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Abstract
We describe the application of plan recognition techniques
to support human intelligence analysts in processing
national security alert sets by automatically identifying the
hostile intent behind them. Identifying the intent enables us
to both prioritize and explain the alert sets for succinct user
presentation. Our empirical evaluation demonstrates that the
approach can handle alert sets of as many as 20 elements
and can readily distinguish between false and true alarms.
We discuss the important opportunities, for future work, that
will increase the cardinality of the alert sets supported by the
system to the level demanded by a deployable application.
In particular, we outline opportunities to bring the analysts
into the process and the opportunities for heuristic
improvements to the plan recognition algorithm.
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Introduction
Events in the United States during 2001 tragically
demonstrated the nation’s vulnerability to acts of terrorism.
U.S. security agencies had information available at that
time that could have been used to thwart the World Trade
Center attack. However, it was not utilized as it was
residing within the ocean of other intelligence leads then
under consideration [U.S. Senate Report 2002].

Significant research has focused on the problem of
uncovering the critical pieces of intelligence information
that can be used to thwart an attack from a large body of
intelligence leads [DISCEX 2003]. The data mining
approaches that have been explored for this purpose can
sift through vast quantities of information, but suffer from
a high false alarm rate and do not help analysts link
together separate facts and events [Ning & Dingbang
2003].

We have developed a proof-of-concept prototype for a
tool to automate the analysis currently undertaken by
humans by exploiting plan recognition techniques from the
artificial intelligence community. Our thesis is that we can
significantly improve the quality of the information passed
to human analysts if we can automatically discover a
significant causal coherence between disparate activities.
Our analysis can also aid in the explanations of hypotheses
by presenting them in the context of the evidence.
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We structure this paper as follows. We first present our
Computer Aided Plan Recognition (CAPRe) architecture.
We then describe the modeling framework that we use to
represent terrorist behavior before detailing the plan
recognition algorithm we have developed to match
observations with the model. Our experimental section
evaluates the performance of the system on alert sets with
range of signal-to-noise properties. We close by reflecting
on what we have learned and define avenues that must be
explored by future work before the capability can be
deployed in an operational setting.

Computer-Aided Plan Recognition (CAPRe)
Architecture

Our approach, illustrated in Figure 1, involves specifying a
priori attack templates that are compared against
observables to infer whether a particular attack matching
one or more templates might be under way. The templates
also support the anticipation of future steps so that data
collection can be directed, and early interventions to
interfere with the plan are possible.

Attack Templates
CAPRe’s attack template library contains a description of
attack activities structured hierarchically with a
specification of the conditions under which they can be
combined. The library forms a description of the action
physics for a particular application domain that can be used
to construct plan instances tailored to specific target
requirements, not a library of known attack plan cases.

We draw on the rich hierarchical action representation
developed and refined in the automated planning
community during the past 30 years (Fikes and Nilsson
1971, Tate 1977). These representations have found
application in areas as diverse as spacecraft control
(Muscettola et al. 1997) and oil spill response planning
(Bienkowski et al. 1994). Figure 2 presents a sampling of
the templates in our library for terrorist attacks on a
national infrastructure. A template contains information
organized into the following slots:
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Figure 1: CAPRe Architecture

:template Physical_Attack
:purpose destroy(?group  ?target)
:tasks

1. reconnaissance(?group  ?target)
2. prepare_attack(?group  ?target)
3. attack(?group  ?target);

:orderings 1 > 3, 2 > 3;
:end_template

:template Reconnaissance_of_Target
:vars group ?group, target ?target;
:purpose reconnaissance(?group  ?target)
:tasks

1. recon_security(?group  ?target)
2. recon_structure(?group  ?target);

 :end_template

:template Research_Structure
:purpose recon_structure(?group ?target)
:tasks

1. obtain_structural_plans (?target ?group)
2. take_job (?group ?target)
3. structural_engineering_training (?group);

:conditions member(?person ?group);
:effects retrieved_blue_prints(?person ?group) :at 1.

       hr_records(?group ?target) :at 2.
    enrollment(?group ?engineering_school) :at 3.
 :end_template

Figure 2: Example Templates

• :vars - variables that provide typed parameter
descriptions for a template

• :purpose - the overall purpose of the template
• :tasks -  set of labeled lower-level tasks to be

performed to achieve the purpose

• :orderings - temporal constraints on the execution
of actions  defined in terms of task labels

• :preconditions constraints on the execution of a
task (e.g., valid driver’s license required to rent a
car)

• :effects - changes to the world that result from the
execution of tasks within a template

We define three properties on each task and effect within a
template1. Each property can take the value high, medium,
or low. While more complicated schemes are possible, we
decided that this simple scheme would be the most
accessible to our user community.
• Frequency of the occurrence of a task or effect in

normal behavior. For example, car rentals are
assigned a high frequency, while missing person
reports are assigned a low frequency.

• Accuracy of normal observations of a task or effect.
For example, missing person reports are highly
accurate, while a witness’s recollection of a
suspicious car’s license tag is generally l o w
accuracy.

• Gathering Cost records the cost of making an
observation. Accessing an online database is
considered a low cost, while an observation that
demands a door-to-door search by law enforcement
officials is a high-cost operation.

Frequency and accuracy properties are exploited during the
plan recognition process to score hypotheses or to filter
observation lists. Cost is used during the information-
gathering planning phase to determine the cost benefit of a
particular information-gathering action.

1We have omitted these properties from Figure 2 because of
space constraints.
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Figure 3: Example Seedling

Plan Recognition Process
We first provide an overview of our plan recognition
process before describing each element in detail. The broad
approach is adapted from our earlier work on abductive
plan sketch completion (Myers 1997).

Process Overview
Informally, the plan recognition task is to take a set of
observed actions and world state changes and a collection
of (attack) templates and produce a set of plans that offer
potential explanations for the observations within the
template set.

Consider the observation retrieved_blueprints
(John_Doe, Springfield_dam) in the context of the
templates shown in Figure 2.  We can work backward from
this observation through the research structure template to
conclude that the group of which Mr. Doe is a member is
attempting to obtain control information about the
Springfield dam. Working back another two steps, we can
explain the control information attempt as part of the
broader reconnaissance component of a physical attack on
this dam. Figure 1 labels this reasoning as the abductive
phase of the plan recognition activity that results in a set of
seedling explanations for each observation.

The selection phase of the plan recognition activity takes
the set of seedlings generated for all observations and seeks
subsets that can be combined consistently with respect to
the templates. For example, if we had observed another
individual with links to the same organization as Mr. Doe
enrolling in an engineering school, then we could combine
these two observations to form an open hypothesis. If Mr.
Doe and this new individual were associated with two
different organizations, then these seedlings would not be
able to be combined as they violate the m e m b e r
precondition in the Research_Structure template.

We now describe these two phases in more detail.

Seedling Generation
We use an abductive inference procedure to identify the
seedling hypotheses that provide candidate explanations for
a set of observed activities Α. Each seedling hypothesis
tops out in an element of the goal space, G, for a domain
model. While G could be defined explicitly, we use the set
of template purposes that do not appear as tasks in
templates. Destroy(?group, ?target) is one example
member of G that is shown in Figure 2.

Definition 1 (Seedling) The seedling for a task α is the set
of labeled linear graphs:

where G1 ∈ G, and Oj is a template with purpose Gj and a
subtask T such that σj is a most general unifier of T and
(Gj+1)β, for β= ∪n ≥ i ≥ j σj and A = Gn+1.
Consider the following observation set:

{retrieved_blue_prints(doe_corp, springfield_dam),
enrollment(john_smive, springfield_eng_school),
retrieved_blue_prints(doe_corp, sand_dam }.

Figure 3 shows the seedlings that will be generated for
these observations given the template set shown in Figure
2. Technically, this figure should show variable bindings,
but we have simplified the presentation to the propositional
case.

Implementing a seedling generation procedure is simple
given the above definition. The only concern is the runtime
of the procedure. We define the abstraction factor for a
task T  to be the number of template schema subtasks that
unify with T. We define α to be the maximum abstraction
factor for all the tasks in a domain definition. Let lA be the
difference in abstraction level between observations A and
the most abstract goal in the goal space G. The sum

∑ α la

a∈observation
(where ε =) is a loose upperbound on the construction time
for the seedling explanations for a set of observations.

We show empirically the time spent in the seedling
generation phase in our experiment section. While a
procedure with exponential bounds is cause for concern,
we have found in practice that typical domain definitions
contain 8 to 10 abstraction levels, and the abstraction factor
rarely exceeds 6 (Myers 1997).

We provide two mechanisms that allow the user to
influence the seedling generation process. The frequency
filter parameter allows the user to specify the maximum
occurrence frequency of the observations that should be
considered. This allows the user to filter out high- or
medium-frequency events. The user can also specify
classes of events and effects to ignore.

Seedling Selection
The selection phase seeks to combine the seedlings
generated in the first phase to form a set of open
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hypotheses with each member offering an explanation of
the intent behind a cluster of seedlings.

Figure 3, all three seedlings would be clustered into a
single seedling group, SG , as they share the common
destroy top-level predicate. We now iterate through the
powerset of each seedling group (ignoring those of
cardinality < 2 and generating the set incrementally) to
identify the seedlings that can be combined. The powerset
of SG that we consider  consists of the following sets:

1. {blue_prints_springfield, engineering_training_smive}
2. {blue_prints_springfield, blue_prints_sand}
3. {blue_prints_sand, engineering_training_smive}
4. {blue_prints_springfield, engineering_training_smive,

blue_prints_sand}

Corresponding seedling steps can be combined to form an
open hypothesis if the following conditions are satisfied:

• The purpose statements unify.
• The steps use a common template.
• All constraints in the template are satisfied.
• The bindings entailed by the purpose and task

statements across the steps are consistent.

The combination process starts with the top-level step of
each seedling in the set under consideration. Consider the
members of Set 1. The top-level steps can be combined as
the combination conditions are satisfied. Now consider the
members of Set 2. The top steps of these two seedlings
cannot be combined, as the binding for the target variable
is inconsistent across the seedlings. Return to Set 1; the
combination process continues by considering the next
steps in each seedling under consideration. A valid open
hypothesis is produced if all steps in all seedlings could be
combined.

Figure 4 shows the open hypothesis produced by
combining the members of Set 1. While the group behind
the attack is not named, the template constraints state that
Doe Corp and the individual known as Smive are
associated with the group behind the attack.

The concern with the composition procedure, as with the
seedling construction phase, is the computational
complexity of the procedure. The size of a power set of n
elements is 2n.

We carefully structure our search and exploit search
pruning to maximize the activity cluster size that we can
consider. Our primary strategy is to search through the
powerset of seedlings in ascending cardinality order. This
strategy has several advantages. First, we can terminate our
search as soon as we find a cardinality level with no open
hypotheses. Second, we can use a no-good learning
strategy. Once we have found a set of seedlings that cannot
combine, we can prune all other sets that contain that set as
a subset. We show the benefit of no-good learning in the
experiments section.

Figure 4: Example Open Hypothesis

Implementation
We have implemented a prototype of our CAPRe
architecture in Java. Figure 5 shows the user interface to
this system. The top pane displays the current open
hypotheses with observations bolded. The left and center
bottom panels allow the user to control the seedling
generation and compositions process and the scoring
function used to sort the open hypotheses. We currently
support a simple scoring scheme that rates open hypotheses
according to the number of observations that support them.
The bottom right panel displays the constraint on the
currently selected hypotheses.

Our current implementation includes only the plan
recognition portion of the architecture. Implementing and
evaluating the generation of information-gathering plans is
left for further work.

Experiments
Our empirical evaluation of the CAPRe implementation
examined the performance of the system on a range of alert
sets. We focused on variations in the following properties
of alert sets:

• Number of alerts is the total number of alerts in
a set.

• Signal-to-noise ratio is the number of alerts in a
set that are part of a malicious plan (the target
plan) divided by the total number of false alerts in
the set.

• Noise coherence refers to the maximum number
of false alerts in a set that can be combined
consistently to form a coherent attack plan.

Table 1 presents the results of our empirical examination of
CAPRe. The input alert sets were crafted by hand to
include evidence for a target hypothesis together with noise
with the appropriate signal-to-noise and coherence
properties. We recorded both the runtime of the system and
the position of the target hypothesis within the sorted list of
hypotheses identified for each set.

Attack (?group, Springfield_dam)

Reconnaissance  (?group, Springfield_dam)
Reconnaissance

ReconStructure  (?group, Springfield_dam)

PhysicalAttack

RetrieveBluePrints
  (Doe_Corp,
   Springfield_dam)

Enrollment
  (Smive,
   Springfield_eng_school)

ReconStructureReconStructure
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Figure 5: CAPRe User Interface

Maximum Noise
Coherence

1 4 8

No.
Events

Signal/
 Noise

1/3 1/1 3/1 1/3 1/1 3/1 1/3 1/1 3/1

Time 0:00:00.1 0:00:00.1 0:00:00.1 0:00:00.1 0:00:00.1 0:00:00.1 0:00:00.1 0:00:00.1 0:00:00.18

Rank 1/7 1/5 1/3 3/3 1/2 1/2 2/2 Joint 1st 1/2

Time 0:00:00.7 0:01:00.4 0:01:26.0 0:00:01.7 0:01:02 0:01:25.9 0:03:06.1 0:01:00.1 0:00:23.816

Rank 1/13 1/9 1/4 Joint 1st 1/3 1/2 3/3 Joint 1st 1/2

20 Time 0:00:09.7 2:27:02.4 0:47:34.0 0:00:06.3 0:47:28.2 0:48:19.4 0:28:01.0 0:48:20.5 0:54:59.4

Rank 1/16 1/12 1/8 5/5 1/4 1/3 3/3 1/2 1/2

25 Time 0:19:49.3 * * * * * * * *

Rank 1/19 * * * * * * * *

Table 1: Experimental Results
Apple PowerMac G5 1.8 GHz, 500 MB RAM. * denotes no result after 12 hours.

We sorted the set of  hypotheses by the number of
seedlings combined to generate hypotheses. The more
seedlings composed to form a hypothesis the higher its
support, and therefore the higher its score.

Examining Table 1 reveals that the time CAPRe takes to
identify intent increases exponentially with the number of

events in an alert set. This is the behavior that we predicted
from the appreciation that our seedling composition step
must consider the powerset of the seedlings explanation
generated for an alert set. CAPRe is currently limited to
alert sets of about 20 actions on state-of-the-art hardware.
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The noise coherence and signal-to-noise ratio properties
of alert sets affected both the runtime and accuracy of
CAPRe. Consider first the group of three results with a
noise coherence of 1. In this case, noise cannot mislead the
recognition process as each mistaken hypothesis can be
supported by only one alert. In this situation, CAPRe
consistently ranks the target hypothesis first. When we
move to alerts with a noise coherence of 4, CAPRe ranks
incorrect hypotheses higher when the signal-to-noise ratio
favors the noise. The target hypothesis is ranked first again
when the signal-to-noise ratio is 1 or favors the signal.
When the noise coherence is adjusted to 8, the results show
that it becomes increasingly difficult for CAPRe to
correctly identify the target hypothesis. This is
understandable, as the noise has become coherent and is
dwarfed in cases where it outnumbers or equals the target
activities.

We draw two conclusions from the experiments. First,
the runtime performance degrades exponentially with alert
set size, and for practical purposes 20 alerts is the limit.
Second, the accuracy of the system falls off as the cohesion
of the noise exceeds that of the actual attack activity.

Summary and Further Work
We have introduced the CAPRe architecture for
automating the deep analysis of security alert clusters in
order to reduce the load on human security analysts. Our
proof-of-concept demonstration illustrates that the
technology is capable of recognizing the intent behind
events in an alert set and of presenting that intent
succinctly to a human user. Our empirical investigation
concluded that the technology could process alert clusters
of as many as 20 actions and demands that noise (false
alerts) be less casually coherent than the components of the
attacks.

Further work is needed to move CAPRe to a position
where it is ready for operational deployment. We
recommend that further work focus on the following three
areas:
• Real Alert Sets: CAPRe has benefited from a close

development relationship with the intelligence
community. However, it is essential that future work
have access to actual or at least analyst-generated alert
sets. Research can then focus on addressing the issues
raised by actual rather than projected signal-to-noise
ratios and coherence factors.

• Mixed-Initiative Paradigm: the number of seedlings
generated for an alert set is the critical factor in
determining the runtime of the composition phase.
Intelligence analysts often have deep insights into the
attack activity in progress and events that are
supporting false conclusions. Future work should
explore a mixed initiative approach where seedlings
are presented in a digestible form to the analysts for
filtering.

• Heuristic Development: We propose to explore two
approaches to improving the algorithmic performance

of CAPRe. First, we will explore the information-
gathering planning concept defined in the architecture
to enable us to perform plan recognition on only low-
frequency actions in an alert cluster before examining
the cluster for alerts that support the set of hypotheses
generated. This approach would have the key benefit
of reducing the number of seedlings generated for an
alert set. Second, we will explore the inclusion of
probabilities of observing template tasks given a
template purpose in a way similar to that used by
Goldman et al. (1999). We will use this information to
rank seedlings according to the probability that the
observation supports the goal of each. A simple cutoff
strategy can then be used to prune unlikely seedlings
and again reduce the number of seedlings passed into
the computationally expensive combination phase.
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