
SWG

May 2004 | OMG MDA Implementer’s Workshop © 2003 IBM Corporation

Introduction to Eclipse and the
Eclipse Modeling Framework

Catherine Griffin

2

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Agenda

! Eclipse overview

! Eclipse Modeling Framework overview

! Using the Eclipse Modeling Framework – including demo

SWG

May 2004 | OMG MDA Implementer’s Workshop © 2003 IBM Corporation

Eclipse Overview

4

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Eclipse Project Aims

! Provide open platform for application development tools
Run on a wide range of operating systems

GUI and non-GUI
! Language-neutral

Permit unrestricted content types

HTML, Java, C, JSP, EJB, XML, GIF, …
! Facilitate seamless tool integration

At UI and deeper

Add new tools to existing installed products
! Attract community of tool developers

Including independent software vendors (ISVs)

Capitalize on popularity of Java for writing tools

5

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Eclipse Community

! Eclipse is an open source project since November 2000
! February 2004 —Eclipse reorganized into a not-for-profit

corporation. Eclipse is now an independent body with a full-time
management organization.

! Host site is www.eclipse.org

! Hosts a variety of projects
The Eclipse Platform Project

The Eclipse Technology Project

The Eclipse Tools Project
Including Eclipse Modeling Framework, UML 2.0

The Eclipse Web Tools Platform Project

6

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Platform Runtime

Workspace

Help

Team

Workbench

JFace

SWT

Eclipse Project

Java
Development

Tools
(JDT)

Their
Tool

Your
Tool

Another
Tool

Eclipse Overview

Plug-in
Development
Environment

(PDE)

Eclipse Platform

Debug

7

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

What is Eclipse?

Java VMStandard Java2
Virtual Machine

PlatformEclipse Platform

Java development
tools

JDT

PDEPlug-in development
environment

! Eclipse is a universal platform
for integrating development tools

! Open, extensible architecture based on plug-ins

8

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Eclipse Plug-in Architecture

! Plug-in - smallest unit of Eclipse function
Big example: HTML editor

Small example: Action to create zip files

! Extension point - named entity for collecting “contributions”
Example: extension point for workbench preference UI

! Extension - a contribution
Example: specific HTML editor preferences

9

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Eclipse Plug-in Architecture

! Each plug-in
Contributes to 1 or more extension points

Optionally declares new extension points

Depends on a set of other plug-ins

Contains Java code libraries and other files

May export Java-based APIs for downstream plug-ins

Lives in its own plug-in subdirectory

! Details spelled out in the plug-in manifest
Manifest declares contributions

Code implements contributions and provides API

plugin.xml file in root of plug-in subdirectory

10

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Plug-in Manifest

<plugin
id = “com.example.tool"
name = “Example Plug-in Tool"
class = "com.example.tool.ToolPlugin">

<requires>
<import plugin = "org.eclipse.core.resources"/>
<import plugin = "org.eclipse.ui"/>

</requires>
<runtime>

<library name = “tool.jar"/>
</runtime>
<extension

point = "org.eclipse.ui.preferencepages">
<page id = "com.example.tool.preferences"

icon = "icons/knob.gif"
title = “Tool Knobs"
class = "com.example.tool.ToolPreferenceWizard“/>

</extension>
<extension-point

name = “Frob Providers“
id = "com.example.tool.frobProvider"/>

</plugin>

Declare
contribution
this plug-in makes

Declare new extension
point open to contributions
from other plug-ins

Location of plug-in’s code

Other plug-ins needed

Plug-in identification

plugin.xml

11

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Eclipse Plug-in Architecture

! Plug-in A
Declares extension point P
Declares interface I to go with P

! Plug-in B
Implements interface I with its own class C
Contributes class C to extension point P

! Plug-in A instantiates C and calls its interface I methods

plug-in A plug-in B

class Cinterface I

extension
point P

extension

! Typical arrangement

contributes

creates, calls

implements

12

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Eclipse Platform Architecture

! Eclipse Platform Runtime is micro-kernel
All functionality supplied by plug-ins

! Eclipse Platform Runtime handles start up
Discovers plug-ins installed on disk

Matches up extensions with extension points

Builds global plug-in registry

Caches registry on disk for next time

13

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Plug-in Activation

! Each plug-in gets its own Java class loader
Delegates to required plug-ins

Restricts class visibility to exported APIs

! Contributions processed without plug-in activation
Example: Menu constructed from manifest info for contributed items

! Plug-ins are activated only as needed
Example: Plug-in activated only when user selects its menu item

Scalable for large base of installed plug-ins

Helps avoid long start up times

14

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Plug-in Install

! Features group plug-ins into installable chunks
Feature manifest file

! Plug-ins and features bear version identifiers
major . minor . service

Multiple versions may co-exist on disk

! Features downloadable from web site
Using Eclipse Platform update manager

Obtain and install new plug-ins

Obtain and install updates to existing plug-ins

15

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Plug-in Architecture - Summary

! All functionality provided by plug-ins
Includes all aspects of Eclipse Platform itself

! Communication via extension points
Contributing does not require plug-in activation

! Packaged into separately installable features
Downloadable

Eclipse has open, Eclipse has open, extensibleextensible
architecture based on plugarchitecture based on plug--insins

16

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Eclipse Platform

! Eclipse Platform is the common base
! Consists of several key components

Platform Runtime

Eclipse Platform

Workspace

Workbench

SWT
JFace

Team Help Debug

Ant“Core”

“UI”

17

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Workspace Component

! Tools operate on files in user’s workspace

! Projects map to directories in file
system

! {Files, Folders, Projects} termed
resources

! Workspace holds 1 or more top-
level projects

! Tools read, create, modify, and delete resources
in workspace

! Plug-ins access via workspace and resource
APIs

! Tree of folders and files

18

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Workbench Component

! SWT – generic low-level graphics and widget set
! JFace – UI frameworks for common UI tasks
! Workbench – UI personality of Eclipse Platform

Workbench

SWT
JFace

19

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

SWT

! SWT = Standard Widget Toolkit
! Generic graphics and GUI widget set

buttons, lists, text, menus, trees, styled text...

! Simple
! Small
! Fast
! OS-independent API
! Uses native widgets where available
! Emulates widgets where unavailable

20

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Why SWT?

! Consensus: hard to produce professional looking shrink-wrapped
products using Swing and AWT

! SWT provides
Tight integration with native window system

Authentic native look and feel

Good performance

Good portability

Good base for robust GUIs

! The proof of the pudding is in the eating…

21

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

JFace

! JFace is set of UI frameworks for common UI tasks
! Designed to be used in conjunction with SWT
! Classes for handling common UI tasks
! API and implementation are window-system independent

22

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Workbench Component

! Workbench is UI personality of Eclipse Platform

! UI paradigm centered around
Editors

Views

Perspectives

23

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Workbench Terminology

Tool bar

Perspective
and
Fast View
bar

Resource
Navigator
view

Stacked
views

Properties
view

Tasks
view

Outline
view

Bookmarks
view

Menu bar

Message
area

Editor
Status
area

Text
editor

24

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Editors

! Editors appear in workbench editor area
! Contribute actions to workbench menu and tool bars
! Open, edit, save, close lifecycle
! Open editors are stacked

! Extension point for contributing new types of editors
! Example: JDT provides Java source file editor
! Eclipse Platform includes simple text file editor
! Windows only: embed any OLE document as editor
! Extensive text editor API and framework

25

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Views

! Views provide information on some object
! Views augment editors

Example: Outline view summarizes content
! Views augment other views

Example: Properties view describes selection

! Extension point for new types of views
! Eclipse Platform includes many standard views

Resource Navigator, Outline, Properties, Tasks, Bookmarks, Search, …
! View API and framework

Views can be implemented with JFace viewers

26

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Perspectives

! Perspectives are arrangements of views and editors
! Different perspectives suited for different user tasks
! Users can quickly switch between perspectives
! Task orientation limits visible views, actions

Scales to large numbers of installed tools
! Perspectives control

View visibility
View and editor layout
Action visibility

! Extension point for new perspectives
! Eclipse Platform includes standard perspectives

Resource, Debug, …
! Perspective API

27

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Eclipse Platform - Summary

! Eclipse Platform is the nucleus of IDE products
! Plug-ins, extension points, extensions

Open, extensible architecture
! Workspace, projects, files, folders

Common place to organize & store development artifacts
! Workbench, editors, views, perspectives

Common user presentation and UI paradigm
! Key building blocks and facilities

Help, team support, internationalization, …

Eclipse is a universal platform forEclipse is a universal platform for
integrating development toolsintegrating development tools

28

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Java Development Tools

! JDT = Java development tools
! State of the art Java development environment

! Built atop Eclipse Platform
Implemented as Eclipse plug-ins

Using Eclipse Platform APIs and extension points

! Included in Eclipse Project releases
Available as separately installable feature

Part of Eclipse SDK drops

29

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Plug-in Development Environment

! PDE = Plug-in development environment
! Specialized tools for developing Eclipse plug-ins

! Built atop Eclipse Platform and JDT
Implemented as Eclipse plug-ins

Using Eclipse Platform and JDT APIs and extension points

! Included in Eclipse Project releases
Separately installable feature

Part of Eclipse SDK drops

30

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Eclipse 3.0

! Eclipse 3.0 is under development.
! Eclipse 2.1 is the current stable release
! Main changes are:

Rich client platform

New look and feel

SWT enhancements and Swing interoperability

Java tools enhancements

31

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Eclipse Operating Environments

! Eclipse Platform currently* runs on
Microsoft® Windows® XP (98, ME, NT, 2000, Server 2003)

Linux® on Intel x86 - GTK
Red Hat Enterprise Linux WS3 x86
SuSE Linux 8.2 x86

Sun Solaris 8 SPARC – Motif

HP-UX 11i hp9000 – Motif

IBM® AIX 5L 5.2 on PowerPC – Motif

Apple Mac OS® X 10.3 on PowerPC – Carbon

QNX® Neutrino® RTOS 6.2.1 - Photon®

* Eclipse 3.0 – Jan 2004

32

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Other Operating Environments

! Most Eclipse plug-ins are 100% pure Java
Freely port to new operating environment
Java2 and Eclipse APIs insulate plug-in from OS and window system

! Gating factor: porting SWT to native window system

! Eclipse Platform also runs “headless”
Example: help engine running on server

* March 2003

33

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Eclipse Board of Directors – March 2004

! Michael Bechauf SAP AG
! Dan Dodge QNX Software Systems
! Bjorn Freeman-Benson Elected committer representative
! Ronald Ingman Ericsson
! Boris Kapitanski Serena Software
! Jonathan Khazam Intel
! Rich Main Elected add-in provider representative (from SAS)
! Michael J. Rank Hewlett Packard
! Jim Ready MontaVista Software
! Dave Thomson IBM
! John Wiegand Elected committer representative
! Todd Williams Elected add-in provider representative (from Genuitec)

34

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Announced Eclipse Add-In Providers

! Advanced Systems Concepts
! Borland
! Candle Corporation
! CanyonBlue
! Catalyst Systems Corporation
! CollabNet
! Embarcadero Technologies
! ETRI
! Exadel
! Fujitsu
! Genuitec
! Hitachi Software
! ILOG
! INNOOPRACT
! Instantiations, Inc.
! Logic Library
! M7 Corporation
! Metanology Corporation
! Micro Focus
! MKS

! Novell
! Optena Corporation
! Oracle
! PalmSource
! Parasoft Corporation
! QA Systems
! Red Hat
! SAS
! Scapa Technologies Limited
! SilverMark
! SlickEdit
! Teamstudio
! Telelogic
! Tensilica
! TimeSys
! Unisys
! VA Software, Inc.
! Wasabi Systems
! webMethods
! Wind River

SWG

May 2004 | OMG MDA Implementer’s Workshop © 2003 IBM Corporation

Eclipse Modeling Framework
Overview

Catherine Griffin

36

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

EMF History

! Originally based on MOF (Meta Object Facility)
From OMG (Object Management Group)

Abstract language and framework for specifying, constructing, and
managing technology neutral meta-models.

! EMF evolved based on experience supporting a large set of tools
Efficient Java implementation of a practical subset of the MOF API

To avoid confusion, the MOF-like core meta model in EMF is called Ecore
instead of MOF

! Foundation for model based WebSphere Studio family product set
Example: J2EE model in WebSphere Studio Application Developer

! 2003: MOF 2.0 Specification
EMF designers contributed to MOF 2.0

EMF is essentially the same as EMOF subset

37

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Who is using EMF today?

! IBM WebSphere Studio product family
! Rational XDE and future tools
! Eclipse based components

Hyades Project (testing and logging)

RSE (remote file system support)

XSD Project (manipulate XML Schemas)

UML 2.0
! ISV’s

TogetherSoft (UML editor and code generation)

Ensemble (support for Weblogic servers)

Versata (extend J2EE to capture their business rules)

Omondo (UML editor tightly coupled to EMF tools

38

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

EMF Features

! Meta-model (Ecore)
! Template based Java code generation

Model implementation

Eclipse editor
! XMI2.0 serialization and deserialization
! Reflection APIs
! Change notification
! Dynamic models (no code generation)
! Reusable parts for building Eclipse tools
! .. And more

39

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

EMF 2.0 Highlights

! MOF 2.0 alignment
Changes to Ecore

Read/write Ecore as EMOF
! Service Data Objects (SDO) implementation

uniform access and manipulation for data from relational databases, XML data
sources, Web services, and enterprise information systems

JSR 235
! XSD support improvements
! Rose import improvements

XSD

operation body can be specified
! Change (delta) model

Record, apply, and reverse changes

40

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

What EMF is not

! No repository concept
! Simple meta-model – no associations, constraints
! Does not implement JMI

41

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Ecore

EAttribute

EDataType

EEnumLiteral

EEnum

ENamedElement

EObject

EStructuralFeatureEClass

EReference

ETypedElement

EFactory

EPackage

EModelElement

EParameter

EClassifier

EOperation

EAnnotation

42

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Ecore

EClassifier

instanceClassName : String
instanceClass : EJavaClass
defaultValue : EJavaObject

isInstance()
getClassifierID()

(from ecore)

ETypedElement

ordered : boolean = true
unique : boolean = true
lowerBound : int
upperBound : int = 1
many : boolean
required : boolean

(from ecore)

+eType

0..10..1

EStructuralFeature

changeable : boolean = true
volatile : boolean
t ransient : boolean
defaultValueLiteral : St ring
defaultValue : EJavaObject
unsettable : boolean
derived : boolean

getFeatureID()
getContainerClass()

(from ecore)

EReference

containment : boolean
container : boolean
resolveProxies : boolean = true

(from eco re)

0..1

+eOpposite

0..1

EClass

abstract : boolean
interface : boolean

isSuperTypeOf()
getES tructuralFeature()
getES tructuralFeature()

(from ecore)

0..n
+eStructuralFeatures

0..n
+eContainingClass

EAttribute

iD : boolean
(from ecore)

43

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Creating an Ecore model

! Various methods of creating an Ecore model are supported:
Rational Rose

Java interfaces with added annotations

XML Schema

EMF Java APIs (write a program)

Other tools – e.g.Omondo (UML editor)

44

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Code generation

! EMF generates Java classes to implement your
metamodel (defined as an Ecore model)

! Based on easy to modify templates (JET)

! The generated code is efficient, simple and clean

! EMF can also generate a simple Eclipse editor for
your model

45

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Customizing generated code

! You can edit the generated code, and your changes will be
maintained when the code is re-generated

Generated methods have the flag @generated in the method
comment

If you edit a generated method, either remove the @generated
flag or change it to @generated NOT – this will prevent your
changes being lost when the code is re-generated

! You can also use different templates for code generation
You might want to do this to change the standard file header, or

conform to your preferred naming conventions

46

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Loading and Saving EMF Models

! EMF has no repository concept – model instances
are usually serialized into files

! By default, models are serialized using XMI2.0

! EMF also supports serialization to XML, for XML
schema based models

! If you need to, you can write your own custom
serialization/deserialization code

47

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Resources
! A Resource is a persistent document,

containing a collection of EMF model objects
! Usually Resources are loaded from and saved

as files
! A Resource is identified by URI

! A ResourceSet is a collection of
Resources

! Within the ResourceSet, references
between Resources can be resolved

Resource1

Resource2

48

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

XMI1.0 Sample (from Rational Rose Unisys XMI Exporter)
<?xml version = '1.0' encoding = 'ISO-8859-1' ?>
<!-- <!DOCTYPE XMI SYSTEM 'UML13.dtd' > -->
<XMI xmi.version = '1.0' timestamp = 'Thu May 29 11:25:05 2003' >
<XMI.header>
<XMI.documentation>
<XMI.exporter>Unisys.JCR.1</XMI.exporter>
<XMI.exporterVersion>1.3.4</XMI.exporterVersion>

</XMI.documentation>
<XMI.metamodel xmi.name = 'UML' xmi.version = '1.3'/>
</XMI.header>

<XMI.content>
<!-- ==================== XSD [Model] ==================== -->
<Model_Management.Model xmi.id = 'G.0' >
<Foundation.Core.ModelElement.name>XSD</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value = "public"/>
<Foundation.Core.ModelElement.isSpecification xmi.value = "false"/>
<Foundation.Core.GeneralizableElement.isRoot xmi.value = "false"/>
<Foundation.Core.GeneralizableElement.isLeaf xmi.value = "false"/>
<Foundation.Core.GeneralizableElement.isAbstract xmi.value = "false"/>
<Foundation.Core.Namespace.ownedElement>
<!-- ==================== XSD::datatypes1 [Package] ==================== -->
<Model_Management.Package xmi.id = 'S.148.1124.56.1' >
<Foundation.Core.ModelElement.name>datatypes1</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value = "public"/>
<Foundation.Core.ModelElement.isSpecification xmi.value = "false"/>
<Foundation.Core.GeneralizableElement.isRoot xmi.value = "false"/>

….

49

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

XMI 2.0 Sample (from EMF)

<?xml version="1.0" encoding="ASCII"?>
<model_management:Model xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.
<ownedElement xsi:type="model_management:Package" name="datatypes1" isSpecification="false" isRoo
<ownedElement xsi:type="core:Association" name="" isSpecification="false" isRoot="false" isLeaf="false"
<connection name="" isSpecification="false" isNavigable="false" participant="//@ownedElement.5/@own
<multiplicity>
<range lower="0" upper="-1"/>

</multiplicity>
</connection>
<connection name="ref1" isSpecification="false" isNavigable="true" participant="//@ownedElement.0/@o
<multiplicity>
<range lower="1" upper="-1"/>

</multiplicity>
</connection>

</ownedElement>
<ownedElement xsi:type="core:Association" name="" isSpecification="false" isRoot="false" isLeaf="false"
<connection name="" isSpecification="false" isNavigable="false" aggregation="composite" participant="//@
<multiplicity>
<range lower="0" upper="-1"/>

</multiplicity>
</connection>
<connection name="aggr1" isSpecification="false" isNavigable="true" participant="//@ownedElement.0
<multiplicity>
<range lower="1" upper="1"/>

</multiplicity>

50

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Reflection

!Reflection allows generic access to any EMF
model

Similar to Java’s introspection capability.

Every EObject (which is every EMF object) defines a
reflection API

! The entire model can be traversed and updated
using the EMF reflection API

Reflection API’s only slightly less efficient than
generated implementation

51

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Model Change Notification

!Model change notification is built in to EMF

!Every model object is an EMF EObject
Every EObject has built-in notification support

!Changing any object attributes or references will
send a notification to all registered listeners

Notification bypassed if there are no listeners
Notification encoded in the object’s setXXX methods

SWG

May 2004 | OMG MDA Implementer’s Workshop © 2003 IBM Corporation

Using the Eclipse Modeling
Framework

Catherine Griffin

53

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Installing EMF

1. Download as zip files from http://www.eclipse.org/emf
• EMF Runtime (you need at least this)

• Documentation

• Source

• XSD Runtime
2. Unzip into the eclipse directory
3. Restart eclipse

54

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

EMF development process

Customize code

Define Model

Generate Code

Test

Refine model

55

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Using Rational Rose to define an Ecore model

! An Ecore model can be defined using a UML class
diagram

! There are some Ecore specific properties that you
may need to set

add the Ecore model properties to Rose
! Create one or more top-level packages
! Add sub-packages, classes, associations etc
! Save the model
! Use EMF tools to generate code from the Rose

.mdl file

56

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Ecore properties

Load the file ecore.pty from
eclipse\plugins\org.eclipse.emf.codegen.ecore_x.x.x\rose

57

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Associations

! At least one end must be navigable
! All navigable ends should have role names
! All navigable ends must have multiplicity
! The generated code only distinguishes between

‘many’ and ‘one’ multiplicities (but you can use
whatever multiplicities you like)

! Containment should be by value

58

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Containment relations

TaskList

Project

+taskList

+project 0..1

0..1

0..1

0..1

Task
0..*

+tasks

0..*

0..*
+subTasks

0..*

59

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Reference relations

Task

Team Person

0..1

0..*

+assignedTo0..1

+tasks 0..*

1..*

+members

1..*

! EMF will automatically maintain
two-way relationships for you

! Make sure that referenced
objects are contained somewhere
or you will have problems saving
the model

60

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Attributes

Project
name : String
description : String

Person
name : String

Task
priority : int

The type of an attribute must be a data type:
a Java primitive type (boolean, int, char …)
Java language type (Class, Object, Boolean,
String, Integer…)
an enumeration or data type defined in your
model

Multiplicity is specified by a stereotype on the
attribute, e.g. <<0..*>>

61

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

DataTypes

Date
<<javaclass>> java.util.Date

<<datatype>>Task
priority : int
deadline : Date

Data type values are serialized as strings in the XMI. It is up to you to ensure
this is implemented correctly for any data types you define.
The default behavior uses the Java toString() method to serialize the data, and
a constructor with a String argument, or valueOf(String) method, to read it back
in.

62

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Enumerations

Task
priority : int
status : Status

Status
red
amber
green
unknown
complete

<<enumeration>>

63

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Inheritance

Project

Task
priority : int
deadline : Date

WorkItem
name : String
description : String
status : Status

(Multiple inheritance is supported)

64

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Abstract classes

Project

Task
priori ty : int
deadline : Date

WorkI tem
name : String
description : String
status : Status

65

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Code generation

! To generate code you need
an Ecore model (in one or more .ecore files)

a generator model (.genmodel file)

! EMF stores code generation options in this
separate genmodel file, which references your
Ecore model

! The genmodel file is only used for code generation

66

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Generating
code

1. In Eclipse, select
File > New >
Project…

2. Use the wizard to
create a new
EMF Project

3. Select Rose
class model as
the source to load

67

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Importing the
Rose model

1. Click on Browse.. and
select the Rose .mdl file to
load

2. Click Next >

68

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Select packages

1. Make sure the
packages that you
want to generate code
for are selected

2. Click Finish

3. A new project is built,
containing one or more
ecore files and one
genmodel file

4. The genmodel is open
for editing

69

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Ready to generate code

70

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Generating code

1. Right-click on the top tree
element to get the popup
menu

2. Select Generate All to
begin code generation

71

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

The results

! Code is generated into the current project and two
new projects

! The original project contains a generated
implementation of your model

! The .editor project contains code for a generated
Eclipse editor which will allow you to build
instances of your model

! The .edit project contains generated adapters
which interface between your model objects and
the editor

72

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Understanding the generated model classes

! For each class in your model, there is a
corresponding generated

Java interface

Java implementation class
! For each package, there is a

XXXPackage interface and implementation class

XXXFactory interface and implementation class

73

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Example of generated interface

package example;
import org.eclipse.emf.common.util.EList;
import org.eclipse.emf.ecore.EObject;

public interface TaskList extends EObject {
EList getTasks();

Project getProject();

void setProject(Project value);

} // TaskList

TaskList

Project

+taskList

+project 0..1

0..1

0..1

0..1Task
priority : int
deadline : Date 0..*

+tasks

0..*

74

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Generated Implementation Classes

! Extend the EMF class EObjectImpl

! Implement the relevant generated interface

! Implement the EMF reflective API

! Where multiple inheritance is used in the model,
the generated implementation class extends one
super class and implements the relevant interfaces
for the rest

75

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Package and Factory Implementation Classes

! These are singletons, to access the instances use
XXXPackage.eINSTANCE

XXXFactory.eINSTANCE

! Use the Factory to create instances of your model
classes, e.g:
TaskList t =
ExampleFactory.eINSTANCE.createTaskList();

! Use the Package to access the meta-model definition, e.g:
EClass c = ExamplePackage.eINSTANCE.getTaskList();

List attrs = c.getEAttributes();

76

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Customizing generated code

! You can edit the generated code – so that your changes are
not lost when the code is re-generated, make sure you
remove the @generated flag or change it to @generated
NOT

! You may need to modify the generated code to implement
Operations that are defined in your model

Derived attributes or references

77

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Testing

1.Launch a new Eclipse workbench
2.Create an instance of your model
3.Use the generated editor to view and edit

your model instance

78

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Creating a Launch
Configuration

1. Switch to the Java
perspective (if you are not
there already)

2. Select your .editor project

3. Select Run > Run as >
Runtime Workbench

This will launch a new Eclipse
workbench and also creates a
new launch configuration
which will appear as a
shortcut in the Run menu

79

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

1. The first time
you launch a
run-time
workbench, its
workspace will
not contain any
projects or files

2. Create a new
project (of any
kind) to work in

3. Select from the
menu File >
New > Other..

80

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Create a new
model file

1. Select your new kind of
model from the list of
available EMF Example
Model Creation Wizards

2. Click on Next >

3. Pick a folder and a file
name for the new file. Do
not change the default file
type !

4. Click on Next >

81

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Select model
object to create

1. Select from the drop-down list
a class from your model to
create in the new file.

2. Select Finish …

3. The new file is created and
opened for editing with the
generated editor

82

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

The generated editor

83

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Using the Editor

! The generated editor allows you to test your model
by building examples

! You can use the generated editor code as a base
for developing a ‘real’ editor if required

! For very simple applications, a few small changes
to the generated code may be all that is needed

! This is a multi-page editor - each page
demonstrates different ways of viewing and editing
your model

84

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Outline View

! The outline view is a tree view which shows the
currently loaded resources and their contents.

! The first page of the editor shows the same
information

! You can add and remove new model objects, but
only one ‘top’ object in a file is allowed

! Cut, Copy, Paste and Drag and Drop are
supported

85

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Properties View

! The Properties view allows
you to edit attributes and
reference relationships for
the selected model object

! If the Properties view is not
visible, use Window > Show
View to show it

86

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Customizing the generated editor

! The editor code is generated from templates in the same way
as the model implementation code

! If you re-generate your model implementation, you will need
to re-generate the .edit project, but probably not the .editor
project

! If you are developing an editor, you would usually expect to
heavily customize the generated editor code

! The .edit project contains code that interfaces between the
model implementation and the editor

! This code controls what items appear in the editor, properties
view, and menus, and how changes are made to the model

87

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Re-generating code

1. If you change your model, you
need to re-generate the code

2. Right-click on the .genmodel file to
access the pop-up menu

3. Select Reload…

4. Proceed to import the Rose .mdl
as before

5. Open the .genmodel file with the
editor and generate the code

88

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Eclipse on the Web

! www.eclipse.org
Documents, articles, mailing lists, newsgroups, bug reports

! Plug-in catalogs:
www.eclipseplugincentral.com

www.eclipse-plugins.info/eclipse/index.jsp
! And more…

89

SWG

Introduction to the Eclipse Modeling Framework © 2003 IBM Corporation

Eclipse Books

! The Java Developer's Guide
to Eclipse
by Sherry Shavor et al

! Contributing to Eclipse:
Principles, Patterns, and
Plugins
by Erich Gamma et al

! Eclipse Modeling Framework
by Frank Budinsky et al

! IBM Redbook on EMF and
GEF

Publication number: SG24-6302-00

.. And more

