABLE FOR MANY AC GEARMOTORS, CALL 1-800-323-0620

FRACTIONAL AC GEARMOTORS PARALLEL SHAFT

Duty: Continuous
Enclosure: Open dripproof
PARTS AVAILABLE FOR MANY AC GEARMOTORS, CALL 1-800-323-0620

TEE M W

CHOOSE FROM MANY BRANDS
 OF INDUSTRIAL PUMPS

Including Ingersoll-Rand, Alldos,
Teel, Hale, and Little Giant

FRACTIONAL AC GEARMOTORS PARALLEL SHAFT

70 TO 1105 IN.-LBS., HIGH TORQUE

earcase: Die-cast aluminum
bbication: Permanent heavy gear oil
edrs: Hardened steel; helical 1st stage, jur subsequent stages. AGMA Class 9 3eofrings: Heavy-duty ball and needle olfer, and thrust balls on case; ball on notor
jeds: Lip-type on input and output shafts Kounting: All position
Rotation: Reversible
Thermal Protection: None
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Enclosure: TEFC
Brake: Adaptable to No, $4 \mathrm{Z4} 47$ brake
Warranty: 2 Year

PARTS AVAILABLE FOR MANY AC GEARMOTORS,

CALL 1-800-323-0620

Key	$\begin{aligned} & \text { Name- } \\ & \text { plate } \end{aligned}$	Full-Laad Torque in.-Lhs.	Overhung Load Lhs.	Input	Gear Ratio	Full-Load Amps at 115V	Stock No.	List	Each	Sthpg. Wt.
A	5.4	1087	325	1/4	315.5:1	3.7	67399	\$516.00	\$396.75	27.0
2	¢ 8	974	325	1/4	210.1	3.7	62400	516.00	396.75	27.0
A	12	992	325	$1 / 4$	142.9:1	3.7	6K351	516.00	396.75	27.0
A	18	800	325	$1 / 4$	95:1	3.7	62401	516.00	396.75	27.0
A	27	500	325	14	63.5:1	3.7	$6 K 352$	516.00	396.75	26.0
A	60	240	325	1/4	28.6:1	3.7	$6 K 353$	516.90	396.75	26.0
A	135	100	325	1/4	12.7:1	3.7	6 K 354	516.00	396.75	26.0
A	18	1017	325	1/3	95:1	5.7	67402	508.00	390.50	28.0
A	27	700	325	1/3	63.5×1	5.7	$6 K 396$	508.00	390.50	28.0
A	40	450	325	1/3	42.8:1	5.7	22842	508.00	390.50	27.0
A	60	320	325	1/3	28.6:1	5.7	6 K 369	508.00	390.50	27.0
A	90	220	325	1/3	19:1	5.7	22843	5508.00	390.50	26.0
A	157	125	325	$1 / 3$	11:1	5.7	27844	508.00	390.50	26.0
A	288	70	325	1/3	6.1:1	5.7	27845	508.00	390.50	26.0
A	22	1105	325	$1 / 2$	80:1	7.9	67403	571.00	438.50	30.0
A	40	700	325	$1 / 2$	428:1	7.9	$6 K 375$	571.00	438.50	29.0
A	60	480	325	1/2	28.6:1	7.9	6K583	571.00	438.50	28.0
A	90	320	325	1/2	19:1	7.9	$6 K 383$	571.00	438.50	28.0
A	135	215	325	$1 / 2$	12.7:1	7.9	6 K 506	571.00	438.50	28.0
Key	Nameprate RPM	Full-Load Tarque In.-Lhs.	Overtuting Load Lhs.	$\underset{\mathrm{HP}}{\text { Input }}$	Gear Ratio	Full-Load Ampss at 230 V	Stock No.	List	Each	Shpg. Wt
88888888	18	1017	325	1/3*	95:1	1.5	62404	\$609.00	\$468,25	28.0
	27	700	325	1/3*	63.5:1	1.5	42384	609.00	468.25	27.0
	40	450	325	1/3*	42.8:1	1.5	42385	609.00	468.25	24.0
	60	320	325	1/3*	28.6:1	1.5	42386	609.00	468.25	24.0
	90	220	325	1/3*	19:1	1.5	42387	609.00	468.25	24.0
	157	125	325	$1 / 3^{*}$	11:1	1.5	42388	609.00	468.25	24.0
	288	70	325	$1 / 3^{*}$	6.1:1	1.5	42389	609.00	468.25	24.0
888888	22	1105	325	1/2	80:1	2.2	62405	668.00	513.50	30.0
	40	700	325	1/2	42.8:1	2.2	42390	668.00	513.50	27.0
	60	480	325	$1 / 2$	28.6:1	2.2	47391	668.00	513.50	25.0
	90	320	325	$1 / 2$	19:1	2.2	42392	668.00	513.50	25.0
	135	215	325	$1 / 2$	12.7:1	2.2	42393	668,00	513.50	25.0
	288	100	325	1/2	6.1:1	2.2	42394	668.00	513.50	25.0

(*) Operable on 190/380V,50 Hz at $5 / 6$ of 60 Hz ratings for HP and RPM.

POWER
 TRANSMISSION: GEARMOTORS
 INTEGRAL AC GEARMOTORS PARALLEL SHAFT

 27871 available for selected models, see page 252

PARTS AVAILABLE FOR MANY AC GEARMOTORS, CALL 1-800-323-0620

MANY BRANDS OF FAN BLOWERS/CONTROLS AVAILABLE

GE • AUTOFLOW • CARLINGSWITCH • WHITE RODGERS

FRACTIONAL AC GEARMOTORS RIGHT ANGLE

[

13 TO 85 IN.-LBS.

earcase: Zinc alloy
ibrication: A \& B Grease filled; $[0$ Oil led
ears: [A] Hardened steel worm, pheslic output gear; [C] Hardened steel orm, forged bronze output gear
:arings: Ball on output shaft of case; ball 1 motor
ounting: All position except input motor aft up
,tation: Reversible
ermal Protection: None
nbient: $40^{\circ} \mathrm{C}$
ty: Continuous
closure: [A] \& B] TENV; C] TEFC
ake: Adaptable to No. 5×400 using one ic with $1 / 20$ HP, two discs with $1 / 12$ and ; HP models
pacitor: Required; order separately

Kay	$\begin{aligned} & \text { Name- } \\ & \text { plate } \\ & \text { RPM } \end{aligned}$	Full- Load Torque In.-Ubs.	Overhung Load Lhs.	$\begin{gathered} \text { Input } \\ \text { HP } \end{gathered}$	Gear Ratio	FullLoad Amps at 115 V	Stock No.	List	Each	Shpg. Wh.		
K4w												
A	$\begin{array}{r} 43 \\ 86 \\ 173 \end{array}$	$\begin{aligned} & 21 \\ & 22 \\ & 13 \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 1 / 20 \\ & 1 / 20 \\ & 1 / 20 \end{aligned}$	$\begin{aligned} & 40: 1 \\ & 20: 1 \\ & 10: 1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 47277 \\ & 42276 \\ & 42275 \end{aligned}$	$\begin{array}{r} \$ 261.00 \\ 261.00 \\ 261.00 \end{array}$	$\begin{array}{r} \$ 182.25 \\ 182.25 \\ 182.25 \end{array}$	9.810.0	$\begin{aligned} & 6 \times 652 \\ & 6 \times 652 \\ & 6 \times 652 \end{aligned}$	$\begin{aligned} & \$ 4.49 \\ & 4.49 \\ & 4.49 \end{aligned}$
										10.0		
要	$\begin{gathered} 43 \\ 86 \\ 173 \end{gathered}$	554123	$\begin{array}{r} 110 \\ 90 \\ 70 \end{array}$	$\begin{aligned} & 1 / 12 \\ & 1 / 12 \\ & 1 / 12 \end{aligned}$	$\begin{aligned} & 40: 1 \\ & 20: 1 \\ & 10: 1 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 47280 \\ & 47279 \\ & 42278 \end{aligned}$	$\begin{aligned} & 281.00 \\ & 281.00 \\ & 281.00 \end{aligned}$	$\begin{aligned} & 196.25 \\ & 196.25 \\ & 196.25 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 15.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 6 \times 654 \\ & 6 \times 654 \\ & 6 \times 654 \end{aligned}$	5.005.005.00
$\begin{aligned} & \mathbf{c} \\ & \mathbf{c} \\ & \mathbf{c} \\ & \mathbf{c} \end{aligned}$	$\begin{array}{r} 29 \\ 43 \\ 57 \\ 86 \\ 173 \end{array}$	8577685531	130	1/8	60:1	2.0	42721		226.50	15.0		
			110	$1 / 8$	$40: 1$	2.0	427283	324.00 324.00	226.50	15.0	6×658 6×658	8.828.828.82
			10090	1/8	$30: 1$ 201 1	2.02.020	$\begin{aligned} & 47722 \\ & 47282 \end{aligned}$	$\begin{aligned} & 324.00 \\ & 324.00 \end{aligned}$$34.00$		15.015.0	6×658 6×658 68	
									$\begin{aligned} & 226.50 \\ & 226.50 \end{aligned}$			8.828.828.82
			70	1/8	10:1					15.0	6X658	

(*) Ratings are for 60 Hz . Also operable at $105 \mathrm{~V}, 50 \mathrm{~Hz}$ at $5 / 6$ of rated HP and RPM.
PARTS AVAILABLE FOR MANY AC GEARMOTORS, CȦLL 1-800-323-0620

POWER
 TRANSMISSION: GEARMOTORS

FRACTIONAL AC GEARMOTORS RIGHT ANGLE

Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Enclosure: TEFC
Features: Double output shafts
Brake: Adaptable to No. 5×400 brake Capacitor: Required; included on A models; order separately for $[B$ models Warranty: 2 Year

MANY BRANDS OF
MATERIAL HANDLING
EQUIPMENT AVAILABLE

Bassich

SEE INDEX AT BACK OF CATALOG FOR COMPLETE EISTINGS

Dayton

FRACTIONAL AC GEARMOTORS RIGHT ANGLE

140 TO 215 IN.-LBS.,

 HIGH TORQUErrcese: Die-cast aluminum
rication: Oil filled
irs 1st stage steel helical, 2nd stage dened steel worm, bronze alloy Is Lip-type on input and output shafts aritigs: Needle bearing on case; ball on ,tom
unting: All position

Koy	$\begin{aligned} & \text { Name } \\ & \text { (} \mathrm{Hz} \end{aligned}$	$\begin{aligned} & \text { splate } \\ & 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \text { Full- } \\ & \text { Load } \\ & \text { Torque } \\ & \text { In.-tbs } \end{aligned}$	$\begin{gathered} \text { Overhung } \\ \text { Load } \\ \text { Lhs. } \end{gathered}$	$\underset{\text { HP }}{\text { trput }}$	$\begin{aligned} & \text { Gear } \\ & \text { Reatia } \end{aligned}$	$\begin{aligned} & \text { Full-Loas } \\ & -115 / 230 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Anps int } \\ & 110 / 220 \mathrm{~V} \end{aligned}$	Stock No.	List	Each	Shpg.
A	5.2 10	${ }_{8}^{4}$	150 150	225 225	1/15	312:1	1.00 .5 1.00 .5	${ }^{1.000 .5}$	11506	$\$ 527.00$ 527.00 	$\$ 405.00$	14.0 14.0
A	20	17	140	225	$1 / 15$	81:1	$1.3 / 0.65$	1.20 .61	12507	527.00	405.00	14.0
$\begin{aligned} & \hline \mathbf{B} \\ & \mathbf{B} \end{aligned}$	${ }_{10}$	${ }^{4.1}$	${ }_{215}^{215}$	200 200	1/15	351:1	$1.0 / 0.5$ 1.30 .65	${ }^{1.0 / 20.5}$	1 H 493	609.00 60900	468.25 468.25	16.0 16.0
	20	16.6	150	200	1/15	81:1	1.3/0.65	1.2/0.61	14495	609.00	468.25	14.0

tation: Reversible
orinial Protection: None
bient: $40^{\circ} \mathrm{C}$ Duty: Continuous
Iosime: TEFC
PARTS AVAILABLE FOR MANY AC GEARMOTORS,
jures: Double output shaft
rake: Adaptable to No. 5X400 brake
apacitior: Included Warranty: 2 Year

89 TO 250 IN.-LBS.

jearcase: Zinc die-cast ubrication: Grease filled jears: Heat treated steel
;earings: Sleeve on case; ball on motor
jeals: On output shaft
Hounting: All position
Zotation: Reversible
Thermal Protection: None
Ambient: $40^{\circ} \mathrm{C}$

$\begin{aligned} & \text { Name- } \\ & \text { Natate } \\ & \text { RapM } \end{aligned}$	$\begin{aligned} & \text { Full } \\ & \text { fand } \\ & \text { Tonctue } \\ & \text { for.ths. } \end{aligned}$	Overinuang Load Lhs	${ }_{\text {Infput }}$	Goar Reatio	$\begin{gathered} \text { Full-tooad } \\ \substack{\text { anps at } \\ 115 V^{2}} \end{gathered}$	Stock Ho.	List	Each	Sthpg
${ }^{1.3}$	${ }_{200}^{250}$	100 100	$1 / 50$ $1 / 20$	1255:1	1.1	12554	\$270.00.	\$207.50	13.0
5.6	200	100	$1 / 14$	275:1	1.1	1556	271.00	207.50	13.0
9	200 170	100 100	$1 / 12$	${ }_{7}^{167: 1}$	1.1	11557	271.00	207.75	12.0
39	89	100	1/12	37:1	1.4	15559	${ }_{271.00}$	207.75	12.0

Duty: Continuous
${ }^{*}$) Ratings are for 60 Hz Also operable at 50 Hz at $5 / 6$ of 60 Hz ratings for HP , amps, and RPM.
Enclosure: TEFC
Brake: Adaptable to No. 5X400 brake using one disc in brake
Capacitor: Included

POWER
TRANSMISSION:
GEARMOTORS

FRACTIONAL/INTEGRAL AC GEARMOTORS RIGHT ANGLE

[B]

163 TO 2410 IN.-LBS.

Gedricase: Die-cast aluminum

Lubrication: Shipped with oil
Geders: Hardened steel worm, forged bronze output gear
Beantigs: Open ball on case; ball on motor
Sealis. One double lip on input shaft; two double lip on output shaft
Mounting: Horizontal, vertical, or at 90° angles
Rotation: Reversible
Thermal Protection: None
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Enclosure: TEFC
Features: Single output shaft
Brake: Three-phase models use brake No. 3M360 or 2Z871; order separately from page 252.

Key	Frame	Type	C	XK	XM	Sq. Key
A	48-1	SEP-GWP	8.81	17.28	14.47	. 19×1.
8	56-6	TMP-GWP	9.28	17.41	13.91	. 25×1.12
B	$50-6$	UTP-GWP	10.16	16.44	12.94	. 25×1.12
B	143T-6	UTP-GWP	10.16	18.94	15.44	. 25×1.12
B	145T-6	UTP-GWP	10.16	18.94	15.44	. 25×1.12
$\begin{aligned} & \mathbf{c} \\ & \mathbf{c} \\ & c \end{aligned}$	$\begin{gathered} 56-6 \\ 143 T-6 \\ 145 T-6 \end{gathered}$	UTP-GWBP	15.31	17.63	12.9	38×2.00
		UTP-GWBP	15.31	20.13	15.44	. 38×2.00
		UTP-GWBP	15.31	20.13	15.44	. 38×2.00

[^43]
1/2 HP ADJUSTABLE SPEED DRIVES

- Fully assembled and aligned

djustable speed drives are variable speed elt drive transmissions. Include integraly mounted open dripproof or totally nclosed electric motor.
resigned for low speed applications and :here speed adjustments are desired. ised on conveyors, shop equipment, rachine drives, mixers, and other similar pplications.
eed is controlled by a 14 turn handleel providing stepless speeds using ustable pitch pulleys and deep cog belt. ved shaft. $40^{\circ} \mathrm{C}$ ambient, continuous y. 1.0 Service factor. Gray finish. CSA tified (LR6153). Dayton brand.

RIGHT ANGLE

ntegrally mounted right angle drive or low speed and high torque appliations
lepeatable speed setting capabilities
GEARCASE CONSTRUCTION
Gear: Hardened steel
me Wheel: Bronze forged
pot Shaft: Interchangeable for left or if hand output
rings: Tapered roller bearings for high ffing load applications
, ining: Horizontal, vertical, or at 90° gles

PARALLEL SHAFT

Shaft rotation easily reversed by electrical reconnection
Constant torgue and horsepower ranges on all units

- Automatic anticreep device maintains speed sefting
- Reflubrication eliminated by sealed Gall bearings and mechanical design which allows disks to slide on shaft with no metal to metal contact

GEARCASE CONSTRUCTION

:ase: Die-cast aluminum
eorings: Sealed ball
תounting: Adjustable, 180° swing cradle sase which permits drive to be tilted at uny angle

Key	Input HP	Output Shaft RPM Min. to Max.	Full-Load Torque In. Lhts.	Continueus Duty Outpart HB	Overhung Load Lbs.	Phasa	Volts 60 Hz	Full-Load Amps at Nameplata Volts	Input Motor RPM	Enclosure Type	Retation	Stock No.	List	Each	Shipg. Wt.
A	$1 / 2$	12-72	265-243	1/20-1/4	890	Single	115/230	$11.0 / 5.5$	1725	Op Drpf	Reversible	42370	\$961.00	\$672.50	41.0
8	$1 / 2$	1272	265-243	1/20-1/4	890	Three	230/460*	3.1/1.55	1725	TEFC	Reversible	3×297	1083.00	757.50	48.0
A	1/2	18-108	204-185	1/16-1/3	810	Single	115/230	11.0/5.5	1725	Op Drpf	Reversible	6K119	908.00	635.50	41.0
B	$1 / 2$	18-108	204-185	1/1613	810	Three	230/460*	$3.1 / 1.55$	1725	TEFC	Reversible	$3 N 259$	1026,00	718.00	44.0
A	$1 / 2$	64-364	68.8-65.2	1/14-2/5	570	Single	115/230	$11.0 / 5.5$	1725	Op Drpf	Reversible	42369	908.00	635.50	41.0
8	$1 / 2$	64-364	68.8-65.2	1/14-255	570	Three	230/460*	$3.1 / 1.55$	1725	TEFC	Reversible	42367	1026.00	718.00	45.0
A	1/2	141-846	32.8-29.5	1/14-2/5	450	Single	1158230	11.0/5.5	1725	Op Drpf	Reversible	42368	908.00	635.50	41.0
8	1/2	141.846	32.829 .5	1/14-2/5	450	Three	230/460*	$3.1 / 1.55$	1725	TEFC	Reversible	42366	1026.00	718.00	41.0
C	1/2	705-4230	18.37.5	1/5-1/2	108-100	Single	115/230	11.0/5.5	1725	Op Drpf	Reversible	5K994	612.00	428.00	35.0
D	1/2	705-4230	18.37 .5	1/5-1/2	108-100	Three	$230 / 460^{*}$	2.8/1.4	1725	TEFC	Reversible	42365	730.00	510.50	40.0

[^44]

Adjustable speed drives are variable speed belt drive transmis sions, furnished complete with a totally enclosed fan cooled motor. Designed for applications which include conveyors, shop equipment, machine drives, and mixers
Speed controlled by a 14 turn handwheel providing stepless speeds using an adjustable pitch pulley and deep cog belt. 40° ambient, continuous duty. 1.0 service factor. Gray finish. USEM brand.

Key	Input Hp	Output SHaft RPM Min. to Max.	fyll-Load Torque In.-Us.	Continuous Duty Output H^{6}	Overthung load Ltrs.	Phase	Volts 60 Hz	Full-Load Armps at Nameplate Vohs	Iaput Motor RPM	Enclosure Type	Rotation	Stock No.	List	Each	Shpg. Wt.
A	1	7.5 .75	1090.560	0.180 .67	1160	Thuree	208-230/460\%	3.6-3.6/1.8	1745	TEFC	Reversible	32857	\$1630.00	\$1141.00	137.0
E	1	20.3203	370-198	$0.12-0.64$	679	Three	208-230/460	3.63 .611 .8	1745	TEFC	Reversible	42497	1354.00	\$1947.50	78.0
C	$11 / 2$	11-109	872-411	$0.14-0.72$	980	Three	208230/460*	5.0/2.5	1730	TEFC	Reversible	37499	1360.00	952.00	82.0
C	11/2	20.3 203	$575-262$	0.18-0.84	879	Three	208-230/460*	5.0/2.5	1730	TEFC	Reversible	3N296	1360.00	952.00	82.0
0	11/2.	21-208	$750-303$	0.26 -1	107	Three	230/460*	5.0/2.5	1725	TEFC	Reversible	32605	1540.00	1078.00	105.0
E	$11 / 2$	190-1900	82.33	0.25-1	82	Three	230/460*	5.0/2.5	1725	TEFC	Reversible	37606	1496.00	1047.00	91.0
F	$14 / 2$	428-4275	36.5-14.7	0.25-1	75	Three	208-230/460*	5,0/2.5	1725	TEFC	Reversible	3N295	1067.00	746.50	69.0

[^45]
2, 3 \& 5 HP ADJUSTABLE SPEED DRIVES

, Constant torque and HP ranges on all models

, Cast-iron gearcase

- Automatic anticreep device maintains speed setting
lesigned for applications such as conveyors, pumps, textile lachinery, and other general duty industrial jobs.
control knob adjusts speed smoothly through adjustable-pitch , ulleys and deep cog belt. Sealed ball bearings eliminate the eed for relubrication. The mechanical design permits discs to lide on shaft with no metal to metal contact. Anticreep device naintains speed setting. Constant torque and HP ranges on all inits. $40^{\circ} \mathrm{C}$ ambient, continuous duty. 1.0 service factor. Gray inish. USEM brand.

GEARCASE CONSTRUCTION

Gears \& Pinions: Hardened steel
Bearings: Ball and tapered roller
Oil Seals: 2 HP models are friction type, 3 and 5 HP models are friction type, double lip
Gearcase: Cast iron
Shaft Rotation: 3 and 5 HP models can be easily reversed by electrical reconnection
Brake: 2 HP models are adaptable to No. $2 \mathrm{Z871}$ (available on page 252)

Key	inpur	$\begin{gathered} \text { Dutput } \\ \text { Shaft } \\ \text { RPM } \\ \text { Min. to Max. } \end{gathered}$	Full-Load Torque In.-Lbs.	$\begin{gathered} \text { Continuous } \\ \text { Duty } \\ \text { Output } \\ \text { HP } \end{gathered}$	Overturng Load Lbs.	Phase	Volts 60 Hz	Full-Load Amps at Nameplate Volts	Input Motar RPM	$\begin{aligned} & \text { Enclosure } \\ & \text { Type } \end{aligned}$	Rotation	Stack No.	List	Each	Shag. Wt.
A	2	16.6-166	1880-760	0.5-2	716	Three	230/460	7.2/3.6	1725	TEFC	Reversible	32607	\$2089.00	'\$1462.00	153.0
B	2	24.3-243	$799-440$	0.3-1.7	831	Three	230/460	8.4/4.2	1725	TEFC	Reversible	37608	1603.00	1122.00	119.0
C	2	190-1900	164-66	0.5-2	200	Three	230/460	7.213 .6	1725	TEFC	Reversible	32609	1740.00	1218.00	110.0
D	3	2042036	240-93	0.83	480	Three	230/460	11.0/5.5	1725	TEFC	Reversible	32506	2139.00	1497.00	246.0
D	3	14.4144	3400-1313	0.83	1170	Three	230/460	11.06.5	1725	TEFC	Reversible	32507	2829.00	1980.00	270.0
E	5	$230-1820$ $37-292$	$400-173$ $2500-1079$	1.5-5	480 905	Three	$230 / 460$ $230 / 460$	$16.4 / 8.2$ 16.48 .2	${ }_{1725}^{1725}$	TEFC	Reversible	32610 32611	2640.00 2768.00	1848.00 1937.00	257.0 294.0

[^46]

I

- Constant torque from maximum to minimum RPM
Sfitable for NEMA C-face input and oxipur
- No lubrication required

$\underset{\substack{\text { Stock } \\ \text { No. }}}{\text { Sold }}$	A	c	-	0	0	2 F	2 F
${ }_{1}^{15543}$	7.18	${ }_{8.81}^{7.94}$	3.75 3.75	${ }_{15}^{15.56}$	${ }_{6}^{625}$	${ }^{3.25}$	${ }_{3.25}^{3.25}$
15	${ }_{7}^{7} 7.62$	12.31	4.12	${ }_{2281}^{19.4}$. 875	6.25	${ }_{7}^{7} 7$
${ }_{10}^{15546}$	${ }_{9}^{9.75}$	$\underset{\substack{16.75 \\ 17.50}}{ }$	5.25	${ }_{26.18}^{23.13}$	${ }_{1}^{1.125}$	7.75	${ }_{12.25}^{12.25}$

Modular adjustable speed drives are mechanical transmissions using a variable pitch pulley and deep cog belt for smooth operation. Designed for applications which include conveyors, pumps, mixers and machine drives. Ideal for conversions to adjustable speed requirements from a fixed speed gear drive where a C-face motor and gear reducer exist.

VOTE: When using a worm gear reducer it is important to limit modular drive output to 1800 RPM maximum.
Refer to instruction manual for details on how to adjust speed stops.

NERA Frame	Assembly Contiguration	Sterling Moder	Stock No.	List	Each	Shpg. W.
56 C 56 C	$\begin{aligned} & \text { Z-Flow } \\ & \text { C-Flow } \end{aligned}$	AA7E2D AA7E4D	$\begin{aligned} & 11542 \\ & 11543 \end{aligned}$	$\$ 467.85$ 467.85	\$417.50	28.0
$\begin{aligned} & 140 \mathrm{TC} \\ & 140 \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { ZFlow } \\ & \text { C-Flow } \end{aligned}$	$\begin{aligned} & \text { AA1G2D } \\ & \text { AABG4D } \end{aligned}$	$1 L 544$	858.66 858.66	766.00 766.50	48.0 54.0
1807C	$\stackrel{\text { 2-Flow }}{\text { C-Flow }}$	AA2M2D	11546	1391.08 1391.08	1248.00 1248.00	150.0 153.0

SELECTION

Due to the flexibility of the modular trans mission, care needs to be taken in selec. ing the proper drive motor and reducer t suit a given application. The followin. steps are to be used as a guide for selec tion:
STEP I:
Use the following formula to calculat from an application required outpu torque to motor horsepower input:

Appl. Req'd. Torque (In.-Ibs.) x Req'd. Maximum RPM	$=\stackrel{\mathrm{HP}}{\text { Output }}$
63025	
Example:	
100 (In.-Lbs.) $\times 420$ RPM	0.67 HP
63025	Output

STEP 2:
Select the proper motor input HP by di ing the value in STEP 1 by the ratic Rate Output HP to Max. HP Input from Performance Data.

Example:

$\frac{0.67 \mathrm{HP}}{7.0 \mathrm{HP} / 1.5 \mathrm{HP}}=1.0 \mathrm{HP}$ motor req'd. STEP 3:
To choose the appropriate modular dr. refer to Typical Performance Data; loc the proper Maximum HP calculated STEP 2 (Note: any HP motor smaller th. maximum may be utilized), and th determine the input motor frame sic Next, consider your application and det. mine the configuration, Z-flow or C-flo that you require.

STEP 4:

Select an appropriate speed reducer required) and ratio by dividing the RF . Output from the Performance Data by th application required Maximura RPM.

Example:

56 C Frame:
4200 RPM (Perf. Data)
$\overline{420 \text { RPM (appl req'd.) }}=10: 1$ Ratio

STEP 5:

Select an appropriate gear reducer siz. from this catalog by using the HP calculat ed in STEP 1 divided by the factors listed below as the reducer HP Input rating out lined in the reducer selection tables.

WORM GEAR REDUCER	FACTOR
5 to 15.1 Ratio	.9
20 to 30.1 Ratio	,
40 to $60: 1$ Ratio	.8

Example:

$0.67 \mathrm{HP} \div 0.9$ (factor) $=0.74 \mathrm{HP}$
By following the above steps, proper selection has now been made from the calculated information.

1. Motor required: 1 HP
2. Transmission required: 56C frame, ZFlow
3. Speed reducer required: $10: 1$ ratio with 0.74 HP input capability

REVERSIBLE SYNCHRONOUS MOTORS AND GEARMOTORS

- $115 \mathrm{~V}, 60 \mathrm{~Hz}$ motors and gearmotors
- For applications that require constant speed under rated load, such as vending machines, chemical mixers, or in medical or food processing systems
- Permanent magnet design provides more torque, positive stop and holding
- Compact and reversible
- Corrosion protection finish
- Quiet operation; rapid acceleration

Gearcase: Gearmotors only have machined die-cast housing Lubrication: Gearmotors only have grease lubrication Gears: Gearmotors only have hardened steel gears
Bearings: Sintered bronze sleeve bearings
Mounting: All position
Rotation: Reversible
Ambient: $40^{\circ} \mathrm{C}$
Duty: Continuous
Thermal Protection: Models SA, SB, SC, PA, PB, and T are impedance protected
Capacitor: Included

Key	Nameplate RPM	Fuil-Load Torque In.-02.	Hurst Model	Hurst Part No.	Stack No.	List	Each	Shpg. Wt.
:		\%est	Kx, MOTORS ${ }^{\text {a }}$					
A	300 600	2.0 2.3	${ }_{\text {A }}^{\text {A }}$	$3001-001$ $3005-001$	$\begin{aligned} & 67533 \\ & 62534 \end{aligned}$	$\begin{array}{r} \$ 36.00 \\ 38.00 \end{array}$	$\begin{array}{r} \$ 26.45 \\ 28.50 \end{array}$	0.9
$\begin{aligned} & \mathbf{B} \\ & \mathbf{B} \\ & \mathbf{B} \end{aligned}$	$\begin{aligned} & 300 \\ & 600 \\ & 300 \end{aligned}$	$\begin{aligned} & 6 \\ & 5.5 \\ & 8.75 \end{aligned}$	SA SB SC	$\begin{aligned} & 4001-001 \\ & 4005-001 \\ & 4401-001 \end{aligned}$	$\begin{aligned} & 6 A 182 \\ & 6 A 183 \\ & 6 A 184 \end{aligned}$	$\begin{aligned} & 34.00 \\ & 35.00 \\ & 36.00 \end{aligned}$	$\begin{aligned} & 25.20 \\ & 25.95 \\ & 26.70 \end{aligned}$	0.7 0.8 1.0
$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \\ & \mathbf{C} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 150^{*} \\ & 131^{*} \\ & 110^{*} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathbf{A} \\ & \mathbf{A} \end{aligned}$	$\begin{aligned} & 3002-011 \\ & 3002-003 \\ & 3002-005 \end{aligned}$	$\begin{aligned} & 62535 \\ & 62536 \\ & 62537 \end{aligned}$	$\begin{aligned} & 61.00 \\ & 61.00 \\ & 55.00 \end{aligned}$	$\begin{aligned} & 45.65 \\ & 45.35 \\ & 41.20 \end{aligned}$	0.9 0.9 0.9
	6	105	AB	3006-002	64188	66.00	48.80	1.0
	10	88	$A B$	3006-004	64189	58.00	43.40	0.9
	12	73	AB	3006-005	62539	58.00	43.40	0.9
	20	44	AB	3006-007	62540	60.00	44.45	0.9
	30	29	AB	3006-009	6A190	60.00	44.70	0.9
	60	${ }_{8}^{16}$	${ }^{\text {AB }}$	$3006-013$	67541	56.00	41.90	0.9
	120	8	$A B$	3006-014	62542	56.00	41.65	0.9
D \mathbf{D}	1	200*	PA	3202-003	6 6173	81.00	60.40	1.2
	2	174*	PA	3202-007	6A174	75.00	55.70	1.2
	4	152*	PA	$3202-011$	6 6175	76.00	56.95	1.1
	6	140^{*}	PA	$3202-014$	$6 A 176$	70.00	51.85	1.2
	10	126^{*}	PA	3202-017	64177	70.00	51.85	1.2
	30	77	PB	3204-019	6 6178	70.00	52.10	1.3
	60	41	PB	3204-024	6 6179	63.00	47.20	1.2
	120	${ }^{20}$	PB	$3204-026$	68180	62.00	46.35	1.3
	360	6	PB	3204-033	6 6181	70.00	52.35	1.3
EE$E$$E$$E$$E$$E$	$\frac{1}{2}$	$250 *$	T	$2602-001$	67131	97.00	72.30	2.0
	2	$233 *$	T	2602-004	6A185	92.00	68.50	2.0
	4	$218 *$	T	2602-012	62132	94.00	69.90	2.0
	6	210^{*}	T	$2602-013$	6A186	84.00	63.00	2.0
	10	180*	T	$2602-006$	67133	84.00	63.00	2.0
	30	64	T	2602-014	62134	81.00	60.05	2.0
	60	32	T	$2602-009$	62135	80.00	59.85	2.0
	120	16	T	$2602-015$	6 A187	84.00	62.30	2.0

A WIDE SELECTION OF BEARINGS AND BEARING ACCESSORIES IS AVAILABLE, SEE PAGES 312 THRU 326

AC AND DC LINEAR ACTUATORS

AC LINEAR ACTUATORS

- Linear actuators designed for light or heavy-duty applications
- Adjustable limit switches for user control in positioning applications
Dayton electromechanical actuators are designed for indoor use and feature per manent split capacitor motors with TENV design for light-duty applications or TEFC design for industrial duty. Provide 10 to $12^{\prime \prime}$ of linear motion.
Units are rated for loads from 300 to 1300 thrust lbs. at speeds from 8.4 to 20.0 in per minute. Actuators can be modified to shorter stroke lengths. Single lead, rolled thread lifting screw with work-hardened finish provides long life and efficient smooth operation. Built-in worm gear set for quiet gear reduction. Single right hand acme screws.
Outer tube helps protect screw and nut from dust and contaminants. Outer tube and translator tube may be removed and replaced with driver nut (included) to provide additional stroke modification. Pivot mount can be positioned at 90° intervals (Nos. 4Z845 and 4Z846 only). Adjustable limit switches provide user control in fositioning-type applications.
$\mathrm{H} 5 \mathrm{~V}, \mathrm{AC}, 60 \mathrm{~Hz}$ single-phase PSC motors feature automatic reset thermal protection ahind $16^{\prime \prime}$ power cord. Capacitor included. Recognized by UL for construction (E47479) and motor protector (E37403) uhder the Motor Component Recognition Program. CSA certified. Dayton brand.

${ }^{*}$ * Total in. of travel (up \& down) until thermal overload protector cuts out. Protector automatically resets after cool-down period. (\dagger) Duty cycle is based on 1 minute on/3 minutes off.

Stock No.	A	B	c	D	E	6	H	J	1.	M
47845	-	$0.38210 .376^{n}$	$1.66{ }^{n}$	$1.38{ }^{\text {n }}$	$314.8{ }^{1}$	$18.92^{\prime \prime}$	18.63	$4.63{ }^{\prime \prime}$	$20.0{ }^{*}$	$32.0{ }^{18}$
47846	-	0.3820 .376	1.66	1.38	$3 / 4.8$	18.92	18.63	4.63	20.0	32.0
47847	$3.94{ }^{\prime \prime}$	0.38210 .376	1.66	1.38	3/45	18.94	19.35	4.47	20.5	32.5
47848	3.94	$0.382 / 0.376$	1.66	1.38	$3 / 4.5$	18.94	19.35	4.47	20.5	32.5
42849	3.94	0.505/0.500	2.50	2.00	1-5	19.00	19.20	5.30	20.5	32.5
4.2850	3.94	0.505/0.500	2.50	2.00	$1-5$	19.00	19.20	5.30	20.5	32.5

$1:$
5

AC AND DC LINEAR ACTUATORS

Actuators with 6, 12 or $18^{\prime \prime}$ extension Integral clevis mount permits freedom of movement
For use indoors or outdoors (with environmental protection) on stationary or itobile equipment. Feature thermally pro teeted motors. Actuators are completely self-contained and have an enclosed weatherproof 115 VAC limit switch with automatic-set ball brake.
12V DC motor, overtravel protector, loadlimiting friction-disc clutch and automat ic-set spring brake. High strength gear and pinion set has $20: 1$ ratio; double lead screw and nut are high-efficiency design.
Steel translating tube is zinc-coated and sealed at output end. All components are sealed in corrosion-resistant aluminum alloy die-cast housing. Capacitor supplied with AC units. Dayton brand.

Travel Inches	Spaed In. / Min.	Duty Cycle \%*	Rated Load Lhs.	Volts	Full-Laad Amps	Stock Na.	List	Each	Shipg Wt.
6	35	28	500	115 AC	2.2	42843;	\$467.62	\$375.25	14.0
12	35 *	28	500	115	2.2	47844	478.56	383.75	16.0
18	35	28	500	115	2.2	5A701\%	501.41	402.75	20.0
6	$32 \dagger$	18	500	12 DC	22.0	42841	324.29	260.25	11.0
12	$32+$	18	500	12	22.0	42842	337.80	271.25	12.0
18	$32 \dagger$	18	500	12	22.0	54702	351.14	281.75	15.0

[^47] speed (at 100 hs ., speed is $68 \mathrm{in} . / \mathrm{min}$; at 300 lbs , speed is $52 \mathrm{in} / \mathrm{min}$.) (\ddagger) CSA Certified (55270)

DRIVE TIGHTENERS, SHAFTS, AND IDLER BUSHINGS

DRIVE TIGHTENERS

- Drive tighteners are used to position or remove slack from V-belts, gearbelis, or roller chain drives
Selection Procedure:
Step 1-Select drive tightener style to suit application.
Step 2-Select either a tightener shaft or idler bushing.
Step 3-Select idler component; needle bearing idler components for tightener shafts are found on page 291. Idler components for idler bushings include any sheave, sprocket, or gearbelt pulley which uses an H or Q1 bushing, see pages 284, $285,300,304$, and 305.

7

${ }_{\text {Key }}$	Stock No.
-	2L995
B	21.1096
B	6 L 321
C	2 L 997
D	2 L 998
\% E	6L320
F	2L999

[^48]
IDLER BUSHINGS

Use With Tightener Stock Nos.	Browning Model	Stack No.	List	Each	Shpg. Wt.
6L321, 2L997, 21998 , \& 6L320	$\frac{\mathrm{IDH} 1 \times 1 / 2 \mathrm{~A}^{*}}{\mathrm{IDQ} 1 \times 3 / 4 \mathrm{~A} \dagger}$	$\begin{aligned} & 6 L 325 \\ & 6 L 326 \end{aligned}$	$\begin{aligned} & \$ 81.67 \\ & 156.04 \end{aligned}$	$\begin{aligned} & \$ 79.45 \\ & 135.20 \end{aligned}$	0.9

(*) Use with any Browning H bushed sheaves, sprockets, or gearbelt pulley to convert to idler.
(\dagger) Use with any Browning Q1 bushed sheaves, sprockets, or gearbelt pulley to convert to idler.

Stock No.	RPM							
	180	500	1000	1580	2000	2500	3000	3500
6 L 325	1518	1016	854	772	718	678	648	624
$6 L 326$	3320	2222	1868	1688	1568	1486	1420	1366

(\ddagger) Based on 2500 hours average life at RPM shown.

RIVETED ROLLER CHAIN LINKS AND ELASTOMERIC TENSIONERS

RIVETED ROLLER CHAIN INDIVIDUAL LINKS

(Sold in Packages of 5 or 1)

	$\begin{aligned} & \text { CONNECTING UNK } \\ & \text { Used to assemble chain strands } \\ & \text { when an even number } \\ & \text { of pitches is desired. } \end{aligned}$					OFFSET LINK Used to assemble chain strands when an odd number of pitches is desired.					ROLLER LINKUsed for replacement of damaged rollers.				
$\begin{aligned} & \text { ANSI } \\ & \text { Size } \end{aligned}$	Stock No.	$\begin{aligned} & \text { Prg. } \\ & \text { Qry. } \end{aligned}$	List	Each	Shipg W.	Stock No.	$\begin{aligned} & \text { Pkg. } \\ & \text { aty. } \end{aligned}$	List	Each	$\begin{gathered} \text { Shpg. } \\ \text { Wt. } \end{gathered}$	$\begin{aligned} & \text { Stock } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { Pkg. } \\ & \text { oty. } \end{aligned}$	List	$\begin{aligned} & \text { Each } \\ & \text { Pkg. } \end{aligned}$	Shpg.
SINGEE STRAND.															
35	5×290	5	\$5.50	3.13	0.1	5×291	5		\$6.73	0.1	5×292			2.14	0.1
40	5×293	5	6.00	3.37		5×294	5	10.50	8.03	0.1	5×295	5	4.75	2.69	0.1
41 50	5 5×296	5	5.00 7.00	2.94	0.1	5×297 $\mathbf{5 \times 3 0 0}$	5	8.25	6.50	0.1	5×298 5×301	5	4.00	2.14	0.1
60	5×302	5	7.75	5.15	0.3	5x303	5	17.00	13.06	0.3	5×30	5	7.50	5.06	0.2
80	6X		2.75	1.64				6.75	4.10	0.2			2.75	1.64	0.2
100	6×532	1	5.25	2.99		6×533	1	9.25	7.14	0.3	6×534	1	5.50	3.13	0.3
120	$6 L 490$ $6 L 491$	1	7.25 9	4.84	0.5	61493	1	13.00	10.29	0.5	66496	1	${ }^{8.00}$	5.58	0.5
160	$6 \mathrm{CL492}$	1	9.50 12.50	7.19		6L495	1		22.94	1.1	$6 L 497$ $6 L 498$	1		11.16	8
为 ${ }^{\text {a }}$															
35-2	66499	5	9.75	7.97		6 6L505	5		15.66	0.1			NA		
40-2	$6 L 500$	5	11.00	8.77	0.2	6L506	5		16.74	0.2			NA		
50-2 $\mathbf{6 0 - 2}$	${ }_{6}^{6 L 501}$	5	${ }_{16.00}^{13.50}$			6L507	5			0.6			NA		
80.2	$6 L 503$	1	6.50	4.03	0.3	$6 \mathrm{LS09}$	1	11.50	9.60	0.3			NA		
100-2	$6 L 504$	1	600	7.05	. 5	$6 L 510$	1	1. 00	6.68	.			NA		
						CONVEYOR									
204	$\begin{aligned} & 6 L 515 \\ & 6 \end{aligned}$			1.16		$6 \mathrm{6L519}$									0.1
${ }_{\text {C2060 }}$	$6 L 516$ 61517	1	$\begin{aligned} & 2.50 \\ & 2.75 \end{aligned}$	1.30 1.64	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$		1	$\begin{aligned} & 4.50 \\ & 6.25 \end{aligned}$	$\begin{array}{r} 2.58 \\ 3.45 \end{array}$	0.1	$\begin{aligned} & 6 L 524 \\ & 6 L 525 \end{aligned}$	1	$\begin{aligned} & 1.50 \\ & 2.25 \end{aligned}$	0.63 1.17	${ }_{0}^{0.1}$
C2080H	$6 L 518$	1	5.00	2.94	0.2	6L522	1	8.75	6.76	0.2	6 6526	1	4.25	2.43	

ELASTOMERIC TENSIONERS

Universally applicable tensioning device for use as an elastic spring element for chain and belt tensioning, pressing, and cushioning. Tensioners keep chain and belts taut, preventing uneven drive surges and power losses. Chain and belt life are prolonged by eliminating slap and vibration while minimizing drive, bearing, and shaft wear.
Four rubber inserts inside base isolate tensioning arm from contact with base and provide continuous resistance to applied rotary forces. Tensioning arm deflects up to 30° either side of its normal position allowing a pre-tension force that self-adjusts an idler to everyday elongation of a chain or belt while dampening vibration in the drive.
Employs no metal-to-metal connections; no lubrication is required. Dirt and grime won't affect operation. Can be used indoors or out, from -40° to $180^{\circ} \mathrm{F}$. One bolt mounting makes installation easy and allows for 360° position flexibility
Mounting bolt and idler bolt included. Nos. 1L833, 1L834, and 1 L835 include $5 / 8^{\text {n }}$ bushing. For idler sheaves and idler sprockets see page 291.

ANSI Chain Size			V-Belt Size Range			Flat Belt Width		Rasta Model		Stock No.		List	Each	Shpg. Wt.
$\begin{gathered} 35 \\ 35,40, \& 41 \\ 50,60, \& 80 \\ 80 \end{gathered}$			$\begin{gathered} A, B, 3 L \\ B, C, 4 L, 5 L \\ D, E \end{gathered}$			$\begin{gathered} 1 \overline{\&} 2^{n} \\ 2,3, \& 4^{n} \\ 4 \& 5^{n} \end{gathered}$		$\begin{aligned} & \text { SE15 } \\ & \text { SE18 } \\ & \text { SE27 } \\ & \text { SE38 } \end{aligned}$		11833 $1 L 834$ $1 L 836$		$\begin{aligned} & \$ 68.00 \\ & 82.00 \\ & 105.00 \\ & 180.00 \end{aligned}$		$\begin{aligned} & 1.2 \\ & 1.8 \\ & 4.3 \\ & 8.8 \\ & \hline \end{aligned}$
ON What														
$\begin{gathered} 30 \\ \text { Force } \\ \text { Normal } \end{gathered}$	$\begin{aligned} & \text { Degrees } \\ & \text { (1bs.). } \\ & \text { Hard } \end{aligned}$	$\underset{\mathbf{S}}{\mathrm{Dim}}$	D	E	G	Dimen J1	sions (l1	$\underset{K}{\text { nches! }}$	1	N	T	$\begin{gathered} \text { Moun } \\ \text { Sizee } \\ \text { (Metric) } \end{gathered}$	$\begin{aligned} & \text { gi Bolt } \\ & \text { סrill Hole } \\ & \text { Size } \end{aligned}$	$\begin{aligned} & \text { Idler } \\ & \text { Bolt } \end{aligned}$ Size
30.4	37.8	1.97	1.77	2.52	0.20	3.94	3.15	0.98	4.43	1.18	0.53	M8 $\times 20$	$5 / 16^{\prime \prime}$	1/2-13 $\times 2^{*}$
78.7	98.2	1.97	2.28	3.07	0.24	3.94	3.15	1.18	4.53	1.38	0.53	M10 $\times 30$	7/16	$1 / 2-13 \times 21 / 2$
179.8	233.8	2.56	3.07	4.21	0.28	5.12	3.94	1.97	6.10	2.05	0.53	M12 $\times 40$	$1 / 2$	$1 / 2-13 \times 31 / 2$
337.2	421.5	3.43	3.74	5.51	0.39	6.89	5.51	2.36	8.07	2.60	0.81	M16 40	$5 / 8$	3/4-10 5

the right Stuff. RIGHT HERE. RIGHT NOW.

[^49] ainger. To find the branch nearest you, check the white pages in your local telephone directory under "Grainger."

V-BELT IDLER SHEAVES, IDLER SPROCKETS, AND FLAT-FACE IDLERS

For "4L", "A", " 5 L " and "B" belts Cast-irön construction
Needle:bearings

Maintain proper chain tension
Hardened steel teeth for longer life
Heavy steel construction

For use with drive tighteriers and tightener shafts on page 290
Can be used on back side of V-belts or with gearbelts
Needle bearings

- For gearbelt pulley idler see page 301

V-BELT IDLER SHEAVES

$\begin{aligned} & \text { Bett } \\ & \text { Site } \end{aligned}$	Shaft Req. * Req'd ${ }^{\prime}$	00	${\underset{\mathbf{B}}{\mathbf{D i m e n s i o n s}}}^{\mathbf{F}}$			1	Browning	Stock No.	List	Each	Shpg.
	6 L	2.50	$1 / 2$	$21 / 32$	19/16	$3 / 4$	NAK25	$6 \mathrm{6L327}$	\$38.90	\$33.70	0.4
4L, A	6 L 322	3.05	$1 / 2$	$21 / 32$	19/6	$3 / 4$	NAK30	6 L 328	43.80	38.00	0.6
4L, A	6 L 323	3.95	1	$3 / 4$	$17 / 8$	1	NAK41	6 6 629	51.30	44.50	1.3
5L, B	61323 61323	3.96 4.96	$\frac{1}{1}$	778	${ }_{1}^{17 / 8} 1$	1	NBK40	66330 61331	54.30 58.80	577.10	1.7 1.9
5L,	6 L 23	4.96	1	78	$17 / 8$	1	NBK52	6 L331	58.80	51.00	. 9

(*) Order shafts separately from page 290.

Stock								
Mo.	100	500	1000	1500	2000	2500	3000	3500
$6 L 327$	665	406	331	294	269	250	237	226
6L328	665	406	331	294	269	250	237	226
6 L 329	2174	1327	1083	961	880	820	772	741
6L330	2174	1327	1083	961	880	820	772	741
6L331	2174	1327	1083	961	880	820	772	741

(*) Based on 2500 hours average life at RPM shown. For heaier radial loads see idler bushing page 290 .

IDLER SPROCKETS

Chain Size	No. of Teath	Tightener Shatt	${ }_{00}^{\text {Dime }}$	ions		Browning Model	Stock No.	List		Each	Shpg. Wt.		
											x		
40	17	t	2.96	0.63	0.72	HB40A17 $\times 5 / 8$	54551	\$31.09		\$21.61	0.5		
50	15	t	3.32	0.63	0.72	HB50A15 $\times 5 / 8$	54552	31.09		21.62	0.6		
60	13	\dagger	3.49	0.63	0.72	HB60A13 $\times 5 / 8$	5A553	32.93		22.92	0.8		
80	12	t	4.33	0.75	0.61	HB80A12 $\times 3 / 4$	SA554	51.08		35.70	1.5		
$\begin{aligned} & 35 \\ & 40 \\ & 50 \\ & 60 \\ & 80 \end{aligned}$	13	$\begin{aligned} & 6 \mathrm{~L} 322^{*} \\ & 6 \mathrm{~L} 323^{*} \end{aligned}$	1.75 0.50 0.75 3.28 1.00 1.00 3.72 1.00 1.00 4.46 1.00 1.00 4.66 1.25 1.50			HN35B13 $6 L 332$ HN40019 $6 L 333$ HN50B17 $6 L 334$ HN60817 $6 L 335$ HN60B13 $6 L 336$		$\begin{aligned} & 49.40 \\ & 57.70 \\ & 64.90 \\ & 75.40 \\ & 90.50 \end{aligned}$		$\begin{aligned} & 42.85 \\ & 50.00 \\ & 56.25 \\ & 65.35 \\ & 78.40 \end{aligned}$	0.2		
	19					1.2							
	17					1.4							
	17					2.5							
	13					2.7							
(*) Order shatts separately from page 290. (\dagger) Not for use with drive tighteners or tightener shafts.													
Stock No.	100	300	500	600	900			$1000^{\text {RPM }} 1200$	1500	2000	2500	3000	3500
5A551	530	360	-	298	262			230	-	-	-	-	-
5A552	530	360		298	262			- 230	-	-			
5A553	530	360		298	262			230					
5A554	1660	1262		1061	958	892							
$6 \mathrm{L332}$	665	-	406	-	-	331	294	269	250	237	226		
6 L 333	2174	-	1327			1083	961	880	820				
6 L 334	2174		1327			1083	961	880	820				
61.335	2174		1327			1083	961	880		- -	-		
$6 \mathrm{L336}$	2174	-	1327	-	-	1083	961	880		- -			

(\ddagger) Based on 2500 hours average life at RPM shown.
FLAT-FACE IDLERS

(*) Order shafts separately from page 290 .

(\ddagger) Based on 2500 hours average life at RPM stown.

POWER TRANSMISSION: DRIVES

SYNCHRONOUS DRIVES HPT SPROCKETS

- HPT (High Performance Timing) sprockers are designed for high HP (up to 200 HP), low RPM (as low as 10 RPM) synchronous drives
- For 8 mm and 14 mm pitch HPT belts
- Use with HPT belts on page 293
- Available in 8 mm and 14 mm pitch; 20 mm to 85 mm width
- 8 mm pitch series for applications up to $80 \mathrm{HP} ; 14 \mathrm{~mm}$ pitch series for applications up to 200 HP
- Positive drive, no slip
- No lubrication required
- Interchanges with HTD ${ }^{\text {a }}$ sprockets
- Requires QD or split taper bushing; order separately on page 308
- Made in USA

$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Teeth } \end{gathered}$	$\begin{aligned} & \text { Bushing } \\ & \text { Req'd } \end{aligned}$	$\begin{aligned} & \text { Pitch } \\ & \text { Dia. } \\ & \text { (in.) } \end{aligned}$	Browning Model	Stack No.	List	Each	$\begin{aligned} & \text { Shpg. } \\ & \text { Wt. } \end{aligned}$
$8 \mathrm{~mm} \mathrm{PITCH-85mm} \mathrm{(3.35")} \mathrm{WIDE}$							
34	SH	3.409	B348M80SH	$2 L 830$	\$95.00	\$72.35	,
36	SH	3.609	B368M85SH	$2 L 831$	100.00	76.15	41
38	SH	3.810	B388M85SH	$2 L 832$	102.00	77.70	4.5
40	SD	4.010	B408M85SD	21833	106.00	80.70	51
44	SD	4.411	B448M85SD	21834	110.00	83.75	83
56	SK	5.614	B568M85SK	21836	${ }^{140.00}$	106.55	97
64	$\stackrel{\text { SK }}{\text { S }}$	${ }^{6.416}$	B648M85SK	22837	163.00	124.05	160
82	$\stackrel{\text { SF }}{\text { SF }}$	7.218 8.020		2L838	177.0	134.70	${ }^{0}$
90	SF	9.023	B908M85SF	$2 L 840$	245.00	186.50	23.0)
112	E	11.229	B1128M85E	$2 L 841$	308.00	235.00	400
Tr	14 mm PITCH -40 mm (1.57") WIDE						
28	SK	4.912	B2814M40Sk	2 L 842	85.00	64.70	6.7
29	SK	5.088	B2914M40SK	$2 \mathrm{LB43}$	90.00	68.50	6.9
30	SK	5.263	B3014M40SK	$2 L 844$	93.00	70.85	59
32	SK	5.614	B3214M40SK	21845	102.00	77.80	$\bigcirc 1$
34	SK	5.965	B3414M40SK	$2 L 846$	105.00	80.10	73
36	SF	6.316	B3614M40SF	$2 L 847$	115.00	87.65	97
38	SF	6.667	B3814M40SF	$2 L 848$	130.00	99.10	11.0
40	SF	7.018	B8514M40SF	21849	133.00	101.25	15.0
44	SF	7.720	B4414M40SF	21850	155.00	118.00	15.0
48	SF	8.421	B4814M40SF	2 L851	165.00	125.60	19.0
52	SF	9.123	B5214M40SF	21852	172.00	130.95	23.0
56	$\mathrm{SF}_{\text {SF }}$	9825	${ }^{\text {B56614M40SF }}$	21853	175.00	133.15	33.0
60	SF	10.527	B6014M40SF	$2 L 85$	227.00	173.00	250
64	E	11.229	B6414M40E	$2 L 855$	260.00	198.25	33.0
68	-	11.930	B6814M40E	$2\llcorner 856$	265.00	201.75	36.0
72		12.632	B7214M40E	$2 L 857$	${ }^{272.00}$	207.25	39.0
80	E	14.036	B8014M40E	$2 L 858$	280.00	213.25	40.0
90	E	15.790	B9014M40E	24859	288.00	219.75	370
112	E	19.650	B1214M40E	24860	365.00	278.00	80.0
14%	E	25.264	B14414M40E	$2 L 861$	480.00	366.00	80.0
14mmPICH-55mm (2.17) WDE							
28		4.912	B2814M55SK	21862	100.00	76.25	60
29	SK	5.088	B2914M55SK	21863	10500	80.10	8.7
30	SK	5.263	B3014M55SK	21864	108.00	82.35	68
32	SK	5.614	B3214M55SK	$2 L 865$	114.00	86.95	8.6
34	SK	5.965	B3414M55SK	21866	120.00	91.45	11.0
36	SF	6.316	B3614M55SF	21867	125.00	95.30	110
38	SF	6.667	B3814M55SF	21868	140.00	106.70	13.0
40	SF	7.018	B4014M55SF	2 L 869	143.00	109.00	14.0
44	E	7.720	B4414M55E	21870	165.00	125.60	170
48	E	8.421	B4814M55E	2 L 871	170.00	129.30	220
		9.123	B5214M55E	24872	178.00	135.	26.0
56	E	9.825	B5614M55E	21873	180.00	137.15	31.0
60		10.527	B6014M55E	21874	240.00	183.25	38.0
64	E	11.229	B6414M55E	$2 L 875$	275.00	210.00	35.0
68	E	11.930	B6814M55E	$2 L 876$	285.00	217.25	38.0
72	E	12.632	B7214M55E	$2 L 877$	290.00	220.75	40.0
80	E	14.036	B8014M55E	$2 L 878$	338.00	258.00	450
90	E	15.790	B9014M55E	21879	345.00	262.50	45.0
112	E	19.650	B11214M55E	$2 L 880$	405.00	308.50	49.0
144	F	25.264	B14414M55F	2 L881	520.00	395.75	90.0

${ }^{*}$) $1 / 2^{\text {n }}$ Minimum plain bore.
User may machine to maximum bore indicated and add keyway and setscrew hole as required. See Standard Keyway and Setscrew machining Guide on page 302.

HPT (High Performance Timing) belts are for use with HPT sprockets on page 292
Available in 8 mm pitch, 20 mm to 85 mm wide, and 14 mm pitch, 40 mm to 55 mm wide
State of the art tooth design means quieter operation than other high performance belts
HPT belts handle higher.torque transmission than conventional gearbelt and pulley drives Interchangeable with HTD ${ }^{*}$ belts
Oil and heat resistant
Made in USA

No. of eeth	Pitch Length (mm)	Pitch Length (in.)	Browaing Model	Stack Na.	List	Each	Shpg. Wt.
		$8 \mathrm{~mm} \mathrm{PITH}-20 \mathrm{~mm}$ (.79'1 WIDE					\%
60	480	18.90	B4808M20	21882	\$14.73	\$12.91	0.1
70	560	22.05	B5608M20	$2 L 883$	16.01	14.02	0.3
75	600	23.62	B6008M20	$2 L 884$	16.82	14.74	0.2
80	640	25.20	B6408M20	$2 L 885$	17.28	15.14	0.2
90	720	28.35	B7208M20	21886	18.56	16.26	0.2
100	800	31.50	B8008M20	21887	20.30	17.78	0.3
110	880	34.65	B8808M20	$2 L 888$	21.58	18.92	0.2
120	960	37.80	B9608M20	$2 L 889$	22.85	20.02	0.3
130	1640	40.94	B10408M20	$2 L 890$	24.13	21.14	0.3
140	120	44.09	B11208M20	$2 L 891$	25.40	22.26	0.3
150	1200	47.24	B12008M20	$2 L 892$	26.80	23.49	0.3
160	1280	50.39	B12808M20	$2 L 893$	28.07	24.60	0.3
180	$1{ }^{\text {等0 }}$	56.69	B14408M20	$2 L 894$	30.62	26.85	0.4
200	1600	62.99	B16008M20	21895	33.29	29.20	0.4
220	770	69.29	B17608M20	$2 L 896$	35.84	31.50	0.4
225	18890	70.87	B18008M20	$2 L 897$	36.66	32.15	0.5
250	200	78.74	B20008M20	$2 L 898$	40.14	35.30	0.5
300	2400	94.49	B24008M20	21899	46.98	41.25	0.6
325	2600	102.36	B26008M20	21900	50.81	44.65	0.7
350	2800	110.24	B28008M20	21.901	53.94	47.35	0.7
60	480	18.90	B4808M30	21902	20.88	18.30	0.2
70	560	22.05	B5608M30	$2 L 903$	22.85	20.02	0.2
75	600	23.62	B6008M30	21904	24.13	21.14	0.2
80	540	25.20	B6408M30	$2 L 905$	24.71	21.64	0.3
90	720	28.35	B7208M30	$2 L 906$	26.56	23.28	0.3
100	800	31.50	B8008M30	$2 L 907$	29.23	25.65	0.3
!10	880	34.65	B8808M30	$2 L 908$	31.09	27.35	0.4
20	950	37.80	B9608M30	21909	32.94	28.95	0.4
130	1040	40.94	B10408M30	$2 L 910$	34.92	30.65	0.5
. 40	1320	44.09	B11208M30	21.911	36.77	32.30	0.5
50	1200	47.24	B12008M30	$2 L 912$	38.74	34.00	0.5
. 60	1280	50.39	B12808M30	6 G 239	40.60	35.65	0.5
. 80	1440	56.69	B14408M30	21913	44.43	39.00	0.6
!00	1600	62.99	B16008M30	21914	48.26	42.35	0.7
?20	1760	69.29	B17608M30	$2 L 915$	52.08	45.65	1.0
?25	1800	70.87	B18008M30	21.916	53.24	46:70	0.5
:50	2000	78.74	B20008M30	$2 L 917$	58.35	51.15	0.5
100	2400	94.49	B24008M30	$2 L 918$	68.56	60.15	1.0
;25	2600	102.36	B26008M30	$2 L 919$	73.78	64.75	1.0
:50	2800	110.24	B28008M30	$2 \mathrm{L920}$	78.65	69.00	1.0
	$8 \mathrm{~mm} \text { Pich } 50 \mathrm{~mm} 1997 \mathrm{MDE} \text {, whe }$						
60	480	18.90	B4808M50	21921	33.29	29.20	0.3
70	560	22.05	B5608M50	$2 L 922$	36.54	32.05	0.3
75	600	23.62	B6008M50	21923	38.63	33.90	0.4
80	640	25.20	B6408M50	21924	39.67	34.80	0.5
90	720	28.35	B7208M50	21925	42.92	37.65	0.5
00	800	31.50	B8008M50	21926	47.21	41.40	0.3
10	880	34.65	B8808M50	2L927	50.46	44.30	0.5
20	960	37.80	B9608M50	$2 \operatorname{LL928}$	53.71	47.10	0.5
30	1040	40.94	B10408M50	$2 L 929$	56.84	49.90	0.6
40	1120	44.09	B11208M50	2L930	60.09	52.75	0.6
50	1200	47.24	B12008M50	21.931	63.34	55.60	0.5
60	1280	50.39	B12808M50	21932	66.58	58.40	0.5
80	1440	56.69	B14408M50	21933	72.96	63.95	0.5
00	1600	62.99	B16008M50	21934	79.46	69.65	0.4
20	1760	69.29	B17608M50	$2 L 935$	- 85.84	75.25	1.0
25	1800	70.87	B18008M50	21936	88.04	77.20	1.2
50	2000	78.74	B20008M50	21.937	96.63	84.70	1.3
00	2400	94.49 =	B24008M50	2L938	113.80	99.75	1.5
50	2600	102.36	B26008M50	21939	123.77	109.45	1.7
50	2800	110.24	B28008M50	21940	130.96	114.75	1.7

No. of Oeeth	Pitch Length (man)	Pitch Length (In.)	Brawning Model	Stock No.	List	Each	Shpg. WL

60	480	18.90	B4808M85	$2 \mathrm{L941}$	\$55.33	\$48.55	0.5
70	560	22.05	B5608M85	21942	60.78	53.30	0.6
75	600	23.62	B6008M85	$2 L 943$	64.44	56.45	0.6
80	640	25.20	B6408M85	21944	66.24	58.10	0.7
90	720	28.35	B7208M85	21945	71.69	62.90	0.7
100	800	31.50	B8008M85	$2 L 946$	79.00	69.30	0.8
110	880	34.65.	B8808M85	$2 L 947$	84.45	74.00	0.9
120	960	37.80	B9608M85	21.948	89.90	78.80	0.3
130	1040	40.94	B10408M85	$2 L 949$	95.35	83.65	1.2
140	1120	44.09	B11208M85	2L950	100.80	88.30	1.2
150	1200	47.24	B12008M85	2 L 951	106.26	93.15	1.4
160	1280	50.39	B12808M85	$2 L 952$	111.71	97.90	1.5
180	1440	56.69	B14408M85	$2 L 953$	122.61	107.40	1.7
200	1600	62.99	B16008M85	$2 L 954$	133.63	117.15	1.6
220	1760	69.29	B17608M85	2L955	144.42	126.60	1.9
225	1800	70.87	B18008M85	$2 L 956$	148.13	129.80	1.8
250	2000	78.74	B20008M85	2L957	162.63	142.50	2.3
300	2400	94.49	B24008M85	$2 L 958$	191.75	168.25	2.6
325	2600	102.36	B26008M85	$2 L 959$	206.94	181.50	2.8
350	2800	110.24	B28008M85	2L960	220.86	193.75	3.1

69	966	38.03	B96614M40	$2 L 961$	110.55	96.85	1.0
85	1190	46.85	B119014M40	21.962	121.57	106.60	1.1
100	1400	55.12	B140014M40	$2 L 963$	132.24	115.90	1.3
115	1610	63.39	B161014M40	21.964	143.14	125.45	1.7
127	1778	70.00	B177814M40	21965	152.77	133.85	1.7
135	1890	74.41	B189014M40	21966	160.43	140.60	2.0
150	2100	82.68	B210014M40	$2 L 967$	174.81	153.25	2.1
165	2310	90.94	B231014M40	21968	186.18	163.50	2.0
175	2450	94.46	B245014M40	$2 L 969$	193.84	170.25	2.5
185	2590	101.97	B259014M40	24970	203.23	178.25	2.1
200	2800	110.24	B280014M40	21971	217.38	190.75	3.0
225	3150	124.02	B315014M40	21972	238.61	209.25	3.1
240	-3360	132.28	B336014M40	$2 L 973$	249.86	219.25	3.4
250	3500	137.80	B350014M40	$2 L 974$	257.64	226.00	3.4
275	3850	151.58	B385014M40	24.975	283.62	248.75	3.8
309	4326	170.32	B432614M40	21976	315.06	276.25	4.5
327	4578	180.24	B457814M40	$2 L 977$	332.92	292.00	5.0

*)							
69	966	38.03	B96614M55	21978	145.12	127.15	1.3
85	1190	46.85	B119014M55	$2 L 979$	160.31	140.50	1.4
100	1400	55.12	B140014M55	22980	175.16	153.50	1.8
115	1610	63.39	B161014M55	21981	190.82	167.50	2.0
127	1778	70.00	B177814M55	$2 L 982$	203.35	178.50	2.3
135	1890	74.41	B189014M55	2L983	213.90	187.75	2.8
150	2100	82.68	B210014M55	2L984	233.74	205.25	2.9
165	2310	90.94	B231014M55	2L.985	248.94	218.50	3.3
175	2450	94.46	B245014M55	21986	259.14	227.25	4.0
185	2590	101.97	B259014M55	24.987	272.25	238.75	4.0
200	2800	110.24	. B280014M55	21988	291.86	256.25	3.0
225	. 3150	125.02	B315014M55	21989	321.09	281.50	3.0
240	3360	132.28	B336014M55	21990	337.21	295.50	4.0
250	3500	137.80	B350014M55	$2 L 991$	347.77	305.00	7.0
275	3850	151.58	B385014M55	$2 L 992$	386.40	339.00	6.0
309	4326	170.32	B432614M55	21993	425.95	373.25	7.0
327	4578	180.24	B457814M55	$2 L 994$	451.70	395.75	6.0

LET US SUPPLY YOUR FANS AND RELATED PRODUCTS

POWER
 TRANSMISSION: V-bELTS

FRACTIONAL HP 3L, 4L, \& 5L V-BELTS

BELT LENGTH FORMULA

Pulley 1 Diameter $\times 1.57+$
Pulley 2 Diameter x 1.57 + Distance between shafts $\times 2=$ BELT LENGTH

3L

| $\begin{array}{c}\text { Mom. } \\ \begin{array}{c}\text { Outside } \\ \text { Length }\end{array} \\ \text { Stock } \\ \text { No. }\end{array}$ | Each | Shpg. |
| :---: | :---: | :---: | :---: |
| | Wt. | |

$\begin{array}{cc}\begin{array}{c}\text { Nom. } \\ \text { Outside } \\ \text { Length }\end{array} & \text { Stock } \\ \text { No. }\end{array}$

	3siskx	\%kx\%			\%3x	S				C ${ }^{2}$			\%\%	mis.	
$15^{\prime \prime}$	31.150	\$4.49	0.1	27^{*}	31270	\$4.66	0.1	39^{*}	31590	\$5.70	0.1	51^{*}	31510	\$6.74	0.2
16	$3 \mathrm{L160}$	4.49	0.1	28	3L280	4.71	0.1	40	3 L 400	5.80	0.1	52	$3 \mathrm{LS20}$	6.82	0.2
$\cdots 17$	3 L 170	4.49	0.1	29	3L290	4.80	0.1	41	$3 \mathrm{L410}$	5.92	0.2	53	3 L 530	6.91	0.2
g=18	31.180	4.49	0.1	30	3L300	4.88	0.1	42	3 4 420	6.01	0.2	54	3L540	7.00	0.2
$\bigcirc 19$	31190	4.49	0.1	31	3L310	4.92	0.1	43	3L430	6.10	0.2	55	$3 \mathrm{LS50}$	7.08	0.2
- 20	$3 L 200$	4.49	0.1	32	$3 \mathrm{L320}$	5.02	0.1	44	$3 \mathrm{L440}$	6.14	0.2	56	3L560	7.13	0.2
$=21$	35210	4.49	0.1	33	3L330	5.10	0.1	45	3 L 450	6.26	0.2	57	3 L 570	7.22	0.5
-22	35220	4.49	0.1	34	3L340	5.14	0.1	46	31460	6.35	0.2	58	3L580	7.30	0.2
\%23	$3 \mathrm{L230}$	4.49	0.1	35	3L350	5.28	0.1	47	$3 \mathrm{L470}$	6.43	0.2	59	$3 \mathrm{L590}$	7.34	0.2
$\cdots 24$	31240	4.49	0.1	36	3L360	5.36	0.1	48	31480	6.52	0.2	60	3L600	7.44	0.2
${ }^{4} 25$	31.250	4.49	0.1	37	3L370	5.44	0.1	49	31490	6.61	0.2	61	$3 \mathrm{L610}$	7.56	0.2
26	3L260	4.58	0.1	38	3 L 380	5.58	0.1	50	3 LSOO	6.69	0.2				-

苟					ALY	1							\% \% \% \%	\%	
717	44170	3.03	0.1	${ }_{36}^{36}$	44360	3.64 3	0.2	55	44550	4.78	0.4	74	41740	5.97	0.5
	4180	3.03	0.1	${ }_{38}^{37}$	$4{ }^{4} \mathbf{4 3 7 0}$	3.66 3.76	${ }_{0}^{0.2}$	${ }_{5}^{56}$		4.89	0.4	75 76		6.01	
${ }^{-1} 9$	41200	3.03 3.03	0.1	3	4L380	3.76 3.86	0.2	58	4458	4.89	${ }_{0}^{0.4}$	${ }_{77}$	42770	6.06 6.14	0.5
$\mathrm{H}_{21} 2$	4210	3.03	0.1	40	4 4 400	3.91	0.2	59	4.590	4.98	${ }_{0.4}$	78	42780	6.14	0.5
${ }^{22}$	41220	3.03	0.1	${ }_{42}^{41}$	44410	4.00 4.05	${ }_{0}^{0.3}$	${ }_{61}^{60}$	41600	5.06	0.4	79	41790	6.34	0.5
	4240		01	4	44430	4.12	03	62	44620	5.17	0.4	8	41820	6.42	. 5
$\bigcirc{ }^{25}$	425	3.03 3.03	0.2	${ }_{44}^{4}$	$4{ }^{4} 440$	4.22	0.3	63	41630	5.23	0.4	84	4 4 840	6.84	0.5
${ }_{26}$	4260	3.09	0.2	45	4 4 450	4.30	0.3	64	41640	5.27	0.4	${ }_{86}$	4.860	7.03	0.5
27	4270	3.14	0.2	46	44460	4.34	0.3	65	41650	5.37	0.4	88	44880	7.23	
28	4288	3.19	0.2	47	44740	4.39	0.3	66	4660	5.39	0.4	90	41900	7.42	
29	4290	3.25	0.2	48	4480	4.42	0.3	67	44670	5.45	0.4	92	44920	7.62	0.5
${ }^{30}$	4300	3.28 3.33	0.2	49	44490	4.48	0.3	68	44680	5.53	0.4	94	44940	7.78	0.6
31	4 L 310	3.33	0.2	50	4 L 500	4.52	0.3	69	4.690	5.59	0.4	96	4 L960	7.95	0.6
${ }_{33}^{32}$	41320	3.39	0.2	51	44510	4.55	${ }_{0}^{0.3}$	70	44700	5.64	0.4	${ }^{98}$	44980	8.12	0.6
${ }_{34}$	44340	3.45 3.50	0.2	${ }_{53}$	$4 \mathbf{4 5 3 0}$	4.67	${ }_{0.3}^{0.3}$	72	44720	5.79	0.4	100	3X54	12.88	0.3
35	$4 \mathrm{L350}$	3.55	0.2	54	$4 \mathrm{LS40}$	4.73	0.3	73	44730	5.94	0.5	-	-	-	
3-					54,	5121		fi	$3 / 8$)			\%ers	35	䢒
23	51230	5.80	0.2	40	51400	8.16	0.4	57	55570	10.97	0.6	74	51740	13.10	0.7
24	51240	5.80	0.2	41	54410	8.38	0.4	58	51580	11.06	0.6	75	51750	13.27	0.7
25	5L250	5.80	0.2	42	54420	8.59	0.4	59	5 L590	11.59	0.6	76	51760	13.39	0.8
26	5L260	5.97	0.2	43	54430	8.77	0.4	60	5 L 600	11.24	0.6	77			0.7
27	$5 \mathrm{SL270}$	6.10	0.2	44	5 L 440	8.98	0.4	61	$5 \mathrm{S610}$	11.32	0.6	78	51780	13.74	0.7
${ }_{30}^{29}$	5290	${ }_{6.39}^{6.39}$	0.3	46	5460	9.33	0.4	${ }_{6}^{63}$	55630	11.46	${ }^{0.5}$	80	51800	14.13	0.7
${ }_{31}$	51300	6.48 6.65	${ }_{03}^{0.3}$	47	55470	9.56	0.4	${ }_{6}^{64}$	55640	11.61 1175	0.6	82	51820	14.52	0.8
31	5 L 10								5 S 650	11.75		84	5 L840	14.90	0.8
${ }_{32}^{32}$	51320	6.78	0.3	49	54490	9.93	0.4	${ }_{6}^{66}$	55660	11.91	0.6	86	$5 L 860$	15.37	
${ }_{34}$	5	6.96	${ }_{03}^{0.3}$	50	55	10.07	0.5	${ }^{67}$	5567	12.05	0.6	88	$5 L 880$	15.63	0.8
34 35	5 L	7.08	0.3	51	55510	10.64	0.5	68		12.22	0.6	90	$5 L 900$	15.93	0.8
35	5 L350	7.22	0.3	52	$5 \mathrm{SL20}$	10.37	0.5	69	SL690	12.35	0.6	92	5 L 920	16.25	0.4
${ }_{37}^{36}$	51360	7.34	0.3	${ }_{54}^{53}$	55530	10.54	0.5	70	55700	12.48	0.7	94	54940	16.64	0.4
${ }_{38}^{37}$	55370	7.48	03	54	5		${ }_{0}^{0.5}$	${ }_{72}$			0.7	96	55.960	17.15	0.9
39	5	7.86	0.4	${ }_{56}$	5L560	10.89	0.5	73	55730	12.74 12.91	0.7	${ }_{100}$	5L980	17.53 17.93	0.9 0.5

A SECTION V-BELTS

A SECTION SUPER GRIPBELTS ${ }^{\oplus}$ V-BELTS

- Used for industrial applications requiring single or multiple V-belt drives
- Length matched within Rubber Mfg. Assoc. tolerances
- Oil and heat resistant
- Made in USA
- Browning brand

			\%															$\begin{aligned} & \text { Sheg. } \\ & \text { Wt. } \end{aligned}$
$\begin{aligned} & \mathrm{m} . \\ & \mathrm{it} \\ & \mathrm{te} \\ & \mathrm{te} \end{aligned}$	$\begin{array}{ll} \text { RMA } \\ \text { Beit } & \text { Stock } \\ \text { No.* } & \text { No. } \end{array}$	Each	Shpg. Wt.	Nom. Outside Lgth.	RMA Bett No.*	Stock No.	Each	Shpg. Wt	Nom. Outside Lgth.	RMA Belt No.*	Stock No.	Each	Shpg. Wt.	Nom. Outside Lgth.	$\begin{aligned} & \text { RMA } \\ & \text { Belt } \\ & \text { No.* } \end{aligned}$	Stock No.	Each	
	A26 3X697	\$7.17	0.2	$50^{\prime \prime}$	A48	3×472	\$10.08	0.3	$7{ }^{18}$	A69	6 L 183	\$12.92	0.5	92"	A90	3×631	\$17.06	0.6
	A27 6A139	7.22	0.2	51	A49	1 1096	10.22	0.4	72	A70	64151	13.19	0.5	93	A91	64193	17.24	0.6
	A28-6A140	7.38	0.2	52	A50	3×546	10.32	0.5	73	A71	3×627	13.28	0.5	94	A92	6 6152	17.44	0.6
	A29 64141	7.45	0.2	53	A51	3×473	10.44	0.4	74	A72	54292	13.34	0.6	95	A93	61194	17.60	0.6
	$\mathrm{A} 30-14095$	7.60	0.2	54	A52	3×702	10.55	0.4	75	A73	6L184	13.44	0.5	96	A94	$6 L 195$	17.77	0.6
	A31 ${ }^{\circ} \times \mathbf{}$ 3 654	7.71	0.3	55	A53	6×565	10.65	0.4	76	A74	5A293	13.54	0.6	97	A95	61.196	17.94	0.6
	$\mathrm{A} 32=64142$	7.87	0.2	56	A54	3×700	10.81	0.4	77	A75	3×628	13.77	0.5	98	A96	3×632	18.13	0.6
	A33-5X995	7.96	0.3	57	A55	3×622	10.92	0.4	78	A76	$6 L 185$	13.96	0.5	99	A97	6.197	18.35	0.6
	A 344 mm 6143	8.16	0.2	58	A56	3×704	11.08	0.4	79	A77	$6 L 186$	14.18	0.5	100	A98	$6 L 198$	18.50	0.7
	$A 35=5 \times 620$	8.25	0.3	59	A57	6 A148	11.12	0.4	80	A78	6×570	14.40	0.6	102	A100	$6 L 199$	18.87	0.7
	A36-6A144	8.42	0.2	60	A58	3×547	11.34	0.4	81	A79	$6 L 187$	14.60	0.5	105	A103	61200	19.40	0.7
	A37. 6 6145	8.64	0.2	61	A59	64149	11.43	0.4	82	A80	3×629	14.82	0.6	107	A105	3×351	19.78	0.7
	A38 203×545	8.82	0.3	62	A60	3×623	11.55	0.4	83	A81	6 L 188	15.02	0.5	112	Allo	6 L 201	21.30	0.8
	A39. $-6 A 146$	8.96	0.3	63	A61	6A150	11.71	0.4	84	A82	$6 L 189$	15.24	0.5	114	A112	3×352	21.99	0.7
	A40 in 1A109	9.08	0.3	64	A62	3X624	11.81	0.4	85	A83	$6 L 190$	15.50	0.5	122	A120	3×371	23.62	0.8
	A41: $=14100$	9.22	0.3	65	A63	58.290	11.97	0.5	86	A84	54294	15.71	0.6	130	A128	3X633	25.30	0.9
	A42 ${ }^{3} 3 \times 621$	9.44	0.3	66	A64	3X625	12.08	0.4	87	A85	3×630	15.92	0.6	138	A136	61202	26.95	9.0
	A43\% 3×699	9.63	0.3	67	A65	5A291	12.18	0.5	88	A86	6 L 18	16.14	0.6	146	A144	61203	28.60	1.0
	A44**6A147	9.71	0.3	68	A66	6×569	12.34	0.5	89	A87	$6 L 191$	16.40	0.6	160	A158	61204	31.35	1.0
	$\mathrm{A} 45^{\mathrm{m}} \mathrm{E}$ 1A105	9.86	0.2	69	A67	61.182	12.55	0.5	90	A88	54295	16.61	0.7	175	A173	$6 L 205$	34.40	1.2
,	$\begin{array}{ll} \text { A4G } & 3 \times 471 \\ \text { A47 } & 1 A 098 \end{array}$	$\begin{aligned} & 9.86 \\ & 9.98 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	70	A68	3X626	12.61	0.5	91	A89	$6 L 192$	16.82	0.6	182	A180	6L206	35.85	1.2

:lanufactuind to tolerances set by the RMA (Rubber Manufacturers' Association).

Six-rib belts for many Speedaire and other brand compressors. High tensile strength, oil/heat resistant. Browning brand.

POLY V-BELTS FOR COMPRESSORS

FOR A COMPLETE LISTING OF STANDARD ONE-PIECE AND

CLAMP STYLE ONE AND TWO-PIECE SHAFT COLLARS SEE PAGE 334.
aft collars are used on tools, machinery, fans, blowers, and ier equipment to lock various components in place including arings, sprockets, and pulleys. Other applications include use shaft protectors, spacers, and depth stops.

Choose from three styles of shaft collars: each style available in either cold-rolled steel or 303 stainless steel. Stainless steel collars have stainless steel setscrews.

POWER
 TRANSMISSION: V -beLTS
 INDUSTRIAL-DUTY B SECTION AND PREMIUM LINK-TYPE V-BELTS

B SECTION SUPER GRIPBELTS ${ }^{\oplus}$ V-BELTS

- Used for industrial applications requiring single or multiple V-belt drives
- Length matched within Rubber Mfg Assoc. tolerances
- Oil and heat resistant
- Made in USA
- Browning brand

Nom. Outside Lgth.	$\begin{aligned} & \text { RMA } \\ & \text { Belt } \\ & \text { No." } \end{aligned}$	Stock No.	Each	$\begin{gathered} \text { Shpg. } \\ \text { WL } \end{gathered}$	Nom. Outside LIth.	$\begin{aligned} & \text { RMA } \\ & \text { Reft } \\ & \text { No.* } \end{aligned}$	Stock No.	Each	Shpg. Wt.	Nom. Outside Inth.	$\begin{aligned} & \text { RMA } \\ & \text { 8olt } \\ & \text { No." } \end{aligned}$	Stack No.	Each	Shpg. Wt.
$31^{\prime \prime}$	B28	64207	\$9.54	0.3	67^{7}	B64	3×614	\$17.35	0.8	$103^{\prime \prime}$	B100	5×480	\$26.45	1.2
32	B29	$6 \mathrm{L208}$	9.79	0.3	68	1865	6×999	17.63	0.8	104	B101	61216	26.60	1.1
33	B30	14103	9.98	0.4	69	B66	3×640	17.77	08	106	B103	5×481	27.05	1.2
34	B31	6 L 209	10.22	0.3	70	B67	64157	17.94	0.7	108	B105	3X650	27.50	1.3
35	B32	64153	10.39	0.3	71	B68	3×641	18.13	0.8	111	B108	5×482	28.55	1.3
36	B33	1 1099	10.59	0.4	72	B69	1A102	18.37	0.9	114	B111	61.217	29.40	1.2
37.	B34	6A154	10.75	0.3	73	B70	5×475	18.60	0.9	115	B112	3×353	29.70	1.3
36	B35	3X634	10.99	0.5	74	B71	3×642	18.86	0.9	119	B116	6 6167	30.60	1.1
\%	B36	64155	11.34	0.3	75	B72	3×615	19.03	0.8	123	B120	3×354	31.35	1.4
40%	B37	61210	11.76	0.4	76	B73	3×705	19.29	0.9	127	B124	64168	32.45	1.2
41	838	3×635	12.12	0.5	77	B74	64158	19.57	0.7	131	B128	3×372	33.60	1.3
楼	B39	6L211	12.34	0.4	78	B75	3×643	19.77	0.9	136	B133	6 6169	35.25	13
4	B40	3×698	12.61	0.5	79	B76	6 6159	20.05	0.7	139	B136	5×483	35.90	1.7
4	B41	6A156	12.92	0.4	80	B77	64160	20.37	0.7	143	B140	61218	36.90	1.6
45	B42	3×636	13.21	0.6	81	B78	3×644	20.61	0.9	147	B144	3×651	37.95	1.
46	B43	14107	13.44	0.5	82	B79	64161	20.83	0.8	151	B148	64219	38.90	1.1
$4{ }^{4}$	B44	6×571	13.75	0.6	83	B80	5×476	21.15	1.0	153	B150	61220	39.40	1.6
48	B45	14094	13.98	0.6	84	B81	3X645	21.41	1.0	157	B154	6 6221	40.20	1.:
	B46	3×637	14.29	0.6	85	B82	1 A101	21.99	1.0	161	B158	3×374	41.25	2.6
5	B47	14106	14.50	0.6	86	${ }_{883}$	3×646	20.72	1.0	165	B162	6A170	42.85	1.6
51	B48	3×474	14.73	0.6	87	B84	64162	22.35	0.8	176	B173	5×484	45.10	1.9
	B49	14097	14.98	0.6	88	B85	3×647	22.51	1.0	183	B180	6 A171	47.30	1.8
53	${ }^{85} 5$	3×475	15.19	0.6	89	B86	64163	22.77	0.8	193	B190	$6 \mathrm{LL22}$	49.95	2.0
645	B61	3×638	15.38	0.7	90	B87	6A164	22.93	0.9	198	B195	6 A172	51.15	2.0
	B52	6×874				B88		23.19		208	B205	61223	53.55	2.2
56	- ${ }^{51}$	3×611	15.68	0.7	92	889	6 L 112	23.40	1.0	213	B210	$6 \mathrm{EL224}$	55.00	2.3
57	B54	6×875	15.81	0.7	93	B90	3×648	23.68	1.1	228	B225	61225	58.35	2.3
58.	B55	3×612	15.92	0.7	94	B91	61213	23.93	1.0	243	B240	6L226	62.15	2.6
59.	B56	6×876	16.03	0.7	95	B92	68165	24.31	0.9	258	B265	61227	68.20	3.0
69	B57	3×706	16.14	0.7	96	B93	5×477	24.73	1.1	273	B270	6 6228	70.35	2.9
81	B58	6×998	16.23	0.7	97	894	61214	25.00	1.0	288	B285	61229	74.25	3.1
62^{-}	B59	1 A108	16.40	0.7	98	B95	5×478	25.30	1.1	303	B300	61230	78.05	3.2
63	B60	3×639	16.45	0.8	99	B96	5×479	25.55	1.2	318	${ }^{3} 315$	61231	83.55	3.4
64	B61	14104	16.72	0.7	100	B97	3×649	25.85	1.2	363	B360	61232	100.80	4.0
65	B62	3×613	16.92	0.7	101	B98	6 L 215	26.00	1.0					
60	B63	3×703	17.16	0.8	102	B99	6 A166	26.20	1.0					

(*) Manufactured to tolerances set by the RMA (Rubber Manufacturers' Association).

PREMIUM LINK-TYPE V-BELTS

- Ideal for problem V-belt drives
- Composite polyurethane/polyester construction
- For permanent replacement of endless V-belts
- Classical V-belt power ratings
- Superior oil, water, and chemical resistance
- Operating temperature range: $\mathbf{- 4 0 ^ { \circ }} \mathrm{F}$ to $240^{\circ} \mathrm{F}$
- Eliminates need to stock extensive line of replacement belts
- Reduce transmitted vibration
- Easy installation without dismantling drives
NOTE: Like rubber V-belts, PowerTwist ${ }^{\top}$ V-belts are designed for industrial use; not suitable for automotive or lawn/garden applications.

POWER TRANSMISSION: V-BELTS

INDUSTRIAL-DUTY 3VX AND 5VX V-BELTS

- 3VX and 5VX belt drives deliver substantially more horsepower than comparable A and B section drives
- 3 VX and 5 VX belt drives can reduce overall drive dimensions by as much as $\mathbf{4 0 \%}$ over traditional A, B, and C section drives
- 3 VX and 5 VX belt drives provide weight savings of up to $\mathbf{2 5 \%}$ over traditional A , B, and C section drives
- Use 5VX belts with Browning B5V sheaves from page 299
- Also can be used with standard "358" wedged sheaves
- Precision molded raw edge-notched construction
- Length matched within RMA (Rubber Mfg. Assoc.) tolerances
- Oil and heat resistant
- Made in USA

Nom Outside Length	$\begin{aligned} & \text { RMA } \\ & \text { Belt } \\ & \text { No. } \end{aligned}$	Stack No.	Each	Shpg. Wt	Nom. Outside Length	$\begin{aligned} & \text { RMA } \\ & \text { Belt } \\ & \text { No.* } \end{aligned}$	Stock No.	Each	Shpg. Wt.	Nora. Outside Length	$\begin{aligned} & \text { RMA } \\ & \text { Belt } \\ & \text { No.* } \end{aligned}$	Stock No.	Each	$\begin{aligned} & \text { Shpg. } \\ & \text { Wt. } \end{aligned}$
$25.0{ }^{\text {+ }}$	3 VX 250	21377	\$8.61	0.1	$47.5{ }^{\text {n }}$	3 VX 475	$2 L 388$	\$12.57	0.2	$90.0{ }^{\prime \prime}$	$3 \mathrm{VX900}$	21399	\$21.14	0.4
26.5	3VX265	21378	8.82	0.1	50.0	$3 \mathrm{VX500}$	21389	12.78	0.3	95.0	3VX950	2 L 400	22.24	0.4
288	3 X 280	21379	9.04	0.1	53.0	$3 \mathrm{VX530}$	21390	13.24	0.3	100.0	3 VX1000	$2 \mathrm{L401}$	23.59	0.4
$3{ }^{3} 0$	$3 \mathrm{VX300}$	21380	9.23	0.1	56.0	$3 \mathrm{VX560}$	21391	13.67	0.3	106.0	3 VX1060	2 L 402	24.89	0.4
31.3	$3 \mathrm{VX315}$	2 L 381	9.70	0.2		$3 \mathrm{VX600}$	21.392	14.35	0.3	112.0	$3 \mathrm{VX1120}$	21403	27.20	0.5
335	$3 \mathrm{VX335}$	21382	9.95	0.2	63.0	$3 \mathrm{VX630}$	$2 L 393$	14.77	0.3	118.0	$3 \mathrm{VX1} 180$	21404	28.90	0.5
355	$3 \mathrm{VX355}$	21383	10.33	0.2	67.0	$3 \mathrm{~V} \times 70$	21.394	15.41	0.3	125.0	$3 \mathrm{VX1250}$	21405	30.95	0.6
375	$3 \mathrm{VX375}$	21384	10.58	0.2	71.0	$3 \mathrm{VX710}$	21.395	16.32	0.3	132.0	$3 \mathrm{VX1320}$	$2 L 406$	32.75	0.7
490	$3 \mathrm{VX400}$	21385	11.23	0.2	75.0	$3 \mathrm{VX750}$	21396	17.17	0.4	140.0	$3 \mathrm{VX1400}$	21407	34.70	0.8
38	$3 \mathrm{3X4} 45$	21386	11.68	0.2	80.0	$3 \mathrm{VX800}$	21397	18.27	0.3					
450	$3 \mathrm{VX450}$	$2 L 387$	12.15	0.2	85.0	3VX850	21.398	19.62	0.4	-	-			
	$4 x$													
45.0	$5 \mathrm{VX450}$	21408	24.38	0.8	68.0	$5 \mathrm{~V} \times 880$	$2 \mathrm{L426}$	36.30	0.7	100.0	5VX1000	21444	52.25	1.0
470	5VX470	$2 L 409$	25.50	0.5	69.0	$5 \mathrm{VX690}$	$2 L 427$	36.90	0.9	103.0	$5 \mathrm{VX1030}$	$2 L 445$	55.95	1.1
49.0	$5 \mathrm{SX490}$	21410	26.60	0.7	71.0	$5 \mathrm{VX710}$	21428	38.00	0.7	106.0	$5 \mathrm{VX1060}$	21446	57.60	1.0
30.0	$5 \mathrm{VX500}$	2 L 11	27.20	0.5	73.0	$5 \mathrm{VX730}$	21429	39,10	0.7	108.0	$5 \mathrm{VX1080}$	$2 L 447$	58.70	1.2
5140	5VX510	$2 L 412$	27.25	0.5	74.0	$5 \mathrm{VX740}$	21430	39.70	0.8	112.0	$5 \mathrm{VX1} 120$	21448	60.95	1.2
5930	$5 \mathrm{EX533}$	$2 L 413$	28.25	0.6	75.0	$5 \mathrm{VX7750}$	$2 L 431$	40.20	0.8	115.0	5 X 1150	21449	62.60	1.3
540	5 VK 540	$2 L 414$	28.80	0.6	78.0	$5 \mathrm{SX780}$	21.432	41.80	0.9	118.0	$5 \mathrm{VX1180}$	$2 L 450$	64.20	1.3
5550	5 VX 550	$2 L 415$	29.30	0.6	80.0	5 SX 800	$2 L 433$	42.85	0.9	123.0	5VX1230	$2 L 451$	66.95	1.4
56	5VX560	$2 L 416$	29.65	0.6	81.0	$5 \mathrm{VX810}$	$2 L 434$	43.40	0.9	125.0	$5 \mathrm{VX1250}$	$2 L 452$	68.20	1.2
570	5 X 570	21417	29.40	0.6	83.0	5 V 8830	21435	44.40	0.9	132.0	$5 \mathrm{VX1320}$	21453	71.95	1.4
58:0	5VX580	2 L 18	30.65	0.6	84.0	$5 \mathrm{~V} \times 40$	21436	44.95	0.9	140.0	5 X 1400	21454	75.85	1.6
5980	5 V 599	21419	31.25	0.6	85.0	5 V 8850	24437	46.20	0.9	150.0	5 X 1500	$2 L 455$	81.65	1.7
60.0	5 FX 600	$2 L 420$	32.00	0.6	86.0	5 VX 860	21438	46.70	0.9	160.0	5VX1600	21456	87.15	2.0
660	$5 \mathrm{VX610}$	21421	32.55	0.7	88.0	$5 \mathrm{XX880}$	21439	47.75	0.9	170.0	5 X 1700	$2 L 457$	92.65	1.9
69.0	$5 \mathrm{VX630}$	2 L 422	33.55	0.7	90.0	5 VX 900	21440	47.90	1.0	180.0	$5 \mathrm{XX1800}$	24458	98.35	2.2
65.0	5VX650	$2 \mathrm{L423}$	34.70	0.7	93.0	$5 \mathrm{VX930}$	21.441	50.35	1.0	190.0	$5 \mathrm{XX1900}$	21459	104.10	2.2
66.0	$5 \mathrm{VX660}$	24424	35.25	0.8	95.0	$5 \mathrm{VX950}$	21442	51.45	1.0	200.0	5VX2000	2 L 460	109.85	2.3
67.0	$5 \mathrm{VX670}$	24425	35.75	0.7	96.0	5 VX 960	21443	52.00	1.0		,			

(*) Manufactured to tolerances set by the RMA (Rubber Manufacturers' Association).

ELASTOMERIC TENSIONERS

Universally applicable tensioning device for use as an elastic spring element for chain anc belt tensioning, pressing, and cushioning. Tensioners keep chain and belts taut, pre venting uneven drive surges and power losses. Chain and belt life are prolonged b; eliminating slap and vibration while minimizing drive, bearing, and shaft wear.
Four rubber inserts inside base isolate tensioning arm from contact with base and provid continuous resistance to applied rotary forces. Tensioning arm deflects up to 30° eithe side of its normal position allowing a pretension force that self-adjusts an idler t everyday elongation of a chain or belt while dampening vibration in the drive.
Employs no metal-to-metal connections; no lubrication is required. Dirt and grime won affect operation. Can be used indoors or out, from -40° to $180^{\circ} \mathrm{F}$. One bolt mountir makes installation easy and allows for 360° position flexibility.
Mounfing bolt and idler bolt included. For idler sheaves and idler sprockets see page 29 Nos. 1L833, 1 L834, and 1 L835 include $5 / 8^{\prime \prime}$ bushing.

ANSI Chain Size	V-Beit Size Range	Flat Belt Width	Rosta Model	Stock No.	List	Each	Stipg. Wt.
35	A, B, 3L		SE15	11833	\$ 868.00	\$ $\$ 34.45$	1.2
35,40,8,41	$\mathrm{B}, \mathrm{C}, 4 \mathrm{~L}_{4} 5 \mathrm{~L}$	182	SE18	1.834	82.00	+41.45	1.8
50,60, 880	D, E	2,3, \& $4^{\prime \prime}$	SE27	11835	105.00	53.10	4.3
80, 80	D,	4\&5*	SE38	14836	180.00	90.95	8.8

- Used for higher horsepower industrial
applications
- Precision molded raw edge-notched
construction
- Length matched within Rubber Mfg.
Assoc. tolerances
- Oil and heat resistant
- Made in USA
- Browning brand

A SECTION (1/2" Top Widith by $5 / 16^{11}$ Thick)

Nom Out: side. Length	$\begin{aligned} & \text { RMA } \\ & \text { 8elt } \\ & \text { No."* } \end{aligned}$	Stock No.	Each	Shipg. Wt.	Nom. Outside Length	$\begin{aligned} & \text { RMA } \\ & \text { Belt } \\ & \text { No.* } \end{aligned}$	Stock No.	Each	Shpg. W.	Nom. Outside Length	$\begin{aligned} & \text { RMA } \\ & \text { Bett } \\ & \text { No." } \end{aligned}$	Stock No.	Each	Shpg. Wt.
$28^{\prime \prime}=$	AX26	6 A115	\$8.94	0.2	$55^{\prime \prime}$	AX53	61239	\$13.39	0.4	$87^{\prime \prime}$	AX85	61253	\$20.08	0.6
30%	AX28	6 6233	9.25	0.2	56	AX54	6 L 240	13.61	0.4	92	AX90	$6 L 254$	21.46	0.6
33.	AX31	64116	9.64	0.2	57	AX55	$6 \mathrm{6L241}$	13.72	0.4	94	AX92	6 L 255	21.89	0.6
35	AX33	6 A117	9.99	0.2	58	AX56	$6 L 242$	13.86	0.4	98	AX96	6L256	22.84	0.7
36	AX34	61234	10.21	0.2	62	AX60.	$6 L 243$	14.47	0.4	107	AX105	6 L257	24.88	0.7
$37 \times$	AX35	6 A118	10.33	0.2	64	AX62	6L244	14.87	0.4	112	AX110	$6 L 258$	26.85	0.8
38 1\%	AX36	6A119	10.54	0.3	66	AX64	$6 L 245$	15.24	0.4	114	AX112	61259	27.70	08
39	AX37	$6 \mathrm{L235}$	10.79	0.3	68	AX66	$6 L 246$	15.50	0.5	122	AX120	6L260	29.80	0.8
$40=3$	AX38	64120	11.07	0.3	70	AX68	$6 L 247$	15.84	0.5	130	AX128	6 L 261	31.90	0.9
44	AX42	6 6121	11.87	0.3	72	AX70	$6 L 248$	16.63	0.5	138	AX136	$6 L 262$	34.00	0.9
$45^{\text {:\% }}$	AX43	6 L 236	12.11	0.3	73	AX71	$6 L 249$	16.75	0.5	146	AX144	6 L263	36.00	1.0
48 年	AX46	6 A122	12.44	0.3	77	AX75	$6 L 250$	17.28	0.5	160	AX158	$6 \mathrm{L264}$	39.65	1.1
50	${ }_{\text {AX }}{ }^{\text {A }} 5$	$6 L 237$	12.75	0.3	80	AX78	61251	18.12	0.5	175	AX173	61265	43.60	1.1
53 \%	AX51	$6 L 238$	13.09	0.4	82	AX80	$6 \mathrm{L252}$	18.66	0.5	182	AXI80	6 L266	45.30	1.2

F	8, \% ${ }^{\text {a }}$			B SECTION (2l $/ 32^{\text {² }}$ Top Width by $13 / 32^{\prime \prime}$ Thick)										
$\begin{aligned} & \text { Nomitig } \\ & \text { Out- } \\ & \text { side } \\ & \text { Lenthit } \end{aligned}$	$\begin{aligned} & \text { RMMA } \\ & \text { Belt } \\ & \text { No.t } \end{aligned}$	Stock No.	Each	$\begin{aligned} & \text { Shpg. } \\ & \text { Wt. } \end{aligned}$	$\begin{gathered} \text { Nom: } \\ \text { Nort. } \\ \text { Side } \\ \text { Length } \end{gathered}$	$\begin{aligned} & \text { RMAA } \\ & \text { Belt } \\ & \text { No. } \end{aligned}$	Stock No.	Each	$\underset{\substack{\text { Shpg. } \\ \text { WL. }}}{ }$	$\begin{gathered} \text { Nom- } \\ \text { Nout- } \\ \text { Side } \\ \text { Length } \end{gathered}$	$\begin{aligned} & \text { RMA } \\ & \text { Bett } \\ & \text { No.* } \end{aligned}$	Stock	Each	$\begin{aligned} & \text { Shpg. } \\ & \text { Wt. } \end{aligned}$
$38^{\prime \prime}$	BX35	$6 \mathrm{L267}$	\$13.77	0.4	69"	BX66	6L280	\$22.40	0.8	111"	BX108	$6 \mathrm{L297}$	\$36.55	
39	${ }^{\text {B }} \times 36$	6 A123	15.24	0.4	70	BX67	$6 L 281$	22.60	0.8	115	BX112	6 A137	+37.35	1.3
4	${ }^{\text {BX }}$ 888	6 6A124	15.24	0.4	71	${ }^{\text {Bx68 }}$	6A132	22.84	0.8	116	${ }_{\text {BX113 }}$	6L298	37.65 38.05	1.3
49	BX46	6 6126	17.96	$0 . \overline{5}$	74	BX71	6A133	23.76	0.8	119	BX116	GL300	38.45	1.4
51	BX48	6 6127	18.52	0.6	78	BX75	6A134	24.88	0.9	123	BX120	GL301	39.50	1.4
53	BX50	GL268	19.02	0.6	80	${ }_{\text {BX77 }}$	6 L 283	25.60	0.9	127	BX124	GL302	40.90	1.4
54	${ }^{\text {BX5 }} 1$	65269	19.33 19.50	0.6	81	BX78	65284	25.95	0.9	${ }^{136}$	${ }^{\text {BX128 }}$	6 L 303	42.30	1.5
5	${ }^{\text {BX }} \times 5$	$6 \mathrm{6L270}$	19.50	0.6	82	BX79	$6 \mathrm{6L285}$				${ }^{\text {BX133 }}$	6 6L304	44.20	
57	BX54	66^{6272}	19.67	0.6	8	BX81	${ }_{6} 6286$	26.65	0.9	139	${ }_{\text {BX136 }}$	6 6305	45.10	16
58	BX55	GA128	20.08	0.6	85	BX82	6 L 288	27.70	0.9	153	BX150	$6 L 307$	49.55	1.8
59	BX56	6 6129	20.22	0.6	86	BX83	$6 L 289$	27.90	1.1	161	BX158	GL308	51.90	1.8
60	BX57	6 L 273	20.27	0.7	88	BX85	GA135	28.45	1.1	165	BX162	$6 \mathrm{6L309}$	54.00	1.9
61	BX58	61274	20.40	0.7	93	BX90	6 6136	29.80	1.1	176	BX173	61310	56.75	2.0
${ }_{6}^{62}$	BX59 BX60	6L275	20.56 20.67	0.7	${ }_{98}^{96}$	BX93 BX95	6L290	31.20 31.90	1.1	183 198	BX180 BX195	${ }_{6}^{6 L 311}$	59.55 64.35	${ }_{2.3}^{2.1}$
6.4	BX61	$6 \mathrm{L276}$	21.02	0.7	99	BX96	6L292	32.20	1.1	213	BX210	${ }_{6 L 313}$	69.20	2.5
${ }^{65}$	${ }^{\text {BX62 }}$	66^{6277}	21.29	0.7	100	BX97	6 L 293	32.60	1.1	243	BX240	6 6314	78.25	2.8
66	Bx63	65278	21.59	0.7	102	BX99	6 L 294	33.05	1.2	258	BX255	61315	83.30	3.0
67 68	BX64 BX65	61.279 $6 A 131$	21.86 22.13	0.7 0.8	103 108	BX100 BX105	$6 L 295$ $6 L 296$	33.30 34.65	1.2	273 303	BX270 BX300	${ }_{6}^{6 L 316}$	88.50 98.85	3.2 3.6

Manufactured to tolerances set by the RMA (Rubber Manufacturers' Association).
MANY BRANDS OF MAINTENANCE EQUIPMENT AVAILABLE

$m=\operatorname{VACUUMCLEANERS}_{\infty}^{m}$
Dayton
Rubbernaid

SINGLE AND MULTIPLE GROOVE CAST-IRON SHEAVES

POWER
 IRANSMISSION:
 SHEAVES

- New B5V greatly simplifies V-drive selection by effectively serving 90% of all applications in the $10-75 \mathrm{HP}$ range
, Combination groove accommodates A ($A X)$, $B(B X)$, and $5 V(5 V X)$ section belts; do NOT use with banded belts
- Durable cast-iron construction
- New "B" bushing used extensively in B5V line on sizes larger than 4.68" OD; smaller sizes use P1 bushing
- 5 V performance at B groove economy means more horsepower per dollar
New design yields higher strength and better balance than classical sheaves
- Interchanges with present B and 5V drive components
- Made in USA

$\begin{array}{cc} \hline \text { Pitch } & \text { Pitch } \\ A & B \\ \text { Belts } & \text { Belts } \end{array}$	Pitch 5V Belts	$\underset{(\mathrm{in} .)}{\mathrm{OD}}$	Bushing Req'd.*	Browning Model	Stock No.	List	Each	Shpg. Wt.
\%		OHEGROOYE SHEAVES						
$3.8{ }^{11}=4.2{ }^{\text {n }}$	$4.3{ }^{\text {n }}$	4.48	P1	185V42	$2 L 273$	\$26.47	\$20.15	2.4
4.0 : 4.4	4.5	4.68	P1	1B5V44	21274	27.27	20.75	2.8
$4.2=4.6$	4.7	4.88	B	1B5V46	21275	30.11	22.92	2.5
4.4 \% 4.8	4.9	5.08	B	1B5V48	$2 L 276$	30.93	23.55	2.8
4.6 ; 5.0	5.1	5.28	B	185V50	$2 L 277$	31.75	24.16	3.2
$4.8=5.2$	5.3	5.48	B	185V52	21278	32.56	24.78	3.5
$5.0=5.4$	5.5	5.68	B	185V54	21279	33.38	25.45	4.0
$5.2 \geq 5.6$	5.7	5.88	B	185V56	21280	34.20	26.05	4.4
5.4 ¢ 5.8	5.9	6.08	B	185V58	21281	35.02	26.70	4.8
5.6 : 6.0	6.1	6.28	B	185V60	21282	36.65	27.90	5.2
5.8 \% 6.2	6.3	6.48	B	185V62	$2 L 283$	38.29	29.25	5.5
6.0 : 6.4	6.5	6.68	B	185V64	$2 L 284$	39.92	30.45	5.8
$6.2{ }^{6.6}$	6.7	6.88	B	185V66	2 L 285	43.20	33.00	6.2
6.4 \% 6.8	6.9	7.08	B	1B5V68	$2 L 286$	44.83	34.20	6.6
6.6	7.1	7.28	B	185V70	21287	46.47	35.45	7.2
$7.0{ }^{\text {\% }}$ \% 7.4	7.5	7.68	B	185V74	21288	49.74	37.95	7.8
7.6 \% 8.0	8.1	8.28	B	185V80	21289	51.37	39.10	8.2
8.2 \% 8.6	8.7	8.88	B	1B5V86	21290	54.65	41.65	9.1
8.6 \% 9.0	9.1	9.28	B	1B5V90	21291	55.44	42.25	9.3
9.0 ¢ 9.4	9.5	9.68	B	185 V 94	21292	56.28	42.90	9.3
10.6 ? ${ }^{2} 11.0$	11.1	11.28	B	1B5V110	21293	66.10	50.40	9.4
12.0 - 12.4	12.5	12.68	B	185V124	2L294	77.55	59.05	12.0
13.2 \% 13.6	13.7	13.88	B	1B5V136	$2 L 295$	82.45	62.80	14.0
15.015 .4	15.5	15.68	B	185V154	2L296	106.77	81.35	17.0
15.616 .0	16.1	16.28	B	1B5V160	$2 L 297$	123.12	93.80	18.0
18.018 .4	18.5	18.68	B	1B5V184	2L298	139.48	106.20	18.0

	When		TWOGROOVESHEAVES						
3.8	4.2	4.3	4.48	P^{1}	2 B 5 V 42	$2 L 299$	39.55	30.20	3.7
4.0	4:4	4.5	4.68	P1	2B5V44	$2 L 300$	41.69	31.75	4.1
4.2	4.6	4.7	4.88	B	2B5V46	2 L 301	44.83	34.25	3.4
4.4	4.8	4.9	5.08	B	2B5V48	2 L 302	46.47	35.50	4.5
4.6	5.0	5.1	5.28	B	2B5V50	2L303	48.10	36.75	4.4
4.8	5.2	5.3	5.48	B	2B5V52	2L304	49.74	38.00	5.1
5.0	5.4	5.5	5.68	B	285V54	21305	51.37	39.15	6.2
5.2	5.6	5.7	5.88	B	2B5V56	$2 L 306$	53.01	40.40	6.5
5.4	5.8	5.9	6.08	B	2B5V58	$2 L 307$	54.65	41.65	6.5
5.6	6.0	6.1	6.28	B	2B5V60	$2 L 308$	56.28	42.90	7.9
5.8	6.2	6.3	6.48	B	2B5V62	21309	57.92	44.10	8.2
6.0	6.4	6.5	6.68	B	2B5V64	$2 L 310$	59.55	45.35	9.1
6.2	6.6	6.7	6.88	B	$2 \mathrm{B5V} 66$	2 L 311	60.37	46.00	9.4
6.4	6.8	6.9	7.08	B	2B5V68	2 L 312	61.19	46.65	8.6
6.6	7.0	7.1	7.28	B	2B5V70	2 L 313	70.78	53.85	10.0
7.0	7.4	7.5	7.68	B	$2 \mathrm{B5V} 74$	2 L 314	71.60	54.55	11.0
7.6	8.0	8.1	8.28	B	$2 \mathrm{B5V} 80$	$2 L 315$	72.42	55.20	11.0
8.2	8.6	8.7	8.88	B	2B5V86	$2 L 316$	74.05	56.35	11.0
8.6	9.0	9.1	9.28	B	2B5V90	21317	74.88	57.05	11.0
9.0	9.4	9.5	9.68	B	2B5V94	$2 L 318$	75.69	57.60	11.0
0.6	11.0	11.1	11.28	B	2B5V110	$2 \mathrm{L319}$	87.14	66.40	15.0
2.0	12.4	12.5	12.68	B	2B5V124	2L320	93.68	71.35	17.0
3.2	13.6	13.7	13.88	B	2B5V136	2L321	110.04	83.70	19.0
5.0	15.4	15.5	15.68	B	2B5V154	2L322	149.29	113.60	23.0
5.6	16.0	16.1	16.28	B	2B5V160	2L323	157.47	119.80	25.0
8.0	18.4	18.5	18.68	B	2B5V184	2L324	195.09	148.40	33.0

THREE GROOVE SHEAVES

$3.8{ }^{17}$	$4.2^{\text {n }}$	$4.3{ }^{\prime \prime}$	4.48	P1	3B5V42	$2 L 325$	\$44.45	\$33.90	4.8
4.0	4.4	4.5	4.68	PI	3B5V44	21.326	46.10	35.10	5.1
4.2	4.6	4.7	4.88	B	3B5V46	21327	52.67	40.15	4.5
4.4	4.8	4.9	5.08	B	$3 \mathrm{B5V} 48$	21328	54.31	41.40	5.1
4.6	5.0	5.1	5.28	B	3B5V50	21329	55.94	42.65	5.8
4.8	5.2	5.3	5.48	B	3B5V52	21330	57.58	43.90	6.3
5.0	5.4	5.5	5.68	B	3B5V54	$2 L 331$	59.21	45.15	7.0
5.2	5.6	5.7	5.88	B	3B5V56	21332	60.85	46.40	7.8
5.4	5.8	5.9	6.08	B	3B5V58	21333	62.48	47.65	85
5.6	6.0	6.1	6.28	B	3B5V60	21.334	64.12	48.90	9.1
5.8	6.2	6.3	6.48	B	3B5V62	21335	65.76	50.15	10.0
6.0	6.4	6.5	6.68	B	3B5V64	21336	69.03	52.60	11.0
6.2	6.6	6.7	6.88	B	3B5V66	21337	70.66	53.80	12.0
6.4	6.8	6.9	7.08	B	3B5V68	21338	72.30	55.05	13.0
6.6	7.0	7.1	7.28	B	3B5V70	21.339	78.96	60.15	12.0
7.0	7.4	7.5	7.68	B	3B5V74	21.340	80.59	61.40	14.0
7.6	8.0	8.1	8.28	B	3 B 5 V 80	21.341	83.87	63.85	14.0
8.2	8.6	8.7	8.88	B	3B5V86	21342	90.41	68.85	14.0
8.6	9.0	9.1	9.28	B	3B5V90	21343	93.68	71.35	15.0
9.0	9.4	9.5	9.68	B	3B5V94	21344	96.95	73.80	16.0
10.6	11.0	11.1	11.28	B	385 V 110	21345	113.31	86.30	19.0
12.0	12.4	12.5	12.68	B	3B5V124	21346	129.67	98.75	23.0
13.2	13.6	13.7	13.88	B	3B5V136	21347	139.48	106.15	29.0
15:0	15.4	15.5	15.68	B	3B5V154	21348	175.47	133.60	36.0
15.6	16.0	16.1	16.28	B	3B5V160	21349	185.28	140.90	38.0
18.0	18.4	18.5	18.68	B	3B5V184	21.350	211.45	161.25	43.0
	5	${ }^{3}$	P		O/ES	4HES	\% ${ }^{\text {\% }}$	$\%$	\because
3.8	4.2	4.3	4.48	P1	4B5V42	21351	65.76	50.15	6.3
4.0	4.4	4.5	4.68	P1	4B5V44	21352	67.39	51.35	6.2
4.2	4.6	4.7	4.88	B	4B5V46	$2 L 353$	69.03	52.60	5.8
4.4	4.8	4.9	5.08	B	4B5V48	21.354	70.66	53.85	6.1
4.6	5.0	5.1	5.28	B	4B5V50	$2 L 355$	72.30	55.10	7.1
4.8	5.2	5.3	5.48	B	4B5V52	$2 L 356$	73.93	56.35	7.6
5.0	5.4	5.5	5.68	8	4B5V54	$2 L 357$	75.57	57.60	8.4
5.2	5.6	5.7	5.88	B	4B5V56	21358	77.21	58.90	9.6
5.4	5.8	5.9	6.08	B	4B5V58	21359	78.84	60.05	10.0
5.6	6.0	6.1	6.28	B	4B5V60	21360	80.48	61.35	11.0
5.8	6.2	6.3	6.48	B	4B5V62	21361	82.11	62.60	12.0
6.0	6.4	6.5	6.68	B	4B5V64	21362	85.38	65.10	13.0
6.2	6.6	6.7	6.88	B	4B5V66	21.363	88.66	67.55	13.0
6.4	6.8	6.9	7.08	B	$4 \mathrm{B5V} 68$	21.364	91.93	70.05	14.0
6.6	7.0	7.1	7.28	B	4B5V70	2L365	100.22	76.35	14.0
7.0	7.4	7.5	7.68	B	4B5V74	21366	103.49	78.85	15.0
7.6	8.0	8.1	8.28	B	4B5V80	$2 L 367$	106.77	81.30	15.0
8.2	8.6	8.7	8.88	B	4B5V86	21368	113.31	86.30	17.0
8.6	9.0	9.1	9.28	B	4B5V90	$2 L 369$	119.04	90.70	17.0
9.0	9.4	9.5	9.68	B	$4 \mathrm{B5V94}$	21370	124.76	95.05	19.0
10.6	11.0	11.1	11.28	B	4B5V110	21371	136.21	103.70	27.0
12.0	12.4	12.5	12.68	B	4B5V124	21372	150.93	114.85	30.0
13.2	13.6	13.7	13.88	B	4B5V136	21373	178.74	136.05	35.0
15.0	15.4	15.5	15.68	B	4B5V154	$2 L 374$	200.29	152.50	38.0
15.6	16.0	16.1	16.28	B	4B5V160	21375	216.64	165.50	41.0
18.0	18.4	18.5	18.68	B	4B5V184	21376	229.73	175.00	55.0

[^50]
POWER
 TRANSMISSION: DRIVES

SYNCHRONOUS DRIVES "L" AND"H" GEARBELT PULLEYS

- Ideal for timing applications-no slip, positive drive

For use with gearbelts on page 301

- Steel or cast-iron construction
- 60 Groove and higher are spoked design.
- "L" pulleys use $3 / 8$ " pitch belts $1 / 2,3 / 4$, or 1 " wide and are for applications up to 25 HP
" "H" pulleys use $1 / 2$ " pitch belts 1 or $11 / 2$ " wide and are for applications up to 75 HP
- Require Browning split taper bushing; Order separately from page 308

Mo. of Grooves	Split Taper Bustitug Req'd.	Belt Width Req'd.	Pitch Dia.	Browning Model	Stock No.	List	Each	Shag. Wt
18	G	$1 / 2^{\prime \prime}$	2.149 ${ }^{\text {" }}$	18LC050	21.637	\$27.60	\$14.90	0.5
19	G	$1 / 2$	2.268	19LG050	21638	28.00	15.11	0.6
20	G	$1 / 2$	2.387	$20 \mathrm{LG050}$	21639	28.40	15.33	0.7
21	G	$1 / 2$	2.507	2116050	21640	28.80	15.54	0.8
22	G	1/2	2.626	$22 \mathrm{LG050}$	$2 L 641$	29.60	15.97	0.9
24	H	$1 / 2$	2.865	$24 \mathrm{LH050}$	21642	31.20	16.84	1.0
26	H	$1 / 2$	3.104	26LH050	21643	32.40	17.50	1.1
28	H	1/2	3.342	28 LHO 50	21.644	34.80	18.79	1.3
30	H	$1 / 2$	3.581	30 LH 050	21.645	37.60	20.30	1.6
32	H	$1 / 2$	3.820	$32 L 4050$	21.646	40.80	22.03	1.9
36	H	1/2	4.297	36LH050	21647	75.60	40.85	2.6
36	P1	1/2	4.297	36 LF 050	21648	75.60	40.85	3.1
40	H	$1 / 2$	4.775	40 LH 1250	21649	76.80	41.50	3.5
40	P1	1/2	4.775	40 LP 050	2.650	76.80	41.50	3.0
44	H	1/2	5.252	441.4050	22651	89.60	48.40	4.1
44	P1	$1 / 2$	5.252	44LP050	21.652	89.60	48.40	4.0
48	$\stackrel{\mathrm{H}}{\mathrm{H}}$	1/2	5.730	481. H 060	21.653	92.40	49.90	4.0
48	P1	$1 / 2$	5.730	48 LP 050	21654	92.40	49.90	5.0
60	H	1/2	7.162	60 LH 1050	21655	94.80	51.20	3.0
60	P1	$1 / 2$	7.162	60LPP050	22656	94.80	51.20	4.0
2n								
1.8	G	$3 / 4$	2.149	18LG075	21657	29.20	15.76	0.7
19	G	374	2.268	$19 \mathrm{LG075}$	$2 L 658$	29.60	15.97	0.8
20	G	$3 / 4$	2.387	20LG075	21.659	30.40	16.41	0.9
21	G	$3 / 4$	2.507	$21 L G 075$	21660	31.20	16.84	1.0
22	G	$3 / 4$	2.626	$224 \mathrm{G075}$	21661	33.20	17.91	1.1
24	H	$3 / 4$	2.865	$24 \mathrm{LHO75}$	21682	34.80	18.79	1.2
26	H	$3 / 4$	3.104	$26 \mathrm{LH} 1{ }^{\text {2 }}$	$2 L 663$	36.80	19.87	1.4
28	H	$3 / 4$	3.342	28 LH 1075	21664	39.60	21.37	1.8
30	H	$3 / 4$	3.581	30LH075	24665	44.40	23.96	1.9
32	H	$3 / 4$	3.820	32 LH 1075	21666	47.20	25.50	2.3
36	H	$3 / 4$	4.297	36LH075	21.667	77.20	41.70	3.3
36	P1	314	4.297	$361 . \mathrm{P} 075$	21668	77.20	41.70	5.0
40	H	$3 / 4$	4.775	40LH075	21689	77.60	41.95	3.8
40	P1	$3 / 4$	4.775	40LPP075	22670	77.60	41.95	4.4
60	H	$3 / 4$	7.162	60 LHO 5	24671	97.20	52.50	4.0
60	P1	$3 / 4$	7.162	601 P 075	$2 L 672$	97.20	52.50	4.0
18	G	1	2.149	18LG100	21673	32.00	17.28	0.9
19	G	1	2.268	$19 \mathrm{LG100}$	24674	33.20	17.91	1.9
20	G	1	2.387	201.6100	24675	33.60	18.13	0.1
21	G	1	2.507	2116100	21676	34.80	18.79	1.3
22	G	1	2.626	221.6100	21677	36.40	19.65	1.4
24	H	1	2.865	24 LH 100	21678	37.60	20.30	1.4
26	H	1	3.104	26LH100	21679	40.00	21.59	1.9
28	H	1	3.342	2814100	21.680	43.20	23.30	2.3
30	H	1	3.581	$30 \mathrm{LH1} 00$	21681	48.00	25.90	2.3
32	H	1	3.820	32 LH 100	21.692	52.00	28.10	2.7
36	H	1	4.297	$36 \mathrm{LH106}$	$2 \mathrm{L683}$	77.60	41.95	3.9
36	P1	1	4.297	$36 \mathrm{LP100}$	$2 L 684$	77.60	41.95	3.9
40	H	1	4.775	$40 \mathrm{LHF100}$	$2 L 685$	78.40	42.35	4.9
40	P1	1	4.775	40 LP 100	21686	78.40	42.35	5.1
44	H	1	5.252	$441 \mathrm{H100}$	21.687	94.80	51.20	6.3
44	P1	1	5.252	$44 \mathrm{LPl00}$	24688	94.80	51.20	6.3
48	H	1	5.730	$48 \mathrm{LH100}$	$2 L 689$	98.00	52.95	6.9
48	P1	1	5.730	$48 \mathrm{LP100}$	$2 L 690$	98.00	52.95	7.8
60	H	1	7.162	60LH100	21691	101.20	54.65	4.5
60	P1	1	7.162	$60 \mathrm{LP100}$	$2 L 692$	101.20	54.65	7.0

For " $\mathrm{H}^{\prime \prime}$ Belts, 1/2" Pitch, I" Wide

"XL" GEARBELT PULLEYS AND
 GEARBELTS ARE AVAILABLE, SEE PAGE 302

SYNCHRONOUS DRIVES "L" AND "H" GEARBELTS AND GEARBELT PULLEY IDLERS

SYNCHRONOUS DRIVES "L" AND "H" GEARBELTS

For use with synchronous drives " L " and " H " gearbelt pulleys on page 300

- "L" gearbelts are available in $1 / 2,3 / 4$, and 1 " widths and 12.375 to $60^{\prime \prime}$ lengths
- "H" gearbelts are available in 1 and $11 / 2$ " widths and 24 to $70^{\prime \prime}$ lengths

		$1 / 2^{\prime \prime}$ WDE ${ }^{\prime \prime}{ }^{\prime \prime}$ GEARBELTS					3/4' WIDE "L" GEARBELTS						1" WIDE "L" GEARBELTS				
Pitch Length (lin.)	No. of Teoth	Browning Model	Stock No.	List	Each	Shpg. Wt	Browning Model	Stock No.		List	Each	Shpg. Wt.	Browning Model	Stack No.	List	Each	Shpg. Wt
12.375	33	124L050	21577	\$7.68	\$5.24	0.1	1241075	21597		\$10.92	\$7.46	0.1	124L100	21617	\$14.00	\$9.58	0.1
15.000	40	150L050	$2 L 578$	8.48	5.79	0.1	1501075	$2 L 598$		12.12	8.29	0.1	150 L 100	21618	15.60	10.67	0.1
18.750	50	187L050	21579	9.24	6.32	0.1	187 L 075	$2 L 599$		13.32	9.11	0.1	187 L 100	21619	17.24	11.77	0.1
21.000	56	2101050	$2 L 580$	10.04	6.86	0.1	2102075	$2 L 600$		14.52	9.92	0.1	210 L 100	21.620	18.84	12.88	0.1
22.500	60	225L050	21581	10.32	7.05	0.1	$225 L 075$	$2 L 601$		14.92	10.19	0.1	$225 L 100$	21621.	19.38	13.24	0.1
24.000	64	240 L 050	$2 L 582$	10.84	7.43	0.1	$240 L 075$	21602		15.72	10.74	0.1	240 L 100	2L622'	20.48	13.99	0.1
25.500	68	$255 L 050$	2L583	11.08	7.58	0.1	2551075	$2 L 603$		16.12	11.03	0.1	255 L 100	2L623	21.02	14.38	0.1
27.000	72	2701050	$2 L 584$	11.60	7.93	0.1	2701075	$2 L 604$		16.92	11.57	0.1	$270 \mathrm{L100}$	22624	22.08	15.09	0.1
28.500	76	285 L 050	21585	11.88	8.12	0.1	2851075	$2 L 605$		17.36	11.87	0.1	285 L 100	$2 L 625$	22.62	15.47	0.2
30.000	80	300L050	$2 L 586$	12.40	8.47	0.1	3001075	$2 L 606$		18.12	12.37	0.1	300 Li 100	21626	23.72	16.20	0.2
	86	322L050	21587	12.92	8.83	0.1	322 L 075	21607		18.96	12.96	0.1	322 L 100	21627	24.80	16.95	0.3
$34.500^{\prime \prime}$	92	3451050	$2 L 588$	13.44	9.19	0.1	345L075	$2 L 608$		19.76	13.50	0.1	345 L 100	21628	25.86	17.68	0.2
36.750	98	367L050	$2 L 589$	13.92	9.51	0.1	367L075	21609		20.56	14.05	0.2	367 L 100	21.629	26.94	18.41	0.2
39.000°	104	3901050	21590	14.72	10.07	0.1	$390 \mathrm{L075}$	$2 L 610$		21.76	14.87	0.2	390 L 100	21630	28.54	19.51	0.3
42.0092	112	4201050	21591	15.48	10.58	0.1	420 L 075	2 L 611		22.96	15.69	0.2	420 L 100	21631	30.18	20.62	0.1
$45.000=$	120	450L050	21.592	16.28	11.12	0.1	450L075	$2 L 612$		24.20	16.54	0.2	450 L 100	21632	31.78	21.71	0.3
48.000	128	480 L 050	$2 L 593$	17.08	11.68	0.2	$480 \mathrm{LO75}$	$2 L 613$		25.40	17.36	0.1	480 L 100	$2 L 633$	33.42	22.84	0.1
71.000	136	510 L 050	$2 L 594$	17.60	12.03	0.2	510 L 075	21614		26.20	17.90	0.2	510 L 100	21634	34.52	23.59	0.3
4.000 $=$	144	5401050	$2 L 595$	18.64	12.73	0.2	540L075	21615		27.80	18.99	0.2	540 L 100	21.635	36.66	25.05	0.4
10.000	160	600 L 050	2L596	20.20	13.81	0.2	600 L 075	2 L616		30.24	20.66	0.2	600 L 100	21636	39.90	27.35	0.4
-						Ste	\%1m	पशt?	C	8 8,	S,	2	$\because \because \sqrt{6}$, \%			$\begin{aligned} & \because i \\ & i+ \\ & \hline \end{aligned}$
	No. 0 Teeth		ning del	Stec No.	WIDE	A" GEARE List	Each		Shpg. Wt.		Browning Model		1 $1 / 2^{n}$ WIDE Stock No.	GEARBE List		Each	Shpg. Wt.
24.0	48		H100	217		\$21.00	\$14		0.1		$240 \mathrm{H150}$		21757	\$30.36		20.74	0.3
27.0	54		H100	2174		22.64			0.2		2701150		21758	32.88		22.47	0.3
30.0	60		H100	$2 L 74$		24.32			0.2		$300 \mathrm{H150}$		21759	35.36		24.16	0.3
$33.0 \div$	66		H100	2L74		25.96	17.	4	0.2		330 H 150		$2 L 760$	37.84		25.90	0.3
36.0	72		H100	2174		27.64	18.		0.3		360 H 150		$2 L 761$	40.32		27.70	0.4
39.0	78		H100	2174		29.28	20.		0.3		$390 \mathrm{H150}$		$2 L 762$	42.80		29.30	0.3
42.0	84		H100	2174		30.96	21.		0.3		$420 \mathrm{H150}$		$2 L 763$	45.28		31.10	0.4
45.0	90		H100	2174		32.60	22.		0.3		$450 \mathrm{H150}$		21764	47.76		32.70	0.5
48.0.xi	96		H100	2174		34.28	23.		0.4		480 H 150		21765	50.24		34.45	0.4
51.0	102		H100	2175		35.40	24.	19	0.4		510 H 150		21766	51.92		35.65	0.5
54.00	108		OH100	2175		37.60	25.		0.4		$540 \mathrm{H} 150$		21767	55.24		37.90	0.5
57.0	114		H100	2175		38.72			0.4		$570 \mathrm{H} 150$		21768	56.88		39.00	0.5
60.0	120		H100	217		40.92	28.		0.3		600 H 150		21769	60.20		41.25	0.6
63.0	126		OH100	217		42.04			0.4		630 H 150		22770	61.84		42.40	0.6
66.0	132		OH100	2L75		44,24 46.44	30.		0.3		660 H 150		21771	65.16		44.75	0.6
70.0	140		OH100	2L7		46.44	31.		0.4		700 H 150		21772	68.48		46.95	0.6

GEARBELT PULLEY IDLERS

- For " L " and " H " gearbelts shown above
- Needle bearings
- For N2 shafts and tighteners see page 290

(*) Order shatts separately from page 290.

RADIA LOAD CAPACIY (BS, $)$

Stock No.	100	500	1000	$\mathbf{1 5 0 0}$	RPM	2000	2500	3000
6 LL37	2174	1327	1083	961	880	820	772	741
$6[3338$	2174	1327	1082	961	880	820	772	741

[^51]
SYNCHRONOUS DRIVES "XL" GEARBEIT PULLEYS AND GEARBELTS

SYNCHRONOUS DRIVES "XL" GEARBELT PULLEYS

- Ideal for timing applications-no slip, positive drive
- Lightweight aluminum construction for light-duty applications up to 15 HP
- Gearbelt pulleys are supplied with minimum plain bore; can be rebored to maximum bore specified (See Keyway and Setscrew Machining Guide below)
- "XL" pulleys use 1/5" pitch gearbelts listed below

For "L $1 / 5^{\text {n }}$ Pifch Belts, $1 / 4$ and $3 / 8^{n}$ Wide

	No. of Groave:	Bore Size (In.)	Max Bore (In.)	Pitch Din. (m. .)	Browning Modal	Stock No.	List	Each	Shpg. Wt.
	10	$3 / 16$	3/16	0.637	10xLB037	21.514	\$9.60	\$6.72	0.1
	11	3/16	3/16	0.700		$2 L 515$	10.00	6.97	0.1
	12	3/16	$1 / 4$	0.764	12×18037	21516	10.40	7.00	0.1
	14	1/4	1/4	0.891	14×1.3037	$2 L 517$	12.40	8.68	0.1
	15	$1 / 4$	5/16	0.955	15XLB037	21518	12.80	8.97	0.1
	16	1/4	$3 / 8$	0.019	16XLB037	$2 \mathrm{L519}$	13.60	9.53	0.1
	18	1/4	1/2	1.146	18XLB037	21520	15.20	10.65	0.1
	20	1/4	$9 / 16$	1.273	20×18037	$2 \mathrm{L521}$	16.00	11.21	0.1
	21	$1 / 4$	9/16	1.337	21×1.8037	21522	17.20	12.04	0.1
\%	22	$1 / 4$	$5 / 8$	1.401	22×1 LB037	21523	17.60	12.28	0.1
ms	24	1/4	11/16	1.528	24×18037	21524	19.60	13.73	0.2
-	28	1/4	13/16	1.783	$28 \times 1 \mathrm{B037}$	21525	22.40	15.70	0.2
-	30	5/16	15×16	1.910	$30 \times 1 \mathrm{~L} 037$	2 L 526	23.60	16.53	0.3
	32	5/16	1	2.037	32×1 B037	21527	24.00	16.81	0.3
\%	36	$5 / 16$	1	2.292	$36 \times 1 . \mathrm{B} 037$	21528	24.40	17.08	0.3
\pm	40	$5 / 16$	1	2.546	40×18037	2L529	24.80	17.38	0.4
\%	42	$5 / 16$	1	2.674	42×18037	$2 L 530$	25.20	17.65	0.4
	44	$5 / 16$	1	2.801	44×18037	21531	26.00	18.21	0.5
-	48	$5 / 16$	1	3.056	48×1 B037	$2 L 532$	27.60	19.25	0.5
4	60	$3 / 8$	1	3.820	$60 \times 1 \mathrm{B037}$	21533	33.20	23.16	0.6
4	72	$3 / 8$	1	4.584	$72 \times 1 B 037$	2L534	41.60	29.10	0.7

SYNCHRONOUS DRIVES "XL" GEARBELTS

[^52]HOTE. As a general mie the hub wall over the keyway should be equal to or greater than the diameter of the setscrew.
NOTE Maximum bore guidelines should be adhered to in order to ensure maximum product quality standards.

SINGLE GROOVE CAST-IRON SHEAVES

POWFR TRANSM: -DN: SHEAVES

$\begin{gathered} 00 \\ (\mathrm{In} .) \end{gathered}$	$\begin{aligned} & \text { Pitch Diamater (in.) } \\ & \text { A Beht } \\ & \text { 3-LBelt } \end{aligned}$		Type	Browning Madel	1/2	$\begin{aligned} & \text { For Bo } \\ & 5 / 8 \end{aligned}$	ze, Specity	Number	1	List	Each	Shpg. Wit.
1.75	1.50	1.16	Solid	AK17	3×758	3×759	-	-	-	\$8.32	\$6.45	0.4
2.00	1.80	1.46	Solid	AK20	3×760	3×761	3×762	-	-	8.32	6.45	0.5
2.20	2.00	1.66	Solid	AK22	3×763	3×764	3×808	3×768	-	8.68	6.73	0.5
2.50	2.30	1.96	Solid	AK25	3×765	3×766	3×767	3×768	-	9.60	7.42	0.6
2.80	2.60	2.26	Solid	AK28	3×769	3×770	3×771	3×772	-	11.00	8.53	0.8
3.45	3.20	2.86	Solid	AK34	3×773	3×774	3×775	3×776	3x890	13.32	10.32	1.0
3.75	3.50	3.16	Solid	AK39	3×886	3×887	3×888	3×889	3×890	16.60	12.85	1.5
3.95	3.70	3.36	Solid	AK41	3×777	3×778	3×779	3×813	3X809	19.16	14.82	1.8
4.45	4.20	3.86	Spoked	AK46	3×781	3×782	3×783	3×814	3×810	20.56	15.93	1.7
4.95	4.70	4.36	Spoked	AK51	3×784	3×785	3×786	3×815	3×811	21.92	16.99	2.1
5.45	5.20	4.86	Spoked	AK56	3×787	3×788	3×789	3×816	3×812	23.96	18.57	2.1
5.93	5.78	-	Spoked	AL64-SP	-	3x790	3×791	61062	3×792	15.56	12.06	1.4
6.93	6.78	-	Spoked	AL74-SP	-	3×793	3×794	$6 L 063$	3x795	17.76	13.76	1.5
7.93	-7.78	-	Spoked	AL84-SP	-	3×796	3×797	$6 L 064$	3×798	20.24	15.67	1.8
8.93	-8.78	-	Spoked	Al94-SP	-	3×799	3×800	61065	3×801	${ }^{25.56}$	19.80	23
9.93	- 9.78	-	Spoked	ALL04-SP	-	-	3×802	$6 L 066$	3×803	28.20	21.84	3.2
10.93	- 10.78	-	Spoked	AL114SP	-	-	3×804	$6 L 067$	3×805	31.20	24.17	3.4
1.93	T1.78	-	Spoked	- AL124SP	-	-	-	61068	3×806	37.40	29.00	3.9
.4.16	44.00	-	Spoked	AM144-SP	-	-	-	6 L069	3×807	61.20	47.50	5.5

$\begin{aligned} & 30 \\ & \text { in.) } \end{aligned}$		$\begin{aligned} & (\mathrm{ln} .) \\ & \text { BBelt } \end{aligned}$	Type	Browning Model	1/2	5/8	$\text { For Bore } \mathrm{Size}_{3 / 4}, \mathrm{~S}$	fy Stock Nur	1	11/2	List	Each	Shpg. Wt.
. 00	H	1.9	Solid	BS20	3×821	3×822	3×823	-	-	-	\$13.22	\$9.25	0.5
. 50	$1{ }^{19}$	2.3	Solid	Solid	3×824	3×825	3×826	3×827	-		12.00	9.28	0.6
. 70	27	2.5	Solid	BK27	1A275	3×855	3×856	3×857	-	-	13.20	10.22	0.7
. 95	2.2	2.6	Solid	BK28	-	3×829	3×830	3×831	-	-	13.20	10.22	0.8
. 15	2.4	2.8	Solid	BK30	3×858	3×859	3×860	3×861	-	-	13.56	10.50	0.9
. 35	2\%	3.0	Solid	BK32	-	3×833	3×834	3×835	3×852	-	14.72	11.39	1.0
. 55	2\%	3.2	Solid	BK34	-	3×863	3×864	3×865	3×866	-	18.08	13.99	1.4
. 75	3.5	3.4	Solid	BK36		3×868	3×869	3×870	3×871	3×949	19.72	15.24	1.6
. 95	32	3.6	Solid	BK40		3×837	3×838	3×872	3×850	3×950	20.56	15.93	1.8
. 25	3.5	3.9	Spoked	BK45	-	3×841	3×842	3×873	3×439	3X953	21.04	16.28	1.8
. 75	4.0	4.4	Spoked	BK50	-	3×880	3×881		3×853	3×954	23.04	17.86	2.0
. 95	4.2	4.6	Spoked	BK52	-	3×844	3×845	3×883	3×851	3X955	23.12	17.91	2.1

							$\begin{array}{ll} x^{2}+x^{2} \\ x \end{array}$		
W3					SELECT DESIRED BORE SIZE FROM BUSHING CHART ON PAGE 308				
OD		(la.)	Bushing		Browning	Stock			Shyg.
(ln.$)$	A Beht	B Belt	Req'd.	Type	Modal	No.	List	Each	W.
3.15	2.4	2.8	H	Solid	BK30H	3×956	\$21.68	\$17.32	1.4
3.35	2.6	3.0	H	Solid	BK32H	3×957	23.06	18.43	1.5
3.55	2.8	3.2	H	Solid	BK34H	3×951	23.10	18.46	1.7
3.75	3.0	3.4	H	Solid	BK36H	3×952	23.28	18.60	1.3
3.95	3.2	3.6	H	Solid	BK40H	3×582	23.34	18.65	1.4
4.25	3.5	3.9	H	Solid	BK45H	3×583	23.84	19.05	2.0
4.45	3.7	4.1	H	Solid	BK47H	3×584	24.36	19.45	2.3
4.75	4.0	4.4	H	Solid	BK50H	3×585	24.92	19.92	2.2
4.95	4.2	4.6	H	Solid	BK52H	3×586	25.44	20.33	2.7
5.25	4.5	4.9	H	Solid	BK55H	3×587	25.96	20.73	2.8
5.45	4.7	5.1	H	Solid	BK57H	3×588	26.46	21.13	2.9
5.75	5.0	5.4	H	Solid	BK60H	3×589	26.76	21.34	2.6
5.95	5.2	5.6	H	Solid	BK62H	3×590	28.20	22.52	3.1
6.25	5.5	5.9	H	Solid	BK65H	3×591	30.08	24.05	2.8
6.45	5.7	6.1	H	Solid	BK67H	3×592	30.96	24.73	3.2
6.75	6.0	6.4	H		BK70H	3×593	32.04	25.65	3.0
6.95	6.2	6.6	H	Spoked	BK72H	3×594	33.52	26.85	3.1
7.25	6.5	6.9	H	Spoked	BK75H	3X595	34.92	28.00	4.0
7.75	7.0	7.4	H	Spoked	BK80H	3×597	35.96	28.80	4.8
8.25	7.5	7.9	H	Spoked	BK85H	3×598	39.92	31.95	4.7
8.75	8.0	8.4	H	Spoked	BK90H	3×599	42.48	34.00	4.3
9.25	8.5	8.9	H	Spoked	BK95H	3×600	45.68	36.60	5.0
9.75	9.0	9.4	H	Spoked	BK100H	3×601	47.44	38.00	5.0
3.25	9.5	9.9	H	Spoked	BK105H	3×602	48.36	38.70	5.3
3.75	10.0	10.4	H	Spoked	BK110H	3×603	52.16	41.70	6.1
1.25	10.5	10.9	H	Spoked	BK115H	3×604	53.80	43.05	6.7
1.75	11.0	11.4	H	Spoked	BK120H	3×605	57.72	46.20	7.0
2.75	12.0	12.4	H	Spoked	BK130H	3×606	63.16	50.55	7.2
3.75	13.0	13.4	H	Spoked	BK140H	3×607	71.64	57.30	8.9
4.75	14.0	14.4	H	Spoked	BK150H	3×608	77.80	62.15	10.0
5.75	15.0	15.4	H	Spoked	BK160H	3×609	88.72	66.95	11.0
3.75	18.0	18.4	H	Spoked	BK190H	3×610	114.52	91.50	13.0

TWO GROOVE CAST-IRON SHEAVES

TWO GROOVE CAST-IRON SHEAVES

- Durable cast-iron construction - Precision machined and balanced - OD range: 2.5" to 4.95" finished, $3.35^{\prime \prime}$ to $18.75^{\prime \prime}$ bushed
- Finished bore sheaves have standard keyway with hollow head setscrew - Use A and B V-belts
- Use split taper bushings for bushed sheaves; Order separately on page 308

MOTOR PULLEY REPLACEMENT

FOR DOMESTIC SEWING MACHINES	Description	Stock	List	Each	Shpg.
Motor Pulley, $7 / 8^{\prime \prime}$ Dia., $1 / 4^{\prime \prime}$ Bore	$\mathbf{1 \times 4 5 9}$	$\$ 3.61$	$\mathbf{\$ 2 . 8 0}$	0.1	

PULLERS ARE AVAILABLE, SEE PAGES 1271-1274

- Durable cast-iron construction
- Precision machined and balanced
- OD range: $3.75^{\prime \prime}$ to $18.75^{\prime \prime}$; bore range: $3 / 4^{\prime \prime}$ to $25 / \mathbf{8}^{\prime \prime}$
- Requires Browning split taper bushing forder separately from page 308)
- Use with A and B V-belts
- Easy to mount and remove
- Used in applications with infegral horsepower motors and large drive systems where large bore sheaves are needed

[^53]Provided for many of the product lines listed in this catalog.
See pages in rear of catalog.

VARIABLE PITCH SHEAVES

－Durable cast－iron construction
－Screw flange adjusts to allow speed range variation
－Standard keyways on all sizes except 1／2＂bore which cannot accommo－ date a keyway

$\operatorname{con}_{(\mathrm{ln})}$	$\underset{\text { Beth }}{3 k_{1}}$	$\begin{aligned} & \text { hDiannet } \\ & \text { 4LorA } \\ & \text { Beft } \end{aligned}$	$\begin{aligned} & \text { ange (ling } \\ & 5 L_{\text {or of }} \end{aligned}$	$\mathbf{B e l t}_{\text {Be }}$	Browning Model	1／2＊＊	5／8＇	$\begin{gathered} \text { or Bore } \\ 3 / 4^{4} \end{gathered}$	e, 搌	$\text { Stock } \underset{1}{N}$	11／4＊	$13 / 2$	List	Each	Shys．
250	1．6－2．4				11125	${ }^{3 \times 496}$	3×497		－			－	${ }^{811.72}$	\＄9．08	0.8
287	i．82．7				$1 \mathrm{lli3} 0$	${ }^{3 \times 498}$	3×199						12.20	9.44	1.0
3.15 3	1．7－2．5	1．9－2．9	2．4．3．2		1 lv 34	3×262	3×203	3X273					12.20	9.44	1.0
315 375	${ }_{2.3}^{1.7-2.5}$	${ }_{2.43 .4}^{1.9-2.9}$	2.43 .2 2.73 .7		${ }^{\text {IVP34 }}$	3＜274	3×264	3X265	21461				23.60 15.00	18.27 11.51 1.4	1.4
3.75	2.33 .1	${ }_{2.43,4}$	${ }_{2.73 .7}{ }^{\text {a }}$		1 lL 40	－	2		3×500				1608	12.44	1.3
4.15	2．73．5	2.83 .8	3．14．1	－	$1 \mathrm{VL44}$	3×275	3×276	3×265	3×501				19.00	14.68	1.3
4.75	${ }_{3.3}^{2.7 .5}$	3．4．4．4	$3.1-4.1$ 3.74 .7		IVP44 1VM50	二	3×438	3X502	3×503	2462	21463	－	35.80 30.00	27.80 23.21	2.6
4.75	3.34 .1	3.44 .4	3.74 .7	－	${ }^{1 / 1 \mathrm{VP} 59}$	22464	－	－	－	465		－	30.40	23.52	31
${ }^{4} 8.75$	${ }_{3}^{3.3-4.1}$	3．4．4．4	3.74 .7		IVP50	21465	3×194	－	－	21465	3×945	－	${ }_{4}^{43.52}$	3375	3.6
55.35	3．9．4．7	4.05 .0	4.35 .3		1 VP56		3×494	246	3×505	21458	3×946		58．60	45．45	4.6
＋5．95	4．5－5．3	4．6．5．6	4．9－5．9	5．3．6．3	$1 \mathrm{1PP6} 2$		3×495	21473	3×507	21474	3×947	21475	71.68	55.55	6.9
\％．as 5.00	－	4．2－5．2	4．35．5	5 －	${ }^{1 \text { 1VP60 }}$		－	${ }_{21475} 21469$	21470	－	21471	21472	71.00	55.00	6.3
	5．1－5．9	${ }_{5}^{4.7 .26 .7}$	${ }^{4.8-6.6}$	5．9．6．9	1VP65		－	${ }_{214880}^{21476}$	21477 21481	21482	21478 3×948	24799 21483	74.30 74.60	57.55	7.1
$\underline{7} 7$	．	5.36 .3	5.46 .6	6.8 .7 .0	$1 \mathrm{VP71}$			22484	24.485	2	21436	24837	79．20	61.40	8.5
71.50	－	5．7－6．7	5．87．0	6.27 .4	1 1v75			22488	21489		21490	21491	105.70	81.85	9.4
We wher why															
3，35	1．9－2．7					－	3×508 3×47	${ }_{2}^{214992}$	3×509 3×418	${ }_{2}^{214935}$		－	${ }_{6510}^{56.80}$	${ }_{50}^{44.05}$	3.3
＋3．35	${ }_{3.34 .1}^{2.3 .3}$	${ }_{3.4 .4}^{2.6 .6}$	2.93 .9 3.74 .7	－	${ }_{\text {2VP50 }}$		3×17 3×436	${ }_{221497}$	3x418	${ }_{214985}^{21495}$	3x510	－	65.10	50.50	42
${ }_{5}^{4} 8.35$	${ }_{3.94 .7}$	4.05 .0	4．35．3		2 VP 56		3446	21500	3×399	21501	3×400	－	88.30	68.40	7.6
	4．5－5．3		4.95 .9		${ }_{2}^{2 V P P 62}$		二				3×401	${ }^{3 \times 512}$	112.90	87.40	9.0
6.50 -6.50	5．1－5．9	4．7．5．7 5.26 .2	${ }^{4.8 .6 .0} 5$	5.2 .6 .4 5.96 .9	${ }_{2}^{2 \times P 65}$			21502	21503		$\frac{21504}{3 \times 402}$	21505 3×403	121.00 124.90	93.70 87.55	13.0 11.0
\％77．10	5．1－9	5.36 .3	5．46．6	5.8 .7 .0	$2 \mathrm{VP71}$			21506	21507		21508	2509	128.00	99.10	15.0
7.750	－	5.76 .7	5．87．0	6．2－7．4	2 2P75	－	－	21510	21511	－	21512	21513	189.50	146.75	16.0

Y1／2 Bore size cannot accommodate a keyway．

A WIDE VARIETY OF BROWNING BELTS IS AVAILABLE：

For＂XL＂Gearbelts
For＂L＂and＂H＂Gearbelts For HPT Belts For 3L，4L，and 5L．V－Belts For A Section V－Belts For B Section V－Belts For 3VX and 5VX V－Belts For Cog－Type V－Belts

See Page 302
See Page 301
See Page 293
See Page 294
See Page 295
See Page 296
See Page 298
See Page 297

MANY BRANDS OF POWER TOOL ACCESSORIES AVAILABLE

 NDRTDN

DIE-CAST, VARIABLE PITCH, AND 3 AND 4-STEP SHEAVES

POWER
 TRANSMISSION: SHEAVES

DIE-CAST SHEAVES

Precision cast, machine grooved, balanced, and tested Hollow head setscrew
"3/8 and 1/2" bores have no keyway
-5/8,3/4, 1 , and $13 / 16^{n \prime}$ bores have keyway on sheaves with $2^{\prime \prime}$ OD and larger

- 5" OD sheaves and smaller are solid construction, 6",and larger are spoke construction
- For $7 / 8^{\prime \prime}$ shafts use No. 2X653 spacer bushing
- Use with 3L and A or 4L. V-belts
- Congress brand

	$\begin{gathered} 00 \\ (\mathrm{In} .) \end{gathered}$	Pitch Dia. ${ }^{*}$ (\mathbf{n}.)	Congress Model	3/8'	For Bore Size, Specify Stock No. //2" $5 / 8^{\prime \prime} \quad 3 / 4^{\prime \prime}$				13/6*	List	Each	Shpg. Vit
	11/2	1.35	$11 / 2 \mathrm{~A}$	3×891	3 X 292	3×893		-	-	\$3.08	\$22	0.2
安20-2	$11 / 2$	1.85	2 A	3×889	3×855	3×896	3×897			3.20	231	0.2
	T	1.85		3 A0,	YYa,	3xas\%	3x0:37	-	-	3.20	231	0.3
	21/4	2.10	$21 / 4$	m	3×888	3×899	-	-	-	3.32	240	0.4
\%	21/2	2.35	$21 / 2 \mathrm{~A}$	-	$3 \mathrm{Kg00}$	3×501	3×902	-	-	3.52	2.54	0.4
	$23 / 4$	2.60	23/4	-	11837	11838	-	-	-	4.40	3.18	0.6
	3	2.85	3A	-	3x903	3 X 904	3X905			3.88	280	0.5
	31/2	3.35	$31 / 2 \mathrm{~A}$	-	3×906	3×907	3 K 98	-	-	4.64	3.35	0.5
4,	4	3.85	4A	-	3×909	3×910	3×911	-	-	5.20	3.75	0.6
	41/2	4.35	41/2A	-	3×912	3×913	3×914	\cdots	-	6.16	4.45	0.7
	5	4.85	5 A	-	3×915	3×975	3×917	-	-	6.80	4.91	0.7
H2	6	5.85	6 A	-	3×918	3×919	3×920	3×921	-	7.60	5.49	0.9
Tow	7	6.85	7A	-	3×922	3×983	3×924	3×925	\cdots	8.52	6.15	1.1
	8	7.85	8 8.	-	3 X 926	3×927	3×928	3×989	-	9.56	6.90	1.3
	9	8.85	9 A	-	3×930	3×931	3×932	3×933	-	12.28	8.87	1.3
7. 4 边	10	9.85	10 A	-	3×934	3×935	3×936	3×987		14.76	10.66	1.7
	11	10.85	11A	-	-	11839	11840	1 1484	-	15.84	11.44	1.9
	12	11.85	12A	-	3×938	3×939	3×940	3×941	-	17.96	12.97	2.4
1920 894.46	14	13.85	14 A	\cdots	-	11847	\cdots	-	-	23.12	16.69	3.2
	14	13.85	14A	-	-	-	3×942	3X943	-	23.12	16.63	3.2
 	14	13.85	14A	-	-	-	-	-	3×944	28.36	20.48	3.8

(*) Pitch diameter for "A" or "L" belts. Pitch diameter for "3L" beits is 0.3 " less.

VARIABLE PITCH SHEAVES FOR SPEED ADJUSTMENT

Congrebs

Durable die-cast construction Speed wariation range of $\mathbf{3 0 \%}$
Use ontinotor driven equipment where speed must be set exactly
Screw pdjustment with socket setscrews
Keyway on Nos. 1×448 and 11845
Congress brand

3 \& 4-STEP DIE-CAST SHEAVES

 Congress

 Congress}

- Use with 31, 4L, and A Belts
- Use with $5 / 8$ or $1 / 2^{\prime \prime}$ diameter shaft with reducing bushing included
- Pitch diameter is $0.15^{\prime \prime}$ less than outside diameter
- Congress brand

Pitch Diameter (ti.) ${ }^{\text {P }}$				For Bora Size. Specify Stock No.		List	Each	Shpg.
$1 / 4$	2.1.3.1	2.43 .2	VP325x ${ }^{1 / 2}$	1×47		\$8.40	${ }^{56} 606$	0.8
12	2.43 .4	2.93 .5	VP350x 4	11.844	1240	${ }_{8.72}^{8.40}$	6.060 6.30	1.0
12	${ }_{2}^{2} 4.43 .4$	${ }^{2.93 .5}$	VP350 ${ }^{\text {5 }}$		12845	8.72	6.30	1.1
\%	2.13 .6	3.1-3.7	VP375 $\times 1 / 2$	11846		9.08	6.56	1.1

Diamneters (in.)	Congrass Model	Stack No.	List	Each	Shpg. Wt.
4,3, ${ }^{2}, 2$	$\begin{aligned} & \text { SCA43 } \\ & \text { SCA53 } \end{aligned}$	$\begin{aligned} & 4 \times 559 \\ & 11842 \end{aligned}$	$\$ 11.80$ 19.24	$\begin{array}{r} \$ 8.52 \\ \$ 3.89 \end{array}$	1.0 1.6
	$\begin{aligned} & \text { SCA44 } \\ & \text { SCA54 } \end{aligned}$	$\begin{aligned} & 4 \times 560 \\ & 11843 \end{aligned}$	15.00 21.12	$\begin{aligned} & 10.83 \\ & 15.25 \end{aligned}$	1.3

MANY BRANDS OF HAND TOOLS AVAILABLE

Till JEVELstoni.
Li=M
DALEGHAN

IRWIN.

QD ${ }^{\circledR}$ AND SPLIT TAPER BUSHINGS

QD ${ }^{\circledR}$ BUSHINGS

- 3/4" per foot taper for ultimate shaft clamping
- Used with many HPT sprockets on page 292
- Also can be used with other competitive sheave and sprocket systems that utilize QD bushings

SPLIT TAPER BUSHINGS

STEEL RACK AND STEEL MITER GEARS

HOW TO SELECT GEARS

ars are toothed devices that mesh with other toothed devices transmit motion and to change speed and direction. Gears sed together should have the same number of teeth, and the ame pitch and pressure angle.
pur Gears provide parallel and linear motion in one plane.
liter Gears provide motion at a right angle on two planes.

Pitch is the ratio of teeth in gear to diameter of pitch circle.
Pressure Angle is the angle between a line from the contact points of gear teeth and a radial line of a gear's pitch point. For standard gears, pressure angles of $141 / 2^{\circ}$ and 20° have been adopted by ANSI and the gear industry.

STEEL RACK

- Industry standard $141 / 2^{\circ}$ pressure angle for applications where control of backlash is critical (will not operate with 20° spurs)
- For use with spur gears on page 310

Pitch	Face Width	Overall Thickness	Pitch Line to Back (8)	Nominal Length (L)	Boston Model	Stock No.	List	Each	Shpg. W.
32	$0.188^{\text {n }}$	$0.188^{\prime \prime}$	$0.156^{\prime \prime}$	4 ft .	L503-4	1 L886	\$61.98	\$33.45	2.0
24	0.250	0.250	0.208	4	L505-4	$1 L 887$	62.44	33.65	2.0
20	0.375	0.375	0.325	4	L509-4	1 L 888	68.72	37.15	3.0
20	0.375	0.375	0.325	6	L509-6	$1 \mathrm{L899}$	103.08	55.60	4.5
16	0.500	0.500	0.438	4	L5124	14889	68.72	37.10	6.0
16	0.500	0.500	0.438	6	L512-6	$1 L 900$	103.08	55.60	6.5
12	0.750	0.500	0.417	4	1514.4	12890	66.08	35.80	5.5
12	0.750	0.500	0.417	6	L514-6	11901	103.08	60.45	8.3
12	0.750	0.750	0.667	4	L515-4	11891	74.71	40.30	9.0
12	0.750	0.750	0.667	6	L515-6	14902	112.07	60.40	12.0
10	1.000	0.625	0.525	4	L516-4	11892	83.37	44.95	8.8
10	1.000	0.625	0.525	6	L516-6	11903	125.05	67.35	13.0
10	1.000	1.000	0.900	4	L517-4	1.893	89.61	48.30	14.0
10	1.000	1.000	0.900	6	L5176	11904	134.41	72.40	21.0
8	1.250	0.750	0.625	4	L5184	$1 \mathrm{L894}$	112.49	60.65	13.0
8	1.250	0.750	0.625	6	L518-6	$1 L 905$	168.73	90.90	170
8	1.250	1.250	1.125	4	L519-4	1 L 995	133.29	71.75	21.0
8	1.250	1.250	1.125	6	L519-6	$1 \mathrm{L906}$	199.93	107.65	29.0
6	1.500	1.000	0.833	4	L520-4	12896	150.51	81.05	18.0
6	1.500	1.000	0.833	6	L520-6	$1 L 907$	225.76	121.60	27.0
6	1.500	1.500	1.333	4	L521-4	$1 \mathrm{L897}$	170.81	92.00	28.0
6	1.500	1.500	1.333	6	L521-6	$1 L 908$	256.21	137.95	44.0
5	1.750 1.750	1.250 1.250	1.050 1.050	4	L522-4 L522-6	$\begin{aligned} & 1 L 898 \\ & 1 L 909 \end{aligned}$	$\begin{aligned} & 208.50 \\ & 312.75 \end{aligned}$	$\begin{aligned} & 112.25 \\ & 169.00 \end{aligned}$	$\begin{aligned} & 26.0 \\ & 39.0 \end{aligned}$

STEEL MITER GEARS

- Industry standard 20° pressure angle for transmitting motion and power between intersecting shafts positioned at right angles
- 1:1 ratio operation
- High quality, precision machined steel - Patented Coniflex ${ }^{8}$ tooth form allows minor adjustment of gears in assembly and provides even load distribution for increased life

Pitch	Face Width	No. of Teeth	Pitch Dia.	Bare	Mounting Distance	Depth (D)	Hub Dia.	Hub Proj.	Boston Model	Stock No.	List	Each	Stipg. Wt.
16	$0.22^{\prime \prime}$	16	$1.000^{\prime \prime}$	$0.375^{\prime \prime}$	$1.062^{\prime \prime}$	$0.750^{\prime \prime}$	0.75"	0.44"	L110Y	11996	\$12.24	\$9.89	0.1
16	0.27	20	1.250	0.438	1.250	0.844	1.00	0.50	L111Y	11997	13.82	11.16	0.2
16	0.31	24	1.500	0.500	1.375	0.875	1.00	0.50	L112Y	1 1998	16.04	12.95	0.3
14	0.19	14	1.000	0.375	1.062	0.734	0.88	0.50	L124Y	11999	12.81	10.35	0.1
12	0.27	15	1.250	0.375	1.250	0.859	1.00	0.50	L125Y	22012	14.34	11.57	0.2
12	0.27	15	1.250	0.500	1.250	0.859	1.00	0.50	L101Y	21013	14.34	11.57	02
12	0.32	18	1.500	0.500	1.500	1.016	1.25	0.63	L127Y	$2 L 014$	16.93	13.67	0.2
12	0.32	18	1.500	0.625	1.500	1.016	1.25	0.63	L102Y	$2 L 015$	16.93	13.67	0.3
12	0.39	21	1.750	0.500	1.750	1.188	1.38	0.69	L119Y	22016	17.70	14.30	0.5
12	0.39	21	1.750	0.625	1.750	1.188	1.38	0.69	L121Y	22017	17.70	14.30	0.4
12	0.43	24	2.000	0.500	1.875	1.219	1.31	0.69	L113Y	$2 L 018$	20.63	16.65	0.6
12	0.54	30	2.500	0.625	2.312	1.484	1.63	0.84	L114Y	24019	30.02	24.23	1.0
10	0.44	20	2.000	0.500	2.000	1.359	1.63	0.81	L.128Y	21020	23.72	19.16	08
10	0.44	20	2.000	0.625	2.000	1.359	1.63	0.81	L120Y	21021	23.72	99.16	0.7
10	0.44	20	2.000	0.750	2.000	1.359	1.63	0.81	L103Y	24027	23.72	19.16	0.7
10	0.55	25	2.500	0.750	2.438	1.625	2.00	0.94	L130Y	21003	33.60	27.20	1.5
10	0.55	25	2.500	1.000	2.438	1.625	2.00	0.94	L131Y	21024	33.60	27.20	1.3
	0.64	24	3.000	0.750	2.562	1.578	1.75	0.81	L115Y	21025	39.21	31.75	1.6
8	0.64	24	3.000	1.000	2.750	1.766	2.50	1.00	L105Y-A	21026	39.21	31.75	2.3
8	0.84	32	4.000	1.000	3.625	2.281	3.00	1.13	L123Y	21027	79.22	64.00	5.0

- Industry standard 1412° pressure angle for replacement gearing and new applications (will not operate with 20° spurs)
- For transmitting motion and power between parallel shafts
- For up and down and back and forward motion
- Ideal for applications where control of backlash is critical
- Use with steel rack on page 309
- Precision machined of high quality steel or cast iron
- Close concentricity between bore, pitch diameter and outside diameter facilitates reboring modifications (reference Keyway and Setscrew Machining Guide on page 286)
- Smooth, quiet operation

izegstran ceAR

Pitch	Face Width	No. of Teeth	Pitch Bia.	Bore	Type	Outside Dia.	Overall Length	Hub Dia.	$\begin{aligned} & \text { Hub } \\ & \text { Proj. } \end{aligned}$	Boston Model	Stock No.	List	Each	Shpg. Wt.				
- 32	$0.187^{\prime \prime}$	16	$0.500^{\prime \prime}$	$0.187^{\prime \prime}$	Steel	$0.562^{\prime \prime}$	$0.497{ }^{\prime \prime}$	$0.40^{\text {r }}$	$0.31{ }^{\text {k }}$	${ }^{\mathrm{H} 3216}{ }^{*}$	12939	\$12.9	\$10.47	0.1				
1732	0.187	18	0.562	0.187	Steel	0.624	0.497	0.46	0.31	H3218*	11940	13.05	10.53	0.1				
$\square 32$	0.187	20	0.625	0.250	Steel	0.687	0.497	0.53	0.31	H3220**	$1 \mathrm{L941}$	13.05	10.53	0.1				
\% 32	0.187	24	0.750	0.312	Steel	0.812	0.497	0.65	0.31	H3224*	$1 \mathrm{L942}$	13.05	10.53	0.1				
\% 32	0.187	40	1.250	0.375	Steel	1.312	0.557	0.87	0.37	H3240*	$1 \mathrm{L943}$	13.29	10.73	01				
24	0250	1216$\% 24$$\%$	$\begin{aligned} & 0.590 \\ & 0.668 \\ & 0.800 \\ & 100 \end{aligned}$	$0.250{ }^{2}$ Steel 0.312 Steel 0312 Steel 0.376 0. Steel		$\begin{aligned} & 0.580 \\ & 0.750 \\ & 0.916 \\ & 1.083 \end{aligned}$	$\begin{aligned} & 0.560 \\ & 0.500 \\ & 0.560 \\ & 0.630 \end{aligned}$	0.38 0.54 0.71 0.87	0.31 0.31 0.31 0.38	H2412*H2416*H2420**H2424*	$119+4$ 8.69 1895 10.57 1896 11.67 1897 13.64		7.02	0.1				
$=24$	0250					8.54							0.3					
	0.250					9.35							0.1					
$\underline{24}$	1250					11.02							0.1					
20	0.375	12	0.600	0.313	Steel		$\begin{aligned} & 0.700 \\ & 0.900 \\ & 1.100 \\ & 1.300 \\ & 1.700 \\ & 2.500 \end{aligned}$	0.755	0.450.64	$\begin{aligned} & 0.38 \\ & 0.38 \end{aligned}$	NA12B	$1 \mathrm{L948}$	6.93	5.59	0.1			
- 20	0.375	16	0.800	0.375	Steel			0.755			NA16B	1.949	8.71	7.04	0.1			
\% 20	0.375	20	1.000	0.375	Steel			0.755	0.84	0.38	NA20B	$1 L 950$	10.42	8.42	0.1			
- 20	0.375	24	1.200	0.375	Steel	0.755		0.92	0.38	NA24	11951	11.69	9.45	0.1				
- 20	0.375	32	1.600	0.375	Steel	0.875		1.31	0.50	NA32	1 L952	15.10	12.19	0.4				
20	0.375	48	2.400	0.375	Steel	0.875		1.33	0.50	NA48A	11953	23.36	18.86	0.6				
	$8.500{ }^{3}$		0.75	0.875 + ${ }^{\text {a }}$ - Steel				$0.56^{36} x^{4} .0 .44^{3 / 5}$		NB12B ${ }^{\text {- }}$	11954 ${ }^{\text {c }}$		6.65					
16	0600	14	0885	0.376	Steel	0.8751.000$1.125 \%$		$0.56 \times 3.0 .44 \%$		NB148	14055 ma 9.16		, 739	0.1				
- 16	0500	16	1000	0.500	Steel		1.125 \% 0.753	081		NB16B	1L956 10.42		8	0.1				
46	0500	18	1325	0.560	Steel.	1.250	0.758	094 ck 20.4		NB18B	149E7\% 11.45		9,25	0.2				
16	0,60	20	1250	0.500	Steed		0753	006\%		NB203 ${ }^{\text {a }}$	11988-1.69		94	0.2				
16	086	24	1560	0.50	Stieel	1.625	0.763	1.19	0,44	$\begin{aligned} & \mathrm{NB24B} \\ & \mathrm{NB} 50 \mathrm{~B} \end{aligned}$	14985 \% \% 1288		1040	0.4				
	0500	30	1,876	0.500			0.813				11060	17.98	14.	0.6				
16	0501	82	2000	0.500	Steel	2.000	1.000	$1.69 \% 0.50$		$\begin{aligned} & \text { NB32 } \\ & \text { NB4 } \end{aligned}$	1468	20.13:	- 1625	0.7				
16	0.500	40	2.5008	0.500	Steel	$\begin{aligned} & 2.620 \\ & 3.125 \end{aligned}$	1.000	1.69	$0.50{ }^{\circ}$			23.18	18.72	0.9				
16	0.500	18	3000	0500			$3.125 \quad 1000,2.21900 .50$			NB48, ${ }^{\text {a }}$ - 1963			20.98	1.5				
12	0.750	12	1.000	0.500	Steel	1.1671.334	1.250	0.75	0.50	ND12B	11964	11.45	9.25	0.2				
12	0.750	14	1.167	0.500	Steel		1.250	0.91	0.50	ND14B	$1 L 965$	12.88	10.40	0.2				
12	0.750	16	1.333	0.625	Steel	1.500	1.250	0.98	0.50	ND16B	11966	14.82	11.96	0.3				
12	0.750	18	1.500	0.625	Steel	$\begin{aligned} & 1.667 \\ & 1.834 \end{aligned}$	1.250	1.14	0.50	ND188	11967	15.46	12.49	0.4				
12	0.750	20	1.667	0.625	Steel		1.250	1.31	0.50	ND20B	1 L968	16.80	13.56	0.5				
12	0.750	24	2.000	0.625	Steel	$\begin{aligned} & 1.834 \\ & 2.167 \end{aligned}$	1.250	1.64	0.50	ND24B	1L969	21.35	17.24	0.8				
12	0.750	30	2.500	0.625	Steel	2.667	1.380	2.14	0.63	ND30	$1 L 970$	23.08	18.63	1.5				
12	0.750	32	2.667	0.625	Steel	2.8344.167		1.92	0.63	ND32A	$1 L 971$	25.32	20.46	0.1				
12	0.750	48	4.000	0.750	Cast Iron		$4.167 \quad 1.500$	1.75	0.75	ND48	$1 L 972$	36.15	29.20	1.8				
10	1000	12	,	0										$\begin{array}{r} 0.3 \\ 0.4 \\ 0.5 \\ 0.8 \\ 1.2 \\ 1.8 \\ 2.7 \\ 2.0 \\ 4.2 \\ \hline \end{array}$				
	000		440	0.625														
	1000	16	6600	9750														
	1600	18.	1800	0760	Steel													
10.	1000	24	2000.	0450	Stee													
10	1000	24	2,400	0750.	\$5tel													
10	$1000{ }^{\circ}$	30	3000	0,750	steel													
	1000%	46\%	4000	08875	castro													
10	1000.	48	880	0875	Cxtra													
	1.250	12	1.500	0.750	Steel		$\begin{aligned} & 2.000 \\ & 2.000 \end{aligned}$	1.13	0.75	NH12B	11582	22.47	18.1					
8	1.250	14	1.750	0.750	Steel			1.30	0.75	NH14B	11983	26.16	21.13	0.9				
8	1.250	16	2.000	0.875	Steel	$\begin{aligned} & 2.000 \\ & 2.250 \end{aligned}$	2.000	1.65	0.75	NH16B	12984	29.31	23.65	1.3				
8	1.250	18	2.250	0.875	Steel	2.500	2.000	1.80	0.75	NH18B	-11985	31.38	25.35	1.8				
8	1.250	20	2.500	0.875	Steel	$\begin{aligned} & 2.750 \\ & 3.250 \end{aligned}$	2.000	2.05	0.75	NH20B	1986	34.97	28.35	2.2				
8	1.250	24	3.000	0.875	Steel		$\begin{aligned} & 2.130 \\ & 2.130 \end{aligned}$	2.06	0.88	NH24A	11987	45.61	36.85	3.1				
8	1.250	32	4.000	1.000	Steel	$\begin{aligned} & 3.250 \\ & 4.250 \end{aligned}$		3.00	0.88	NH32A	$1 \mathrm{L988}$	61.81	49.95	5.9				
	$\begin{aligned} & 1660 \\ & 1860 \\ & 1560 \\ & 1560 \\ & 160 \\ & 100 \end{aligned}$	$\begin{aligned} & 149 \\ & 164 \\ & 18 \\ & 34 \\ & 30 . \end{aligned}$	$\begin{aligned} & 2000 \\ & 2835 \\ & 2060 \\ & 4000 \\ & 8.000 \end{aligned}$	1009 1000 1600 1000 1125 1225														
5	1.750	20	4.000	1.063	Steel	4.400	2.630	3.38	0.88	NK20B	4L995	61.81	49.95	7.0				

[^54]
入空BOSTON 1 튼GEAR

OPEN GEAR INTERCHANGE

Stack No.	BOSTON	MCMASTER	MARTIN	BROWNING	UNION
1939	H3216	6325 K 89	N/A	NSS3216	N/A
1940	H3218	6325 K 94	N/A	NSS3218	N/A
1941	H3220	6325 K 95	N/A	NSS3220	N/A
1942	H3224	6325 K 96	N/A	NSS3224	N/A
4943	H3240	6325 K 97	N/A	NSS3240	N/A
1944	H2412	6325 K 31	S2412	NSS2412	N/A
1945	H2416	6325 K 75	S2416	NSS2416	N/A
1946	H2420	6325 K 87	S2420	NSS2420	N/A
1947	H2424	6325 K 88	S2424	NSS2424	N/A
1948	NA12B	6325 K 81	S2012	NSS2012	20 HG 12
4949	NA16B	6325 K 82	52016	NSS2016	20HG16
1950	NA20B	6325 K 83	S2020	NSS2020	20HG20
4951	NA24	6325 K 84	S2024	NSS2024	20HG24
1952	NA32	6325 K 85	S2032	NSS2032	20 HG 32
1.953	NA48A	6325 K 86	S2048	NSS2048	$20 \mathrm{G4} 8$
1954	NB12B	6325 K 11	S1612	NSS1612	16HG12
-955	NB14B	6325 K 12	S1614	NSS1614	16HG14
± 956	\% NB16B	6325 K 13	S1616	NSS1616	16HG16
1957	NAB18B	6325 K 14	S1618	NSS1618	16HG18
1958		6325 K 15	S1620	NSS1620	16HG20
4959	(-xyB24B	6325 K 16	S1624	NSS1624	16HG24
1960	N NB30B	6325 K 17	S1630	NSS1630	16 HG 30
4961	: NB 32	$6325 \mathrm{K1} 8$	S1632	NSS1632	16HG32
$L 962$	- $=$ NB40	6325 K 19	C1640	N/A	16G40
1963	$=$ - NB48	6325 K 21	C1648	N/A	16G48
1964	- ND12B	6325 K 22	S1212	NSS1212	12 HG 12
- 965	- -ND 14 B	6325 K 23	S1214	NSS1214	12HG14
56	ND16B	6325 K 24	S1216	NSS1216	12HG16
- +67	ND18B	6325 K 25	S1218	NSS1218	12 FG 18
1968	ND20B	6325 K 26	S1220	NSSS1220	12HG20
L969	: ND24B	6325 K 27	S1224	NSS1224	12HG24
1970	ND30	6325 K 28	S1230	NSS1230	12HG30
1.971	= ND32A	6325 K 29	S1232	NSS1232	12HG32
1972	\%min 48	$6325 \mathrm{K32}$	C1248	N/A	$12 \mathrm{G48}$
1973	NF12B	6325 K 33	S1012	NSS1012	10HG12
1974	NF14B	6325 K 34	S1014	NSS1014	10HG14
1975	NF16B	6325 K 35	S1016	NSS1016	10HG16
1976	NF18B	6325K36	S1018	NSS1018	10HG18
1977	\#NF20B	6325 K 37	S1020	NSS1020	10HG20
1978	$\begin{array}{r} \mathrm{N} F 24 \mathrm{~B} \\ \hline \end{array}$	${ }^{6} 6325 \mathrm{~K} 38$	S1024	NSS1024	10HG24
1979	$\mathrm{NF} 30 \mathrm{~A}$	6325 K 39	C1030	N/A	10G30
1980	N NF40	6325 K 42	C1040	N/A	10G40
1981	NF48	6325 K 43	C1048	N/A	10G48
1982	NH12B	6325 K 44	S812	NSS812	8HG12
1983	NH14B	6325 K 45	S814	NSS814	8HG14
1984	NH16B	6325 K 46	S816	NSS816	8HG16
$L 985$	NH18B	6325 K 47	S818	NSS818	8HG18
$L 986$	NH20B	6325 K 48	S820	NSS820	8HG20
1987	NH24A	6325 K 49	C 824	N/A	8G24
$L 988$	NH32A	6325 K 52	C832	N/A	8G32
1989	NJ12B	6325 K 55	S612	NSS612	6HG12

Stock No.	BOSTON	MCMASTER	MARTIN	BROWNING	UNION
11990	NJ14B	6325 K 56	S614	NSS614	6HG14
$1 L 991$	NJ16B	6325 K 57	S616	NSS616	6HG16
11992	NJ18B	6325 K 58	S618	NSS618	6HG18
14993	NJ24A	6325 K 61	C624	N/A	6G24
11994	NJ30A	6325 K 62	S630	N/A	6G30
$1 L 995$	NK20B	6325 K 91	S520	NSS520	5HG20
12996	LI10Y	6529 K 11	M1616	YSM16B16	SMT1616
$1 L 997$	Llily	6529 K 13	M1620	YSM16B20	SMT1620
11998	L112Y	6529 K 16	M1624	YSM16B24	SMT1624
11999	L124Y	6529 K 12	M1414	YSM14B14	N/A
$2 L 012$	L125Y	6529 K 14	M1215	YSM12B15	SMT1215-A
$2 L 013$	L101Y	$6529 \mathrm{K15}$	M1215B	YSM12B15 1/2	SMT1215-B
21014	L127Y	6529 K 17	M1218	YSM12B18	SMT1218-A
21015	L102Y	6529 K 18	M1218A	YSM12B185/8	SMT1218-B
21016	L119Y	6529 K 19	M1221	YSM12B21	SMT'1221-A
21017	LI21Y	6529 K 21	M1221B	YSM12B21 5/8	SMT1221-B
21018	L113Y	6529 K 22	M1224	YSM12B24	SMT1224
21019	L114Y	6529 K 26	M1230	YSM12B30	N/A
21020	L.128Y	6529 K 23	M1020A	YSM10B20	N/A
21021	L129Y	6529 K 24	M1020B	YSM10B20 5/8	N/A
21022	L103Y	6529K25	M1020	YSM10B20 3/4	N/A
$2 L 023$	L130Y	6529 K 27	M1025	YSM10B25	SMT1025A
21024	L131Y	6529 K 29	M1025B	YSM10B25-1	SMT1025C
21025	L115Y	6529 K 31	M824	YSM8B24	SMT824A
21026	L105YA	6529 K 32	M824AJ	YSM8B24-1	SMT824B
$2 L 027$	L123Y	6529 K 36	M832	YSM8B32	SMT832
11886	L503-4	6295K242	N/A	4NSR32X3/16	N/A
11887	1505-4	6295 K 232	R24X4	4NSR24X1/4	N/A
11888	L509-4	6295 K 112	R20X4	4NSR20X3/8	R20X4
11899	L509-6	6295 K 113	R20X6	6NSR20X3/8	N/A
11889	L512-4	6295 K 123	RA16X4	4NSR16X1/2	R16X4
11900	L512-6	6295 K 124	RA16X6	6NSR16X1/2	R16X6
11890	L514-4	$6295 \mathrm{K132}$	R12X4	4NSR12X1/2	LR12X4
12901	L514-6	6295 KI 33	R12X6	6NSR12X1/2	LR12X6
12891	L515-4	6295 K 142	RA12X4	4NSR12X3/4	R12X4
11902	L515-6	6295 K 143	RA12X6	6NSR12X3/4	R12X6
11892	L516-4	6295K152	R10X4	4NSR10X5/8	LR10X4
$1 L 903$	L516-6	6295 K 153	R10X6	6NSR10X5/8	LR10X6
11.893	L517-4	6295 K 163	RA10X4	4NSR10X1	R10X4
$1 \mathrm{L904}$	L517-6	6295 K 164	RA10X6	6NSR10X1	R10X6
11894	L518-4	6295 K 172	R8X4	4NSR8X3/4	LR8X4
11905	L518-6	6295 K 173	R8X6	6NSR8X3/4	LR8X6
12895	L5194	6295 K 182	RA8X4	4NSR8X1 $1 / 4$	R8X4
11906	L519-6	6295 K 183	RA8X6	6NSR8X1 1/4	R8X6
11896	L520-4	6295 K 192	R6X4	4NSR6X1	LR6X4
12907	L520-6	6295 K 193	R8X6	6NSR6X1	LR6X6
$1 L 897$	L521-4	6295 K 212	RA6X4	4NSR6X1 1/2	R6X4
11908	L521-6	6295 K 213	RA6X6	6NSR6X1 1/2	R6X6
11898	L522-4	6295 K 222	R5X4	4NSR5X1 1/4	R5X4
11.909	L522-6	6295 K 223	R5X6	6NSR5X1 1/4	R5X6

FOR CROSS REFERENCE INFORMATION SEE PAGE OPPOSITE INSIDE BACK COVER

YOU KNOW THERE'S A CROSS REFERENCE GUIDE IN THE CATALOG, BUT YOU CAN'T FIND IT!

Check the Cross Reference/Selection Guide section at the back of the catalog. It will get you to the products you need QUICKLY!

BRONZE BUSHINGS AND PRECISION TAPERED ROLLER BEARINGS

56-PC. BRONZE BUSHING REPAIR KIT

Dayton

Kit contains 56 bronze bushings from $1 / 4^{n}$ ID x $5 / 16^{\prime \prime}$ OD to $3 / 4^{\prime \prime}$ ID x $1^{\prime \prime}$ OD-a total of 9 assorted sizes. Self-lubricating typeideally suited for motor bearings. In plastic box. Dayton brand.
No. 1 X968. Shpg. wt. 2.3 lbs List.... $\$ 54.40$. Each... $\$ 29.95$

For Retaining-1 Be̊aring Mount Compound, See Page 1674.

BLOWER BEARING KITS

Kits include: 2 permanently lubricated and sealed, porous bronze, self-aligning sleeve bearings; 2 thrust washers; 2 locking collars and 2 rubber isolators. Available in $3 / 4^{\prime \prime}$ and $1^{\prime \prime}$ bore diameters. Dayton brand.

Stock No.	Bore Dia.	Isolator 00	Temp. Range	$\begin{gathered} \text { HP } \\ \text { Limit } \end{gathered}$	RPM
2 A757	$3 / 4 "$	13/ $16^{\text {" }}$	40-135 ${ }^{\circ} \mathrm{F}$	$3 / 4$	1000
2 A 758	1	21/2	40-135	1	1000
Stock No.		List	Each		Shpg. Wt
$\begin{aligned} & 2 A 757 \\ & 2 A 758 \end{aligned}$		$\begin{array}{r} \$ 14.55 \\ 18.54 \end{array}$	$\$ 11.7$		$\begin{aligned} & 0.8 \\ & 1.5 \end{aligned}$

PRECISION TAPERED ROLLER BEARINGS

NTN

Tapered roller bearing cup and cone sets for use on gearmotors and reducers machine tools, pumps, compressors, agri cultural equipment and machinery, law mowers, conveyor roll, golf carts, snor blowers and automobiles. Bearings ar designed to carry maximum combination of radial and thrust loads simultaneousi Precision made to exacting standarc from a single grade of case hardened ste which is heat treated to provide maximu) useful life. NTN brand.

Set No.	Boring Width* T	$\begin{aligned} & \text { NTN } \\ & \text { Cone No. } \\ & \text { No.4T- } \end{aligned}$	Cone Bore \dagger d	Cane Width B		Cup Dia. D	Cup W Ch	Stock No.	List	Cup and Cone Set Each	Shpg Wt.
1	. $5450{ }^{\text {" }}$	LM11749	.6875 ${ }^{\prime \prime}$.5750*	LM11710	$1.5700^{\text { }}$. $4200^{\prime \prime}$	11.071	\$14.00	\$7.30	0.2
2	. 6100	LM11949	. 7500	. 6550	LM11910	1.7810	. 4750	12072	12.00	6.59	0.3
3	. 6900	M12649	. 8437	. 7200	M12610	1.9687	. 5500	1 L073	15.00	8.27	0.4
5	. 7100	LM48548	1.3750	. 7200	LM48510	2.5625	. 5500	11074	17.00	9.34	1.0
6	. 6250	LM67048	1.2500	. 6600	LM67010	2.3280	. 4650	12075	15.00	8.32	0.4
12	. 6100	LM12749	. 8653	. 6550	LM12710	1.7810	. 4750	$1 L 076$	14.00	7.30	0.3
13	. 6250	L68149	1.3772	.6600	168110	2.3280	. 4700	$1 L 077$	16.00	8.54	0.4

[^0]: (*) Capacitor-start, capacitor-run.

[^1]: （ $\left.^{*}\right) 50 \mathrm{~Hz}$ operation at rated voltage and 190380 V ．（ \ddagger ）Operable on $50 \mathrm{~Hz}, 190 / 380 \mathrm{~V}$ ，at $5 / 6$ of 60 Hz HP and speed（ 1.0 service factor）
 （f）Extemally fan－cooled with fan shroud．

[^2]: (*) Average efficiency, not NEMA nominal efficiency. (\dagger) RS = Rolled Steel.
 (\#) Usable on 200 V at 1.0 service factor.

[^3]: ${ }^{*}$ ）Operable on 50 Hz at $208-220 / 440 \mathrm{~V}$ or $190 / 380 \mathrm{~V}$ at 56 of 60 Hz speed and full HP
 \dagger ） $\mathrm{RS}=$ Rolled Steel construction

[^4]: F Csable on 200 V at 1.0 service factor. (\dagger) $\mathrm{RS}=$ Rolled Steel construction, $\mathrm{CI}=$ Cast-Iron construction.
 ¡) NEMA design A; all others NEMA design B.

[^5]: (*) Average efficiency, not NEMA nominal efficiency. (**) RS $=$ Rolled Steel construction: $\mathrm{CI}=$ Cast-Iron construction (\dagger) TENV.

[^6]: CAUTION:
 Not for fans in unattended areas.
 Not for fans in unatiended areas.
 Refer to page 5 for UL 507 Standard, proper thermal protection, and other motor selection information.

[^7]: (*) RS = Rolled Steel construction.

[^8]: *) NEMA 562 frame motors have nonstandard $1 / 22^{\prime \prime}$ diameter shaft with flat; supplied with $58^{\prime \prime}$ dameter shat bushung.
 (1) Has extended studs out shaft endshield for mounting fan guard

[^9]: Supplied with $58^{\prime \prime}$ diameter shatt bushing．（＊＊） $60 / 50 \mathrm{~Hz}$ ．（ \dagger ）Double shaft extension $1 / 2^{\prime \prime}$ diameter $\times 11 / \mu^{\prime \prime}$ long with flat each end．

[^10]: (*) $60 / 50 \mathrm{~Hz}$ operation. (\dagger) Standard efficiency.

[^11]: (*) Two studs, ant extended. (\dagger) Requires No. 6×655 capactor.

[^12]: (\ddagger) No. 6K521 its old style bracket (\ddagger) No. 6 K 864 fits new style bracket.
 (*) Coupling assembly required for proper Bell \& Gossett replacement: order separately from page 7 NOTE: To ensure correct motor selection measure the bolt circle of old unit.

[^13]: ${ }^{*}$) 24^{*} long \#18 SO, 2 -conductor cord out of shell at $11 o^{\prime}$ clock position. (\dagger) No. 3 K 036 is a direct replacement for Beckett. (\ddagger) Capacitor-start.

[^14]: (*) Three stud; $47 / 16^{n}$ bolt circle

[^15]: (*) Operable on $50 \mathrm{~Hz}, 190 / 380 \mathrm{~V}$, at 50 Hz RPM.

[^16]: (\ddagger) Hours will vary depending on weather and personal preference.

[^17]: (\dagger) Supplied with $\overline{7} 8^{\prime \prime}$ dia shaft bushing. (\ddagger) Shaft extends from lead end.

[^18]: ${ }^{(*)}$ Usable on 200 V at 1.0 service factor. (\dagger) $60 / 50 \mathrm{~Hz}$. (\ddagger) Includes relay.

[^19]: (†) 16 cu -in. conduit box.

[^20]: *) Includes 10 ft 18 ga 3-cond. cord with plug also motor-mounted pull-chain On-Off swntch (No. 3M826) or motor-mounted pull-chain two-speed switch (No. 3 M 827). oke mounted strap uncluded. (\dagger) Use with No. $2 \mathrm{~W} 333,16 / 3 \# 10 \mathrm{ft}$. SJ cord with SPDT feed thur switch. (\ddagger) Has 5.0 cubic inch junction box. (${ }^{(}$) Ball bearings.

[^21]: (*) GE motors are nameplated rotation vewing end opposite shaft. (i) BE=Both Ends

[^22]: (*) Double shaft motor. Rotation viewed facing lead end. (\dagger) Use with Vo. 2 W333. 16 (3\#\# 10 -ft. SJ cord with SPDT feed-thru switch (\ddagger) Has $; 0$ cubce-nch junction box.
 (\#) $\mathrm{SE}=$ Shatt End; OSE $=0$ pposite Shat End; $\mathrm{BE}=$ Both Ends. ($\dagger \dagger$) Has short cord set. (${ }^{* *}$) $60 / 50 \mathrm{~Hz}$

[^23]: ${ }^{*}$) CW lead end. (\dagger) $\mathrm{BE}=$ Both Ends; $\mathrm{OSE}=$ Opposite Shatt End.

[^24]: (${ }^{*}$ Morrill motors are nameplated rotation facing lead end. (\dagger) Has no rigid foot base and three No. $8-36$ mountung holes at lead end on face.

[^25]: （＊）Capacitor－start，capacitor－run．（ \dagger ）Split－phase．（ \ddagger ） 56 J frame motors have threaded shatt．

[^26]: (*) Average efficiency, not NEMA nominal efficiency.

[^27]: (*) Class I, Group D; Class II, Groups E and F only. (\dagger) TENV.

[^28]: (*) Suitable for 50 Hz operation at nameplate HP and service factor.

[^29]: (*) Capacitor-start, capacitor-nun. (†) Bolt-on base.

[^30]: (*) 50.60 Hz

[^31]: (*) Capacitor-start; capacitor-run. NOTE: 3-phase, 1.15 service factor motors are operable at $1425 \mathrm{RPM}, 190380 \mathrm{~V}, 50 \mathrm{~Hz}, 1.0$ service factor.

[^32]: (*) Capacitor-start, capactor-run.

[^33]: *) Motors should be connected for CCW rotation facing shath

[^34]:

[^35]: $\left(^{*}\right)$ Coefficient of Volume: The amount of water, in GPM, at standard conditions, which will pass through the valve at fitl open with a 1 PSI pressure drop.

[^36]:) Dimensions are for two end plates (one set). (**) 90 PSI supply, 15 PSI pressure drop. (\ddagger) See following page for product photos.

[^37]: (*) Coefficient of Volume. The amount of water, in GPM, at standard conditions, which will pass through the valve at full open with a 1 PSI pressure drop. Figures shown are for $1 / 4^{*}$ port. (\dagger) See following page for product photos und descriptions.

[^38]: (*) See following page for product photos and descriptions.

[^39]: (*) Output torque 180 im -libs. at $1 / 6 \mathrm{HP}$. (\dagger) Output torque 160 in . -bs . at $1 / 6 \mathrm{HP}$.

[^40]: (**) Features motor shant keyway.

[^41]: (*) Setscrew size may vary depending on hub wall thickness.

[^42]: ${ }^{7}$) Blower ventilated. (\dagger) TENV. (\ddagger) Suitable for constant torque to 60% of base speed. (\#) No base.

[^43]: (*) Ratings are at 60 Hz . Also operable on $1901380 \mathrm{~V}, 50 \mathrm{~Hz}$ at $5 / 6$ of 60 Hz ratings for HP and RPM

[^44]: (*) Operable on 190/380V, 50 Hz at $5 / 6$ rated speed and HP of 60 Hz

[^45]: (*) Operable on $190380 \mathrm{~V}, 50 \mathrm{~Hz}$ at $5 / 6$ of rated 60 Hz speed and HP . ($)$) No. 3 N 295 has no gearcase.

[^46]: *) Also operable on $190 / 380 \mathrm{~V}, 50 \mathrm{~Hz}$ at 56 of rated 60 Hz HP and RPM.

[^47]:) Duty cycle is based on 75° F ambient temperature. To prevent motor overheating, the actual operating time hould be equally spaced throughout any penod of elapsed time. (i) Laghter loads wil have higher travel

[^48]: - Used with drive tighteners above
 - Furnished with ball bearings, capscrews, stud bolts, and nuts
 - Converts any H or Q1 Browning bushed product into an idler

[^49]: ar branches are conveniently located and stocked with commonly used items from this catalog. If you need it now, call

[^50]: Select desired bore size from bushing chart on page 308.

[^51]: (\dagger) Based on 2500 hours average life at RPM shown.

[^52]: (*) Setsrew size may vary depending on hub wall thickness.

[^53]: Select desired bore size from bushing chart on page 308.

[^54]: ${ }^{*}{ }^{*}$ Furnished with standard setscrew.

